JPS59136092A - Brushless motor - Google Patents

Brushless motor

Info

Publication number
JPS59136092A
JPS59136092A JP58010698A JP1069883A JPS59136092A JP S59136092 A JPS59136092 A JP S59136092A JP 58010698 A JP58010698 A JP 58010698A JP 1069883 A JP1069883 A JP 1069883A JP S59136092 A JPS59136092 A JP S59136092A
Authority
JP
Japan
Prior art keywords
current
output
voltage
transistor group
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58010698A
Other languages
Japanese (ja)
Inventor
Shingi Yokobori
横堀 進義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58010698A priority Critical patent/JPS59136092A/en
Priority to US06/569,762 priority patent/US4535276A/en
Priority to GB08400669A priority patent/GB2135483B/en
Priority to DE19843401055 priority patent/DE3401055A1/en
Publication of JPS59136092A publication Critical patent/JPS59136092A/en
Priority to US06/728,801 priority patent/US4608524A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To accurately control the torque of a brushless motor by inputting an armature current detected value through a voltage divider to a differential amplifier by a current mirror together with a torque command value and controlling the base of an output transistor by the output of the amplifier. CONSTITUTION:The rotating position of a motor which has a magnet rotor 1 and an armature winding 3 is detected by a detector 2, inputted to switching circuits 5, 7, and connected to output transistors 6, 8 of push-pull configuration. An armature current detected value by a resistor 13 is inputted to a differential amplifier 4 by a current mirror together with a torque command 15 through voltage dividers 23, 24, an output 19 is inputted to the circuit 7, the output 18 is inputted to the circuit 5 through a differential amplifier 20, thereby controlling the transistors 6, 8. Accordingly, the voltage dividers 23, 24 are inserted to a negative feedback circuit to operate the transistors to become constant current amplification factor, and torque control is accurately performed without influence of the armature current and the rotating speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はテープレコーダ、レコードプレーヤ。[Detailed description of the invention] Industrial applications The present invention is a tape recorder and a record player.

ビデオテープレコーダ等警こ使用できるブラシレスモー
タに関するものである。
This invention relates to a brushless motor that can be used in video tape recorders, etc.

従来例の構成とその問題点 電機子電流をトランジスタで切換え、発生トルクを指令
入力で制御するブラシレスモータは上述の産業分野で多
く利用されている。3相n Q子巻線を用いた代表的な
構成の従来例を第1図に示す。
Conventional configuration and its problems Brushless motors, in which armature current is switched by transistors and generated torque is controlled by command input, are widely used in the above-mentioned industrial fields. A conventional example of a typical configuration using three-phase nQ child windings is shown in FIG.

第1図において多極着磁された永久磁石回転子(])と
電機子巻線(3)のそれぞれの巻線L1〜L3との回転
位置は位置検出器(2)で検出され、位置信号切換回路
(5) (7)へ伝達される。位置信号切換回路(5)
 (7)はそれぞれ3差動溝成で、それぞれのコレクタ
が対応する出力トランジスタ群([i) (8)のそれ
ぞれのトランジスタQ1〜Q3 、 Q4〜Q6のベー
スへ接続されている。
In Fig. 1, the rotational positions of the multi-pole magnetized permanent magnet rotor (]) and each of the windings L1 to L3 of the armature winding (3) are detected by a position detector (2), and a position signal is detected. The signal is transmitted to the switching circuits (5) and (7). Position signal switching circuit (5)
Each of (7) has a three-differential groove configuration, and the collector of each is connected to the base of each of the transistors Q1 to Q3 and Q4 to Q6 of the corresponding output transistor group ([i) (8).

出力トランジスタ群+6) (8)はエミッタがそれぞ
れ共通に接続され、コレクタはプッシュプル構成になる
ように対応する相同志が接続されて、゛電機子巻線(3
)の対応する相の一端へそれぞれ接読されている。出力
トランジスタ群(6)の共通エミッタは電源θGへ接続
され、出力トランジスタ群(8)の共通エミッタは抵抗
α→を介して接地されている。抵抗IJツの接地されて
いない端子α4)の電圧は電流出力型差動噌1罰回路(
4)の一方の入力へ印加され、差動増幅回路(4)の他
方の入力へはトルク指令″准圧(15が印加されて差動
増幅回路(4)の出力はカレントミラー形式で位置信号
切換回路(7)へ印加される。?ユ桟千巻蒜(3)の他
端は共通接続されて差・助増幅回路(9)の一方の入力
(6)へ接続され、差動増1咄回路(9)の他方の入力
(lυは分圧器αOによって電源QlのIE圧の−が印
加されている。差動増幅回路(9)の出力はカレントミ
ラー形式で位置信号切換回路(5)へ印加される。
The output transistor group +6) (8) has its emitters connected in common, and its collectors are connected to each other in a push-pull configuration.
) to one end of the corresponding phase of each. The common emitters of the output transistor group (6) are connected to a power supply θG, and the common emitters of the output transistor group (8) are grounded via a resistor α→. The voltage at the ungrounded terminal α4) of the resistor IJ is connected to the current output type differential circuit (
4), and the torque command ``semi-pressure (15) is applied to the other input of the differential amplifier circuit (4), and the output of the differential amplifier circuit (4) is a position signal in the form of a current mirror. The voltage is applied to the switching circuit (7).The other end of the ?Yu-san Senmakihiru (3) is commonly connected and connected to one input (6) of the difference/auxiliary amplifier circuit (9), and the differential amplifier 1 The other input (lυ) of the differential amplifier circuit (9) is applied with - of the IE voltage of the power supply Ql by the voltage divider αO.The output of the differential amplifier circuit (9) is in the form of a current mirror and is connected to the position signal switching circuit (5). is applied to.

いま、トランジスタQ3とQ4が導通状態にあるとして
第1図の動作説明を行う。′1遣幾子′屯流はトランジ
スタQ3→巻線L1→春線L3→トランジスタQ4→抵
抗(ト)の径路で流れ、端子αΦの電圧とトルク指令入
力電圧αQとが比較され、負帰還回路によって誤差がゼ
ロとなるように制御される。この結果、電機子電流はト
ルク指令電圧0瞳で制御され、従って、モータの発生ト
ルクはトルク指令電圧OGで制御される。一方、巻線L
l 、 L2 、 L3の共通接続点は差動増幅回路(
9)による負帰還回路によって工師電圧の1/2に保持
される。したがって、電機子巻線(3)の1位は電源電
圧の1/2の値を中心にして変化し、トランジスタQ3
.Q4はほぼ同じコレクタ・エミッタ電圧で動作するた
め、トルク指令電圧、或はモータ回転数の増加によって
巻線り、 、 L3の両端の電圧が増加した場合はトラ
ンジスタQ3及びQ4はほぼ同し4q度に飽和に達し、
電源電圧の利用率が良くなる。
The operation of FIG. 1 will now be described assuming that transistors Q3 and Q4 are in a conductive state. The current '1' flows through the path of transistor Q3 → winding L1 → spring wire L3 → transistor Q4 → resistor (T), the voltage at terminal αΦ and torque command input voltage αQ are compared, and the negative feedback circuit The error is controlled to be zero. As a result, the armature current is controlled by the torque command voltage 0 pupil, and therefore the torque generated by the motor is controlled by the torque command voltage OG. On the other hand, winding L
The common connection point of L, L2, and L3 is a differential amplifier circuit (
9) is maintained at 1/2 of the factory voltage by the negative feedback circuit. Therefore, the first position of the armature winding (3) changes around the value of 1/2 of the power supply voltage, and the transistor Q3
.. Since Q4 operates with almost the same collector-emitter voltage, if the voltage across the winding and L3 increases due to an increase in the torque command voltage or motor rotation speed, transistors Q3 and Q4 will have approximately the same voltage of 4q degrees. saturation is reached,
The utilization rate of power supply voltage is improved.

しかしながら、電機子電流はトランジスタQ4のエミッ
タWIZ流として検出され、トルク指令電圧α句と比較
・制匍されているため、トランジスタQ4のコレクタ電
圧が変化することによる電流増幅率の変化によりコレク
タ電流とエミッタ電流との関係が変化し、電機子巻線(
3)に流れる電流とトルク指令電圧との関係か変化する
。特にトランジスタQ4が飽和に近づくと電流増幅率が
低下し、トルク指令゛i圧に対応する電機子電流が流れ
なくなる。上述の不都合は、モータを一定トルクで回転
させようとする場合に大きな欠点となっていた。
However, since the armature current is detected as the emitter WIZ current of the transistor Q4 and is compared and suppressed with the torque command voltage α, the collector current changes due to a change in the current amplification factor due to a change in the collector voltage of the transistor Q4. The relationship with the emitter current changes and the armature winding (
3) The relationship between the current flowing in and the torque command voltage changes. In particular, when the transistor Q4 approaches saturation, the current amplification factor decreases and the armature current corresponding to the torque command "i" no longer flows. The above-mentioned disadvantages have been a major drawback when attempting to rotate the motor with constant torque.

発明の目的 本発明は上記の従来例の欠点を除去するものであり、″
イ恨子′4流とトルク指令電圧の関係を電流値に依らず
に一定値となるようにし、正確なトルクの発生に適する
ブラシレスモータを提供するものである。
OBJECTS OF THE INVENTION The present invention eliminates the drawbacks of the above-mentioned conventional examples, and
To provide a brushless motor suitable for generating accurate torque by making the relationship between the electric current and the torque command voltage constant regardless of the current value.

発明の構成 上記目的を達成するために、本発明は、多極着磁された
永久磁石回転子と、一端が共通接続された複数個の電格
子巻線と、前記回転子と前記電機子巻線との回転位置を
検出する位置検出器と、1)1記電機子巻線の各相に接
続された前記相数に等しい組数のプッシュプル出力トラ
ンジスタ対と、M’1記出力出力トランジスタ対方のト
ランジスタ群のエミッタ電流の和を検出する第1の電流
検出抵抗と、前記第1の電流検出抵抗の検出′電圧を分
圧する分圧手段と、前記分圧手段の出力信号とモータト
ルク指令入力との差を増幅する@1の増幅器と、前記第
1の増幅器の出力を前記位置検出器の出力に応じて切換
え、前記出力トランジスタ対の前記一方のトランジスタ
群による前記電機子巻線の通電相を決定する第1の位置
信号切換手段と、前記一方のトランジスタ群のベース電
流に応じたfiJ圧を発生する第2の電流検出抵抗と、
前記第1及び1℃2の電流検出抵抗のそれぞれの険出王
圧の差を増幅する第2の’ti’J ′@器と、前記第
2の増幅器の出力を前記位置検出器の出力に応じて切換
え、前記出力トランジスタ対の他方のトランジスタ群に
よる前記電機子巻線の通電相を決定する第2の位置信号
切換手段とを具備し、前記一方のトランジスタ群のベー
ス電流と前記第1の電流検出抵抗に流れる1E流との比
を一定値Kに保つよう前記他方のトランジスタ群の導通
状態を前記第2の増幅器でに 制御するとともに、前記分圧手段の分圧比を□1−に として前記トルク指令入力に応じたトルクを発生するよ
うに構成したもので、これにより、電機子’/LC流を
検出しトルク指令入力と比較してトルクを制御するとと
もに、電流制御に係わる出力トランジスタの動作電流増
幅率を一定に保ち、コレクタ電流とエミッタ電流の関係
を補正するために電機子電流検出用抵抗と差動増幅回路
の間に挿入された分圧33により正確なポ機子電流制御
を行うことができるものである。
Structure of the Invention In order to achieve the above object, the present invention includes a multipolar magnetized permanent magnet rotor, a plurality of electric grid windings having one end connected in common, and a combination of the rotor and the armature winding. 1) push-pull output transistor pairs of a number equal to the number of phases connected to each phase of the first armature winding; and M'1 output transistor. a first current detection resistor for detecting the sum of emitter currents of the opposite transistor group; a voltage dividing means for dividing the detected voltage of the first current detecting resistor; and an output signal of the voltage dividing means and a motor torque. an amplifier @1 that amplifies the difference between the command input and the output of the first amplifier according to the output of the position detector; a first position signal switching means that determines the energization phase; a second current detection resistor that generates a fiJ pressure according to the base current of the one transistor group;
a second 'ti'J'@ device that amplifies the difference between the peak royal pressures of the first and 1°C2 current detection resistors, and an output of the second amplifier to the output of the position detector; and a second position signal switching means for determining the energization phase of the armature winding by the other transistor group of the output transistor pair, the base current of the one transistor group and the first The conduction state of the other transistor group is controlled by the second amplifier so that the ratio with the 1E current flowing through the current detection resistor is maintained at a constant value K, and the voltage dividing ratio of the voltage dividing means is set to □1-. It is configured to generate a torque according to the torque command input, thereby controlling the torque by detecting the armature/LC flow and comparing it with the torque command input, and also controlling the output transistor related to current control. Accurate armature current control is achieved by a voltage divider 33 inserted between the armature current detection resistor and the differential amplifier circuit in order to keep the operating current amplification factor constant and correct the relationship between collector current and emitter current. It is something that can be done.

実施例の説明 以下本発明の一実畑例を図面に基づいて説明する。第2
図はその構成図である。永久磁石回転子(])は8極に
着磁され、3相″・3機子巻線(3)は一端が共通接続
された巻線L+ 、 L2 、 I−3で構成されてい
る。
DESCRIPTION OF EMBODIMENTS An example of a field according to the present invention will be described below based on the drawings. Second
The figure shows its configuration. The permanent magnet rotor (]) is magnetized into 8 poles, and the 3-phase triplex winding (3) is composed of windings L+, L2, and I-3 that are commonly connected at one end.

回転子(1)と電機子巻線(3)との回転位置は位置検
出器(2)で検出され、3相信号として位置(言号切換
回路(5) (7)へ印加される。位置信号切換回路(
5)はNPNトランジスタによる3差@溝成で、出力ト
ランジスタ群(6)を駆動する。位置信号切換回路(7
)はPNPトランジスタによる3差動借成で、出力トラ
ンジスタ群(8)を駆動する。出力トランジスタ群(6
)はエミッタが共通に電源α→へ接続されたPNP ト
ランジスタQl、 Q2 、 Q3から成り、出力トラ
ンジスタ群(8)はエミッタが共通に電流検出抵抗(1
葎へ接続されたNPN I−ランジスタQ4 、 Qs
 、 Qsから成る。トランジスタQ1とQ4.Q2と
Qs 、 Q3とQsはプッシュプル構成でそれぞれコ
レクタ同志が共通に巻線L3 、 L2 、 t、。
The rotational positions of the rotor (1) and armature winding (3) are detected by a position detector (2) and applied as a three-phase signal to the position (word switching circuit (5) and (7). Signal switching circuit (
5) is a three-difference @groove configuration using NPN transistors to drive the output transistor group (6). Position signal switching circuit (7
) drives the output transistor group (8) with three differential borrowings using PNP transistors. Output transistor group (6
) consists of PNP transistors Ql, Q2, Q3 whose emitters are commonly connected to the power supply α→, and the output transistor group (8) has its emitters commonly connected to a current detection resistor (1
NPN I-transistors Q4 and Qs connected to the
, Qs. Transistors Q1 and Q4. Q2 and Qs, Q3 and Qs have a push-pull configuration, and their collectors have common windings L3, L2, t, respectively.

へ接続されている。カレントミラーによる2つの電流出
力端子(7)αりを有する差動増幅回路(4)の非反転
側入力(ト)へはトルク指令電圧O5が印加され、反転
側人力C→へは抵抗(13の電圧を抵抗(ハ)1例で構
成される分圧器で分圧された電圧磐が印加されるよう接
続されている。出力端子a嗜は位′i面信号切換回路(
7)の共通エミッタへ接続され、出力端子(至)は一端
が接地された抵抗θカと共に差動増幅器(イ)の非反転
側入力へ接続されている。差動増幅器?)の反転側入力
は抵抗03の接地されていない側へ接続され、出力はロ
ーパスフィルタj])を介して位置信号切換回路(5)
のエミッタへ接続されている。
connected to. A torque command voltage O5 is applied to the non-inverting side input (G) of the differential amplifier circuit (4) having two current output terminals (7) α by a current mirror, and a resistor (13 The voltage is divided by a voltage divider consisting of one resistor (C) and the voltage is applied to the output terminal A.
7), and the output terminal (to) is connected to the non-inverting input of the differential amplifier (a) together with a resistor θ, one end of which is grounded. Differential amplifier? ) is connected to the ungrounded side of resistor 03, and the output is connected to the position signal switching circuit (5) via a low-pass filter j]).
is connected to the emitter of

次に、回路動作について説明を行う。電機子電流は出力
トランジスタ群(6)→呑線(3)→出力トランジスタ
群(8)−抵抗(14の径路で流れ、差動増幅回路(4
)2位ml信号切換回路(7)、出力トランジスタ群(
8)。
Next, circuit operation will be explained. The armature current flows through the output transistor group (6) -> the dotted line (3) -> the output transistor group (8) - the resistor (14), and passes through the differential amplifier circuit (4).
) 2nd place ml signal switching circuit (7), output transistor group (
8).

抵抗03で構成される負帰還ループによって差動増幅回
路(4)の差動人力がゼロになるように制御され・る。
A negative feedback loop constituted by the resistor 03 controls the differential power of the differential amplifier circuit (4) to zero.

いま回転子(1)と電機子巻線(3)との位置関係によ
って出力トランジスタQl −06のうち、トランジス
タQ3とQ4だけが4通状態にあるとする。抵抗α律に
はトランジスタ(ン、の工Eツタ電流だけが流れる。
Assume now that only transistors Q3 and Q4 of the output transistor Ql-06 are in the 4-way state due to the positional relationship between the rotor (1) and the armature winding (3). Only the current flowing through the resistor α flows through the transistor.

トランジスラダQ4のベース電流I4は差動増11品回
@(4)の電流出力端子αりから供給され、電流出力端
子(ia・からも同じ大きさの電流が抵抗αηへ供給さ
れている。抵抗a場と抵抗αηの値及び流れている電流
値をそれぞれR13,R17及びI13 、117とす
れば、差動増1煽器(転)の入力′電圧V20は V2O= R17・117  R13・113    
  − (1)と書け、I4”117であるから、式(
1)はとなる。トランジスタQ4のhFEは第8図に示
す様をこコレクタ・エミッタ電圧■。。に伴って変化ス
るから、差動増幅器(イ)、ローパスフィルタQυ2位
置信号切換回路(5)、出力トランジスタ゛Ql1巻線
L1゜及びL3.出力トランジスタQ4.抵抗04で構
成される負帰還ループのループゲインが十分高い時は入
力電圧V20はゼロとなるようにトランジスタQ4のコ
レクタ・エミッタ動作1琶圧が自動的に決まる。
The base current I4 of the transistor Q4 is supplied from the current output terminal α of the differential amplifier (4), and the same current is supplied from the current output terminal (ia) to the resistor αη. If the a field, the value of the resistance αη, and the flowing current value are R13, R17, I13, and 117, respectively, the input voltage V20 of the differential amplifier 1 is V2O = R17・117 R13・113
− (1) and I4”117, so the formula (
1) becomes. The hFE of the transistor Q4 has a collector-emitter voltage ■ as shown in FIG. . , the differential amplifier (A), the low-pass filter Qυ2 position signal switching circuit (5), and the output transistor Ql1 winding L1° and L3 . Output transistor Q4. When the loop gain of the negative feedback loop constituted by the resistor 04 is sufficiently high, the collector-emitter operating voltage of the transistor Q4 is automatically determined so that the input voltage V20 becomes zero.

従って式に3ノより となる。式(4)の右辺は一定であるから、トランシル
ク指令電圧が変わればトランジスタQ4のエミッタ電流
も変わり、第3図からトランジスタQ4のコレクタ・エ
ミッタ電圧も自動的fこ変わる。言いモ・Sえれば、ト
ランジスタQ4(i′市流増中酒率が一定に保たれるよ
うにエミ、り電流に応じてコレクタ・エミッタ電圧が自
動制御されるから、巻線Ll 、 L3の両端の電位も
電殿子1−d流に対応して決まり、安定ζこ動作する。
Therefore, the equation becomes 3. Since the right side of equation (4) is constant, when the transilk command voltage changes, the emitter current of transistor Q4 also changes, and from FIG. 3, the collector-emitter voltage of transistor Q4 also changes automatically. In other words, since the collector-emitter voltage of the transistor Q4 (i' is automatically controlled according to the current) so that the commercial flow rate is kept constant, the voltage of the windings Ll and L3 is The potential at both ends is also determined corresponding to the electron current 1-d, and stable operation is achieved.

抵抗4と抵抗(ハ)の抵抗値をそれぞれR23、R24
、差動増幅回路(4)の非反転側入力(1)及び反転側
入力(ハ)の4 IE (IQ及びに)をそれぞれV1
5 、 V22 とし、となるようにする。更にトラン
ジスタQ4のコレクタ電流、即ち、電機子巻線(3)に
流れている電流をIa とすると、 V15  V22 ” 0             
 ・・(8)が成り立つ。
The resistance values of resistor 4 and resistor (c) are R23 and R24, respectively.
, the 4 IEs (IQ and I) of the non-inverting side input (1) and the inverting side input (c) of the differential amplifier circuit (4) are set to V1, respectively.
5, V22, so that it becomes . Furthermore, if the collector current of transistor Q4, that is, the current flowing through the armature winding (3) is Ia, then V15 V22 '' 0
...(8) holds true.

以上の式から となる。これは電機子巻線(3)に流れてトルク発生に
寄与する電流Iaがトルク指令入力電圧V16を抵抗(
至)の抵抗値R13で割っtこ商で与えられることを意
味するから、発生トルクをトルク指令入力電圧で簡単か
つ正確に制御できることになる。モータの回転に伴って
回転子(1)とm機子巻線(3)の回転位置が変って、
トランジスタQ1〜Q6のうち導通するトランジスタが
変化しても、上述と同様の動作で巻線り、 、 L2 
、 L3の動作電位は巻線2E流に対応して安定に変化
する。
From the above formula. This means that the current Ia, which flows through the armature winding (3) and contributes to torque generation, resists the torque command input voltage V16 (
This means that the generated torque can be easily and accurately controlled by the torque command input voltage. As the motor rotates, the rotational positions of the rotor (1) and m armature winding (3) change,
Even if the conductive transistor among the transistors Q1 to Q6 changes, the winding is performed in the same manner as described above.
, L3 changes stably in response to the flow of winding 2E.

なお、上記実施例では3相の場合について説明したが、
本発明は3相に限る必然性は当然なく、また、本発明の
主旨を変えずに皿々の変形(例えば位置信号切換回路(
7ンと出力トランジスタ群(8)との間に゛縮流増幅回
路を挿入し、その増幅率に相当する分だけ抵抗0乃の値
を大きくする方法、或は電流出力端子a→αeの電流比
を1以外の値にして抵抗αηの値を変える方法等)、応
用の存することは言うまでもない。
In addition, in the above embodiment, a three-phase case was explained, but
Naturally, the present invention is not necessarily limited to three phases, and various modifications (for example, position signal switching circuits) can be made without changing the spirit of the present invention.
7 and the output transistor group (8), and increase the value of the resistor 0 by an amount corresponding to the amplification factor, or the current of the current output terminal a→αe. Needless to say, there are many applications, such as a method of changing the value of the resistance αη by setting the ratio to a value other than 1.

発明の詳細 な説明した様に、本発明のブラシレスモータは出力トラ
ンジスタを抵抗比で予め決め得る常に一定のIE流増幅
率になるよう動作させ、負帰還路に分圧器を挿入するこ
とによって電機子電流の大きさ或はモータ回転速度に影
響されずに発生トルクの制御を行うことができ、ブラシ
レスモータを一定トルクで動作させる場合に極めて有効
である。
As described in detail, the brushless motor of the present invention operates the output transistor so that it always has a constant IE current amplification factor that can be predetermined by the resistance ratio, and inserts a voltage divider in the negative feedback path to control the armature. The generated torque can be controlled without being affected by the magnitude of the current or the motor rotation speed, and is extremely effective when operating a brushless motor at a constant torque.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はブラシレスモータの従来例の構成図、第2図は
本発明の一実施例の(苛成可、第3図はトランジスタの
コレクタ・エミッタ電圧とiW流増幅率の関係を示すグ
ラフを示す。 (1)・・・回転子、(2)・・・位置検出器、(3)
・・・′疏1子巻線、(4)・・・差動増幅回路、(5
) (7)・・位置信号切換回路、(())(8)・・
・出力トランジスタ群、Q4αη・・・抵抗、(+@・
・トルク指令入力電圧、OQ・・・電源、(イ)・差動
増幅器、eυ・・・フィルタ、(ト)(至)・・・分圧
器代理人 森本義弘
Figure 1 is a configuration diagram of a conventional example of a brushless motor, Figure 2 is a diagram of an embodiment of the present invention (which can be constructed), and Figure 3 is a graph showing the relationship between the collector-emitter voltage of a transistor and the iW current amplification factor. (1)...rotor, (2)...position detector, (3)
...' Single coil winding, (4)...Differential amplifier circuit, (5
) (7)...position signal switching circuit, (())(8)...
・Output transistor group, Q4αη...resistance, (+@・
・Torque command input voltage, OQ...Power supply, (A) ・Differential amplifier, eυ...Filter, (G) (To)...Voltage divider agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】 l 多画着(セされた永久磁石回転子と、一端が共通接
続された複数相の電機子巻線と、前記回転子と前記竜(
〕゛鬼子巻線との回転位置を検出する位il¥を検出器
と、前記電機子巻線の各相に接5売された+AtJ記相
数に等しい’II I政のプッシュプル出力トランジス
タ対と、前記出力トランジスタ対の−方のトランジスタ
群のエミッタ電流の和を検出する第10′改流検出低抗
と、前記第1の電流検出抵抗の検出Iq圧を分圧する分
圧手段と、前記分圧手段の出力信号とモータトルク指令
入力との差を増4゛1ルする第1の増幅器と、前記第1
の増幅21÷の出力を前記位置検出器の出力に応じて切
換え、1)M記出力トランジスタ対の前記一方のトラン
ジスタ群による前記心機子巻線の通電相を決定する第1
の位置信号切換手段と、前記一方のトランジスタ群のベ
ース電流に応じた電圧を発生する第2の電流検出抵抗と
、前記第1及び第2の電流検出抵抗のそれぞれの検出上
圧の差を増幅する第2の増幅器と、Q’U記第2の増;
:門型の出力嬰前記位置検出器の出力に応じて切換え、
前記出力トランジスタ対の他方のトランジスタ群による
前記電機子巻線の通電相を決定する第2の位置信号切換
手段とを具備し、前記一方の1〜ランジスタ群のベース
心流と前記第10屯流検出抵抗に流れる電流との比を一
定値1<(こ保つよう前記他方のトランジスタ群の導通
状態を前記第2の増1隔器で制御するととも(こ、ii
l記分圧手段の分圧比を□として前記トルり指1−に 令入力に応じtこトルクを発生するよう暑こしTこブラ
シレスモータ。
[Scope of Claims] 1. A permanent magnet rotor set in a permanent magnet rotor, a multi-phase armature winding whose one end is commonly connected, the rotor and the dragon (
゛A detector for detecting the rotational position of the armature winding, and a pair of push-pull output transistors connected to each phase of the armature winding and connected to +AtJ, which is equal to the number of phases. a 10' current flow detection resistor for detecting the sum of emitter currents of the negative transistor group of the output transistor pair; voltage dividing means for dividing the detected Iq voltage of the first current detection resistor; a first amplifier for increasing the difference between the output signal of the voltage dividing means and the motor torque command input;
1) determining an energization phase of the armature winding by the one transistor group of the M output transistor pairs;
amplifying the difference between the detected upper voltages of the position signal switching means, the second current detection resistor that generates a voltage according to the base current of the one transistor group, and the first and second current detection resistors; and the second amplifier of Q'U;
: Gate type output switch according to the output of the position detector,
and a second position signal switching means for determining the energization phase of the armature winding by the other transistor group of the output transistor pair, the base current of the one transistor group and the tenth tributary current. The conduction state of the other transistor group is controlled by the second amplifier so as to maintain the ratio of the current flowing through the detection resistor to a constant value 1<((ii)
The brushless motor is heated so that the partial pressure ratio of the pressure dividing means is set to □, and a torque is generated in response to a command input to the torque finger 1-.
JP58010698A 1983-01-12 1983-01-25 Brushless motor Pending JPS59136092A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58010698A JPS59136092A (en) 1983-01-25 1983-01-25 Brushless motor
US06/569,762 US4535276A (en) 1983-01-12 1984-01-10 Output circuit and brushless motor using the same
GB08400669A GB2135483B (en) 1983-01-12 1984-01-11 Output circuit and brushless motor using the same
DE19843401055 DE3401055A1 (en) 1983-01-12 1984-01-12 DRIVER CIRCUIT AND THIS BRUSHLESS MOTOR USING
US06/728,801 US4608524A (en) 1983-01-12 1985-04-29 Output circuit and brushless motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58010698A JPS59136092A (en) 1983-01-25 1983-01-25 Brushless motor

Publications (1)

Publication Number Publication Date
JPS59136092A true JPS59136092A (en) 1984-08-04

Family

ID=11757505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58010698A Pending JPS59136092A (en) 1983-01-12 1983-01-25 Brushless motor

Country Status (1)

Country Link
JP (1) JPS59136092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136091A (en) * 1988-11-16 1990-05-24 Rohm Co Ltd Drive circuit of motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136090A (en) * 1983-01-24 1984-08-04 Matsushita Electric Ind Co Ltd Brushless motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136090A (en) * 1983-01-24 1984-08-04 Matsushita Electric Ind Co Ltd Brushless motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136091A (en) * 1988-11-16 1990-05-24 Rohm Co Ltd Drive circuit of motor

Similar Documents

Publication Publication Date Title
US4651067A (en) Apparatus for driving brushless motor
CA2060966A1 (en) Linear current source amplifier for brushless dc motor
US4066935A (en) Stator winding control circuit for a brushless d.c. motor
JPS6350959B2 (en)
JPS6159077B2 (en)
US4403174A (en) Commutatorless DC motor drive device
JPH04304188A (en) Speed controller for dc brushless motor
US4418303A (en) DC Motor control circuit
JPS59136092A (en) Brushless motor
JPH0527351B2 (en)
US4511828A (en) D.C. commutatorless electric motor
JPH0343866B2 (en)
JPH0527353B2 (en)
JPH0527352B2 (en)
JPS5847839Y2 (en) chiyokuryuumo-tanokudou warmer
JPH0474957B2 (en)
JPS5854599B2 (en) magnetic detection device
JPS6212758B2 (en)
JPS6130517B2 (en)
JPH0347439Y2 (en)
JP2658032B2 (en) Brushless motor
JP2594040B2 (en) Motor control circuit
JPH0733595Y2 (en) Brushless motor induced voltage detection circuit
JPH0436238Y2 (en)
JPH0231595B2 (en)