JPS59136870A - Integration time variable type dual slope integrator - Google Patents

Integration time variable type dual slope integrator

Info

Publication number
JPS59136870A
JPS59136870A JP1119783A JP1119783A JPS59136870A JP S59136870 A JPS59136870 A JP S59136870A JP 1119783 A JP1119783 A JP 1119783A JP 1119783 A JP1119783 A JP 1119783A JP S59136870 A JPS59136870 A JP S59136870A
Authority
JP
Japan
Prior art keywords
time
integration time
integration
integrator
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1119783A
Other languages
Japanese (ja)
Other versions
JPS6355109B2 (en
Inventor
Kenzo Ishiguro
石黒 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Priority to JP1119783A priority Critical patent/JPS59136870A/en
Publication of JPS59136870A publication Critical patent/JPS59136870A/en
Publication of JPS6355109B2 publication Critical patent/JPS6355109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/18Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals

Abstract

PURPOSE:To ensure more flexible measurement compared with a conventional case where the integration time is fixed by varying the integration time and at the same time correcting the discharge time in response to the integration time. CONSTITUTION:A control circuit 16 sets the integration time to a counter 11 for integration time. Then the circuit 16 actuates the counter 11 to close a switch 3. Thus the signal to be measured which is sent from a terminal 1 is applied to an integrator 5. The counter 11 opens the switch 3 when the set integration time elapses and completes the integration of the integrator 5. Then the circuit 16 closes a switch 4 and discharges the integrator 5 with the discharge signal sent from a terminal 2. This discharge time is counted by a counter 7 for discharge time. Here the output of the counter 7 is corrected by a calculator 12 for correction of integration time. Thus it is possible to perform more flexible measurement compared with a conventional case when the integration time is fixed.

Description

【発明の詳細な説明】 本発明はデュアルスロープ積分器の改良に関し特に積分
時間を可変にすることにより柔軟性を増したデュアルス
ロープ積分器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in dual slope integrators, and more particularly to dual slope integrators that have increased flexibility by making the integration time variable.

第1図に従来のデュアルスロープ積分器のブロック図を
、また第2図に従来のデュアルスロープ積分器の積分値
の時間変化のグラフを示す。第1図におい°(、入力端
子1には被測定信号が与えられ、また入力端子2には放
電層の信号が与えられる7制御回路6によっ゛〔スイッ
チ3が一定時間T。
FIG. 1 shows a block diagram of a conventional dual slope integrator, and FIG. 2 shows a graph of changes over time in the integral value of the conventional dual slope integrator. In FIG. 1, the input terminal 1 is supplied with the signal to be measured, and the input terminal 2 is supplied with the discharge layer signal.The control circuit 6 causes the switch 3 to operate for a certain period of time T.

裟  だけ閉じられる。その結果入力信号−,嶺(第2図)は
積分器5にだいて一定時間′roだけ積分される。その
後制御回路6によつ゛〔スイッチ4が閉じられ積分値が
Oになるまで放電が行なわれる。
Only the clothes can be closed. As a result, the input signal -, ridge (FIG. 2) is integrated by the integrator 5 for a certain period of time 'ro. Thereafter, the control circuit 6 closes the switch 4 and discharges until the integral value becomes O.

積分器5の放電時間Do、 Dl(第2図)は放電時間
計数カウンタ7によつ゛C計数され、その計数随が出力
端子8から出力される。第2図にα#(上述の積分−放
電の動作を示す。同図におい°(縦軸は積分器、横軸は
時間である。
The discharge times Do and Dl (FIG. 2) of the integrator 5 are counted by a discharge time counter 7, and the resulting count is outputted from an output terminal 8. FIG. 2 shows α#(the above-mentioned integration-discharge operation). In the same figure, the vertical axis is the integrator and the horizontal axis is time.

上述の例よりわかる様に、従来のデュアルスロープ積分
器においては、被測定信号の積分時間。を一定(To)
にしておき、その放電時間Do、D+から被測定信号の
値を求めるものである。しかしながら測定条件によつ°
〔は一定の積分時間を確保できなかったり或は積分時間
を可変にすれば測定器の制御等が簡単になることがある
。たとえば、時間的に変化する信号を測定する場合、積
分時間は測定器の都合で決められるべきものではなく、
被測定信号の性質等によつC決められなければならない
。また、被測定信号の性質等によつ−C決められる積分
時間では充分な積分値が確保できない場合は、被測定信
号をくり返して発生させることにより積分動作を(り返
し、充分な積分時間を得るというサンプリング積分を行
う。たとえばサンプリング積分においC1充分な積分量
を確保するため必要な積分時間が1Qrrisであるの
に対しある条件下では1回当りの積分時間が3msしか
得られないとすると、積分時間の端数が出る。この為正
確に10m5の積分時間を確保しようとすると最終回の
積分時間を調整しなければならず、また前の回の積分と
同一タイミングで積分を開始すると、積分区間の中心時
刻が変わっcしまうため場合にょっ゛(は積分開始タイ
ミングも変更しなければならない。この様な制御を行う
ためには測定器の構成が複雑化し°〔しよう。
As can be seen from the above example, in the conventional dual slope integrator, the integration time of the signal under test. constant (To)
The value of the signal to be measured is determined from the discharge times Do and D+. However, depending on the measurement conditions
[In some cases, it may not be possible to secure a constant integration time, or if the integration time is made variable, the control of the measuring instrument may be simplified. For example, when measuring time-varying signals, the integration time should not be determined by the convenience of the measuring instrument;
C must be determined depending on the characteristics of the signal under test. In addition, if a sufficient integral value cannot be secured with the integral time determined by the characteristics of the signal under test, etc., the integral operation can be performed by repeatedly generating the signal under test (repeatedly to obtain a sufficient integration time). For example, in sampling integration, the integration time required to ensure a sufficient amount of integration C1 is 1 Qrris, but under certain conditions, the integration time per time is only 3 ms. A fraction of the integration time will appear.For this reason, if you want to ensure an accurate integration time of 10 m5, you will have to adjust the final integration time, and if you start integration at the same timing as the previous integration, the integration interval will be Since the center time of the measurement changes, the integration start timing must also be changed in some cases. In order to carry out such control, the configuration of the measuring instrument becomes complicated.

本発明は−F述の様な従来のデュアルスロープ積分器の
欠点を解消するものであり、そのため積分時間を可変と
し、また放電時間を積分時間に応じて補正することを特
徴とする。
The present invention eliminates the drawbacks of the conventional dual slope integrator as described in -F, and is therefore characterized by making the integration time variable and correcting the discharge time in accordance with the integration time.

以下図面に基い′C本発明の詳細な説明する。第3図は
本発明の一実施例である積分時間可変型デュアルスロー
プ積分器のブロック図である。第3図において第1図と
同一のものは同じ参照番号を付し′Cある。第3図にお
い°C1先ず積分時間計数カウンタ11に対し、制御回
路16によつ゛C積分時間が設定される。設定される積
分時間は測定条件等により制御回路16内で算出される
。そし′Cその後制御回路16は積分時間計数カウンタ
11を起動し、スイッチ3を閉じる。入力端子1より与
えられる被測定信号はスイッチ3を介し°C積分器5に
入って積分される。設定積分時間が経過すると積分時間
計数カウンタ11はスイッチ3を開〔いる放電用信号に
より積分器5を積分値が0になるまで放電する。そし′
〔その放電時間は放電時間計数カウンタ7によつ′C計
数される。本発明におい°〔は積分時間が可変であるた
め放電時間計数カウンタ7の出力は更に積分時間補正計
算器12において補正される。たとえば前述の必要な積
分時間として1つに固定された時間、すなわち基準積分
時間が′roであるのに対し、積分時間計数カウンタ1
1に設定された可変の積分時間がr1であったとすると
、放電時間計数カウンタ7の出力D1′ に対し、補正
−−#’I’o /’rr  を乗算し゛C基準積分時
間′roに対する放電時間(カウント値)に換算し”〔
出力端子8から出力する。なお、積分時間補正計算器1
2は補正係数To/TI  を計算するため、設定され
た積分時間°r1及び基準積分時間′l゛。
The present invention will be described in detail below based on the drawings. FIG. 3 is a block diagram of a variable integration time type dual slope integrator which is an embodiment of the present invention. In FIG. 3, the same parts as in FIG. 1 are designated by the same reference numerals. In FIG. 3, first, the control circuit 16 sets the C integration time to the integration time counter 11. In FIG. The set integration time is calculated within the control circuit 16 based on measurement conditions and the like. Then, the control circuit 16 starts the integral time counter 11 and closes the switch 3. The signal under test applied from the input terminal 1 enters the °C integrator 5 via the switch 3 and is integrated. When the set integration time has elapsed, the integration time counter 11 discharges the integrator 5 until the integral value reaches zero using a discharging signal that opens the switch 3. stop'
[The discharge time is counted by the discharge time counter 7. In the present invention, since the integral time is variable, the output of the discharge time counter 7 is further corrected in the integral time correction calculator 12. For example, while the necessary integration time mentioned above is fixed at one time, that is, the reference integration time is 'ro,' the integration time counter 1
Assuming that the variable integration time set to 1 is r1, the output D1' of the discharge time counter 7 is multiplied by the correction - #'I'o/'rr to calculate the discharge for the reference integration time 'ro'. Convert to time (count value)
Output from output terminal 8. In addition, integral time correction calculator 1
2 is the set integration time °r1 and reference integration time 'l' for calculating the correction coefficient To/TI.

を夫々積分時間計数カラyり11及び制御回路16より
入力する。積分時間計数カウンタ11の端子10は外部
から積分を停止させるだめの信号入力端子である。また
第4図は基準積分時間′ro及び可変の積分時間′rI
につい゛〔の第3図中の積分器5における同一人力信号
に対する積分値の時間変化を示すグラフである。既に述
べた様に可変の積分時間゛r1に対応する放電時間D′
1を基準積分時間′roに対応する放電時間りに換算す
るためには1r。
are inputted from the integral time counting column 11 and the control circuit 16, respectively. The terminal 10 of the integration time counter 11 is a signal input terminal for stopping the integration from the outside. FIG. 4 also shows the standard integration time 'ro' and the variable integration time 'rI.
3 is a graph showing the time change of the integral value for the same human input signal in the integrator 5 in FIG. 3. As already mentioned, the discharge time D' corresponding to the variable integration time r1
To convert 1 to the discharge time corresponding to the reference integration time 'ro, use 1r.

D=DIX五 なる計算を行なえば良い。D=DIX five All you have to do is do some calculations.

なお、第4図に示す積分値の時間変化は連続し・C積分
を行った場合のものを示すが、サンプリング積分の場合
でも本発明を適用できることは当然である。第5図はサ
ンプリング積分の場合の積分値の時間変化を示すグラフ
である。第5図におい°〔は1回当り11時間の積分動
作を4回くり返して行つ〔いる例が示され′〔いる。こ
の場合には前述の補正係数To / ′r1の′r1を
4・11にとれば良い。
Although the time variation of the integral value shown in FIG. 4 shows the case where continuous C-integration is performed, it is obvious that the present invention can also be applied to the case of sampling integration. FIG. 5 is a graph showing changes in integral values over time in the case of sampling integration. In FIG. 5, an example is shown in which an integral operation of 11 hours is repeated four times each time. In this case, 'r1 of the above-mentioned correction coefficient To/'r1 may be set to 4·11.

以上説明した様に、本発明によれば積分時間を可変にす
ることにより、従来に比べより柔軟な測定が可能になる
As explained above, according to the present invention, by making the integration time variable, more flexible measurement is possible than in the past.

また本発明の別の実施例とし゛C1積分時間を設定する
かわりに、積分値があるレベルに達するまで積分し、そ
の積分時間を第3図の実施例の説明中で述べた補−正係
数To/T+のT、として使用することもできる。第6
図はこれを実現するための積分時間可変型デュアルスロ
ープ積分器の実施例のブロック図である。第6図のブロ
ック図において、第3図と基本的に相異する部分はレベ
ル比較器20及び基準レベル電圧源22である。制御回
路26により積分時間計数カラ/り21を起動すると、
このカウンタ21は積分時間の計数を開始すると同時に
スイッチ3を閉じ被測定信号の積分を開始させる。積分
器5の積分(直はレベル比較器20に導びかれ、基準レ
ベル電圧源22よりの基準レベル電圧と比較される。そ
し°〔積分値が基準レベル電圧に到達するとレベル比較
器20は積分時間計数カウンタ21へ停止信号を与える
。この停止信号によつ゛C積分時間計数カウンタ21は
カウントを打切りスイッチ3を開く。その後制御回路2
6によりスイッチ−4が閉じられ積分器5内の積分値が
Oになるまで放電される。この放電時間は放電時間計数
カウンタ7によつ°C計数される。その後積分時間補正
計算器12は基準積分時間”Os  積分時間T、、放
電時間D+“を夫々制御回路26、積分時間計数カウン
タ21、放電時間計数カラ/り7より得′C1基準積分
時間To、に換算した放電時間(計数m)Dを計算式 によつ°〔計算して出力端子8から出力する。第7図は
レベルの異なる2つの被測定信号U、、U2につい〔の
第6図中の積分器5の積分値の時間変化を示すグラフで
ある。ここにおい°〔被測定信号UItU2の積分時間
及び放電時間はT、及びD1″、T2及びD2“である
から基準積分時間To K換算した放を時間ハ夫k D
i” X To/ ’rI、 D2/X T6 /’r
2  トする。
In another embodiment of the present invention, instead of setting the C1 integration time, the integral value is integrated until it reaches a certain level, and the integration time is set to the correction coefficient To It can also be used as T in /T+. 6th
The figure is a block diagram of an embodiment of a variable integration time type dual slope integrator for realizing this. In the block diagram of FIG. 6, the parts basically different from those in FIG. 3 are a level comparator 20 and a reference level voltage source 22. When the control circuit 26 starts the integral time counter 21,
The counter 21 starts counting the integration time and at the same time closes the switch 3 to start integrating the signal under measurement. The integral value of the integrator 5 is led to a level comparator 20 and compared with a reference level voltage from a reference level voltage source 22. Then, when the integral value reaches the reference level voltage, the level comparator 20 starts integrating A stop signal is given to the time counter 21. This stop signal causes the C integral time counter 21 to stop counting and open the switch 3. After that, the control circuit 2
6, the switch 4 is closed and the integrated value in the integrator 5 is discharged until it becomes O. This discharge time is counted in °C by a discharge time counter 7. Thereafter, the integral time correction calculator 12 obtains the standard integral times "Os, integral time T, and discharge time D+" from the control circuit 26, the integral time counter 21, and the discharge time counter 7, respectively.'C1 standard integral time To, The discharge time (count m) D is calculated using the calculation formula and outputted from the output terminal 8. FIG. 7 is a graph showing changes over time in the integral value of the integrator 5 in FIG. 6 for two signals under measurement U, . . . U2 having different levels. Here, since the integration time and discharge time of the signal under test UItU2 are T, D1'', T2 and D2'', the reference integration time To is converted to K, and the discharge time is D.
i"X To/'rI, D2/X T6/'r
2.

本実施例によれば、放電時間計数カウンタ21のクロッ
ク周波数を変化させるだけで、単一レンジの測定範囲を
増大させることができる。たとえばこのクロック周波数
を10倍にすると、レンジの変更なしで10倍の入力ま
で同じ分解能で測定できる。
According to this embodiment, the measurement range of a single range can be increased simply by changing the clock frequency of the discharge time counter 21. For example, if this clock frequency is increased by 10 times, it is possible to measure up to 10 times as many inputs with the same resolution without changing the range.

この他にも被測定信号の積分の停止条件を変えることに
よりいろいろな応用が考えられる。
In addition to this, various other applications can be considered by changing the conditions for stopping the integration of the signal under test.

本願発明はたとえば特願昭56−173854 に示さ
れた丈ンプリン、グ積分器等に使用し°C効果大である
The present invention can be used, for example, in a length integrator, a length integrator, etc. as shown in Japanese Patent Application No. 173854/1982, and has a great effect on temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のデュアルスロープ積分器のブロック図、
第2図は第1図中の積分器の積分値の時間変化を示すグ
ラフ、第3図は本発明の一実施例である積分時間可変型
デュアルスロープ積分器のブロック図、第4図は第3図
中の積分器の積分値の時間変化を示すグラフ、第5図は
第3図中の積分器がサングリフグ積分動作をした場合の
積分値の時間変化な示すグラフ、第6図は本発明の他の
実施例の積分時間可変型デュアルスロープ積分器のブロ
ック図、第7図は第6図中の積分器の積分値の時間変化
を示すグラフである。 5:積ぜ器、 6,16,26 :制御回路、7:放電
時間計数カウンタ、 11.21:積分時間計数カウンタ、 20ニレベル比較器、  22:基準レベル電圧源。 出願人 横河叱シVント・パッヵード株式会社代理人 
弁理士  長 谷 川  次  男I−旬
Figure 1 is a block diagram of a conventional dual slope integrator.
FIG. 2 is a graph showing the time change of the integral value of the integrator in FIG. Figure 3 is a graph showing the time change of the integral value of the integrator, Figure 5 is a graph showing the time change of the integral value when the integrator in Figure 3 performs sangrifuge integration operation, and Figure 6 is a graph showing the time change of the integral value of the integrator in Figure 3. FIG. 7 is a block diagram of a variable integration time type dual slope integrator according to another embodiment of the present invention, and FIG. 7 is a graph showing changes over time in the integral value of the integrator in FIG. 5: multiplier, 6, 16, 26: control circuit, 7: discharge time counter, 11.21: integration time counter, 20 two-level comparator, 22: reference level voltage source. Applicant: Yokogawa Koushi Vnt Packard Co., Ltd. Agent
Patent Attorney Tsugu Hasegawa I-Jun

Claims (1)

【特許請求の範囲】[Claims] 入力信号を積分した後放電する積分器と、前記積分器の
積分時間を制御する手段と、前記積分器の放電時間を測
定する手段と、測定された前記放電時間に対し゛(前記
積分時間に応じた補正演算を施して出力する補正演算手
段とを設け°Cなる積分時間可変型デュアルスロープ積
分器。
an integrator that discharges after integrating an input signal; a means for controlling the integration time of the integrator; a means for measuring the discharge time of the integrator; A variable integration time type dual slope integrator is provided with a correction calculation means that performs correction calculation according to the output and outputs the result.
JP1119783A 1983-01-26 1983-01-26 Integration time variable type dual slope integrator Granted JPS59136870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119783A JPS59136870A (en) 1983-01-26 1983-01-26 Integration time variable type dual slope integrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119783A JPS59136870A (en) 1983-01-26 1983-01-26 Integration time variable type dual slope integrator

Publications (2)

Publication Number Publication Date
JPS59136870A true JPS59136870A (en) 1984-08-06
JPS6355109B2 JPS6355109B2 (en) 1988-11-01

Family

ID=11771317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119783A Granted JPS59136870A (en) 1983-01-26 1983-01-26 Integration time variable type dual slope integrator

Country Status (1)

Country Link
JP (1) JPS59136870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043564A (en) * 1987-11-07 1991-08-27 Canon Kabushiki Kaisha Dual integration type electro-optical distance measuring device wherein the first integration time is reverse integrated
JP2010256052A (en) * 2009-04-22 2010-11-11 Yazaki Corp Gas analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043564A (en) * 1987-11-07 1991-08-27 Canon Kabushiki Kaisha Dual integration type electro-optical distance measuring device wherein the first integration time is reverse integrated
JP2010256052A (en) * 2009-04-22 2010-11-11 Yazaki Corp Gas analyzer

Also Published As

Publication number Publication date
JPS6355109B2 (en) 1988-11-01

Similar Documents

Publication Publication Date Title
US7387435B2 (en) Temperature sensor
JPS59136870A (en) Integration time variable type dual slope integrator
US4625197A (en) Logarithmic analog to digital converter
US3919634A (en) Current arrangement for correcting the measured voltage of an analog speed transducer
EP0670499A1 (en) Voltage to frequency converter
US4633221A (en) Dual slope analog-to-digital converter with automatic, short cycle range determination
EP0535124B1 (en) Analog-to-digital converter
JP3271323B2 (en) Time measurement circuit
JPH0355070Y2 (en)
JP2974129B2 (en) Signal spectrum measurement device
SU748293A1 (en) Meter of dynamic parameters of quartz resonators
JPH0522413B2 (en)
JPS6013615B2 (en) Analog to digital converter
RU2017087C1 (en) Temperature gauge with frequency output
JPS6117300B2 (en)
JPS5964920A (en) Analog-digital converter
RU1775619C (en) Vibration meter
SU705360A1 (en) Digital central frequency meter
JPH04344476A (en) Frequency ratio measuring circuit
JP3825565B2 (en) Integration type A / D conversion calibration method and integration type A / D converter
JPS6016583B2 (en) digital resistance meter
RU2074416C1 (en) Device which provides linear characteristics of transducers
RU2010165C1 (en) Device for correcting indications of integrating flowmeter
SU488163A1 (en) Digital phase meter
SU744965A1 (en) Confidence interval measuring device