JPS59134565A - Plastic electrode for zinc-bromine battery - Google Patents

Plastic electrode for zinc-bromine battery

Info

Publication number
JPS59134565A
JPS59134565A JP58008635A JP863583A JPS59134565A JP S59134565 A JPS59134565 A JP S59134565A JP 58008635 A JP58008635 A JP 58008635A JP 863583 A JP863583 A JP 863583A JP S59134565 A JPS59134565 A JP S59134565A
Authority
JP
Japan
Prior art keywords
electrode
plastic electrode
plastic
conductivity
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58008635A
Other languages
Japanese (ja)
Other versions
JPH0414466B2 (en
Inventor
Akihiko Hirota
広田 明彦
Takashi Hashimoto
敬史 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP58008635A priority Critical patent/JPS59134565A/en
Publication of JPS59134565A publication Critical patent/JPS59134565A/en
Publication of JPH0414466B2 publication Critical patent/JPH0414466B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To increase the effective surface area required for reacting electrochemically with an active material on the surface of a plastic electrode and improve the potential of the plastic electrode by heat-contacting conductive fluororesin and conductivity sheets on the surface of the plastic electrode. CONSTITUTION:Especially the abnormal rise of activated overvoltage at the end of discharge is suppressed and the sudden drop of discharge potential is prevented by laminating and heat-contacting conductive fluororesin and conductivity sheets on the surface of a plastic electrode. The conductivity sheets use paper type ones such as conductive carbon fiber or cotton stuff type such as felt, knit, and cloth. When cotton stuff is used as the conductivity sheet, commercial cotton stuff with the thickness of approximately 1-30mm. is used and it is recommended that a layer of approximately 40-95g/m<2> should be provided on the surface of the plastic electrode. When this electrode is used, the voltage efficiency and coulon efficiency of a battery can be increased and at the same time stable discharge potential can be obtained even when the concentration of bromine in an electrolyte is exceedingly low and current density is high.

Description

【発明の詳細な説明】 本発明は、臭素−亜鉛電池に関するもので特に亜鉛−臭
素電池に使用するカーボンプラスチック電極の表面に特
定の材料をパラキンク処理することにより、特に放電末
期の活性化過電圧の異常上昇を抑え放電4位の急激な低
下を防ぐことを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to bromine-zinc batteries, and in particular, the activation overvoltage at the end of discharge can be reduced by para-kinking a specific material on the surface of a carbon plastic electrode used in zinc-bromine batteries. The purpose is to suppress the abnormal rise and prevent a sudden drop in the discharge level.

臭素−亜鉛二次電池の電極材料として用いられているプ
ラスチック電極は、金属電極や炭素電極と比較すると安
価で軽量であるため実用的である。
Plastic electrodes used as electrode materials for bromine-zinc secondary batteries are practical because they are cheaper and lighter than metal electrodes or carbon electrodes.

し、かじながら、このプラスチック電極が示す特性とし
ては、電極自体の固有抵抗が大きいため何らかの表面処
理を行わない限り金属電極や炭素電極が示す性能に近づ
けることはできないのが現状であった。
However, the properties of these plastic electrodes are such that the specific resistance of the electrode itself is high, so unless some surface treatment is performed, it is not possible to approach the performance of metal or carbon electrodes.

このような状況の中でプラスチック電極表面での活物質
との電気化学的な反応を行わせるために必要な有効表面
積を増大させ、電極電位を向上しこの電極を組み込んだ
電池の電圧効率、クーロン効率の大幅改善ケ図るための
検討を行った結果、極めて効率の良いプラスチック電極
を得るまでに至った。
Under these circumstances, the effective surface area necessary for electrochemical reaction with the active material on the surface of the plastic electrode is increased, and the electrode potential is increased, resulting in a reduction in the voltage efficiency and coulomb of a battery incorporating this electrode. As a result of research aimed at significantly improving efficiency, we have come to the point where we have obtained an extremely efficient plastic electrode.

すなわち本発明は、プラスチック電極表面の導電性向上
処理を行うにあたり、予め導電性フッ素樹脂シートが熱
圧着されているプラスチック電極表面に導電性シートを
更に熱圧着するか、またはブランチツク電極表面に導電
性フッ素樹脂シートと導電性シートを同時に熱圧着させ
たことを特徴とするプラスチック電極に関するものであ
る。
In other words, in carrying out conductivity improvement treatment on the surface of a plastic electrode, the present invention requires that a conductive sheet is further thermocompression bonded to the surface of the plastic electrode on which a conductive fluororesin sheet has been thermocompression bonded in advance, or that a conductive sheet is bonded to the surface of the branched electrode. The present invention relates to a plastic electrode characterized in that a fluororesin sheet and a conductive sheet are bonded together by thermocompression.

導電性シートとは、例えば導電性の炭素繊維によるペー
ハー状あるいはフェルト、ニット、クロスなどの布帛の
形態を保っているものを指し、この形態のものはプラス
チック電極表面上に層を形成する上で取り扱い易いもの
である。
A conductive sheet is, for example, a material made of conductive carbon fiber that maintains the form of a fabric such as felt, knit, or cloth, and is used to form a layer on the surface of a plastic electrode. It is easy to handle.

この導電性シートは、布帛で使用する場合には市販され
ているもののうち1〜6闘程度の厚さのものを使用し、
またプラスチック電極表面上へは、おおむね40〜95
g/靜程度となるように層を設けろことか好ましい。
When using this conductive sheet as a cloth, one of the commercially available ones with a thickness of about 1 to 6 mm is used,
Also, on the surface of the plastic electrode, approximately 40 to 95
It is preferable to provide a layer so that the amount of water is approximately g/silence.

プラスチック電極表面上に導電性シートおよび導電性フ
ッ素樹脂シートの層を設けた電極は、活物質に対fろ有
効作用表面積を増大させ、臭素側の電極電位特性を向上
させ電池全体としてみた場合電圧効率及びクーロン効率
を充分に扁める効果を有すると共に電解液中の臭素濃度
が極めて低く(例えば約1. Q mat/ L ある
いはそれ以下という領域) ’tIL流密度が大きい状
態のときであっても安定した放電4位が得られるのであ
る。
An electrode with a layer of a conductive sheet and a conductive fluororesin sheet on the surface of the plastic electrode increases the effective surface area of the active material against fluorine, improves the electrode potential characteristics on the bromine side, and reduces the voltage when looking at the battery as a whole. It has the effect of sufficiently reducing the efficiency and Coulombic efficiency, and the bromine concentration in the electrolyte is extremely low (for example, in the region of about 1.Q mat/L or lower) when the tIL flow density is large. A stable discharge level 4 can also be obtained.

以下実施例によって更に本発明を説明する。The present invention will be further explained below with reference to Examples.

プラスチック電極表面に4電性フツ素樹脂シートな熱圧
Nするにあたり、同時にニット状の炭素繊維を重ねて二
重バッキングとしたプラスチック電極(以下、WB主電
極を形成させた。これとは別に炭素繊維を用いず導電性
フッ素樹脂シートのみを熱圧着して得た電極(以下、F
B電極)及びプラスチック電極にニット状の炭素繊維の
みを熱圧着して得た電極(以下、CBt極)を用意し、
比抵抗ρ(Ω・CIrL)、十点平均表面粗さRZ(μ
mrL)及びBett法による比表面積5(rr?/g
)の値をそれぞれ測定したところ下表の結果を得た。
When hot-pressing a tetraelectric fluororesin sheet onto the surface of the plastic electrode, a double-backed plastic electrode (hereinafter referred to as WB main electrode) was formed by overlapping knitted carbon fibers at the same time. An electrode obtained by thermocompression bonding only a conductive fluororesin sheet without using fibers (hereinafter referred to as F
B electrode) and an electrode obtained by thermocompression bonding only knitted carbon fiber to a plastic electrode (hereinafter referred to as CBt electrode),
Specific resistance ρ (Ω・CIrL), ten-point average surface roughness RZ (μ
mrL) and specific surface area 5 (rr?/g by Bett method)
) were measured, and the results shown in the table below were obtained.

表の結果からWB主電極、FB電極と比較すると接触抵
抗の影響で若干比抵抗値に増加が認められるものの、十
点平均表面粗さR2及び比表面積Sの値はいずれも向上
しており電極反応面積の大幅な改善が達成されているこ
とが判る。
From the results in the table, when compared with the WB main electrode and the FB electrode, although a slight increase in the specific resistance value is observed due to the influence of contact resistance, the values of the ten-point average surface roughness R2 and specific surface area S have both improved, and the electrode It can be seen that a significant improvement in the reaction area has been achieved.

また従来のCB電極との比較においても同様に十点平均
表面粗さ R2及び比表面積Sの値は向上しており、プ
ラスチック電極表面の炭素繊維層が十分に所期の効果を
挙げることができるように熱圧着していることが判る。
Also, in comparison with conventional CB electrodes, the values of ten-point average surface roughness R2 and specific surface area S are similarly improved, and the carbon fiber layer on the surface of the plastic electrode can sufficiently produce the desired effect. It can be seen that they are bonded under heat.

上述の6種の電極について、陽極における放電4位特性
E(V)を求めたところ第1図に示した如き挙動を得た
。尚、このときの電解液は3 mot/ L ZnBr
□十Brz、電流密度は20−A/i、25℃における
雰囲気の下でAg−Ag cl電極を用いて測定した。
When the discharge characteristic E(V) at the anode was determined for the six types of electrodes mentioned above, the behavior shown in FIG. 1 was obtained. In addition, the electrolyte at this time was 3 mot/L ZnBr
Measurements were made using an Ag-Ag Cl electrode under an atmosphere of □10 Brz, current density of 20-A/i, and 25°C.

図から明らかなように、放電初期の場合には6種の電極
とも同じような電位を示しているが、放電末期の臭素濃
度が低い場面ではFB電極の場合急激に低下を起し、C
B電極の場合も程度は幾分少ないがやはり減少を起すこ
とか認められる。
As is clear from the figure, in the early stage of discharge, all six types of electrodes show similar potentials, but at the end of discharge, when the bromine concentration is low, the FB electrode shows a rapid decrease, and the C
In the case of the B electrode, a decrease is also observed, although the degree is somewhat smaller.

これに対して、WB主電極場合は、臭素濃度(Br2(
mot/l) )  の全領域に亘って高い放電4位を
維持していることが明らかで二重バッキングとしたプラ
スチック電極の効果が顕著であることが判る。
On the other hand, in the case of the WB main electrode, the bromine concentration (Br2(
It is clear that a high discharge level is maintained over the entire range of mot/l)), and it can be seen that the effect of the double-backed plastic electrode is remarkable.

これとは別に陰極に従来のプラスチック電極、陽極に前
記3種のプラスチック電極をそれぞれ用いた亜鉛−臭素
電池を構成し、その電極々間距離1謳、充電深度80%
、電流密度20−A/、fflの条件下で充・放電ケ行
8.い電圧効率、クーロン効率及びエネルギー効率ケ求
めたところ次表の結果を得た。表の結果二重バッキング
プラスチック電極の場合は、いずれの効率においても他
の2者を凌いでいることが判る。
Separately, a zinc-bromine battery was constructed using a conventional plastic electrode as the cathode and the three types of plastic electrodes mentioned above as the anode, with a distance of 1 inch between the electrodes and a charging depth of 80%.
, charging and discharging under conditions of current density 20-A/, ffl8. When we calculated the voltage efficiency, coulomb efficiency, and energy efficiency, we obtained the results shown in the following table. The table results show that the double-backed plastic electrode outperforms the other two in both efficiencies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各軍・案を使用した場合の放電々位皐動の追
跡結果な示したグラフである。 代理人 弁理士  木 村 三 朗
FIG. 1 is a graph showing the tracking results of the discharge level fluctuation when using each army/plan. Agent Patent Attorney Sanro Kimura

Claims (1)

【特許請求の範囲】[Claims] プラスチック電極の表面に導電性フッ素樹脂シートと該
フッ素樹脂シートの表面に導電性シートを熱圧着させた
ことを特徴とする亜鉛−臭素電池のプラスチック電極。
1. A plastic electrode for a zinc-bromine battery, comprising: a conductive fluororesin sheet on the surface of the plastic electrode; and a conductive sheet thermocompressed onto the surface of the fluororesin sheet.
JP58008635A 1983-01-24 1983-01-24 Plastic electrode for zinc-bromine battery Granted JPS59134565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008635A JPS59134565A (en) 1983-01-24 1983-01-24 Plastic electrode for zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008635A JPS59134565A (en) 1983-01-24 1983-01-24 Plastic electrode for zinc-bromine battery

Publications (2)

Publication Number Publication Date
JPS59134565A true JPS59134565A (en) 1984-08-02
JPH0414466B2 JPH0414466B2 (en) 1992-03-12

Family

ID=11698400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008635A Granted JPS59134565A (en) 1983-01-24 1983-01-24 Plastic electrode for zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPS59134565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163765A (en) * 1983-03-08 1984-09-14 Toyobo Co Ltd Metal-halogen secondary battery
JPS61103946A (en) * 1984-10-26 1986-05-22 Japan Goatetsukusu Kk Electrically conductive composite sheet
JPS61158673A (en) * 1984-08-16 1986-07-18 Meidensha Electric Mfg Co Ltd Zinc-halogen battery with porous electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104039A (en) * 1971-08-31 1973-12-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104039A (en) * 1971-08-31 1973-12-26

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163765A (en) * 1983-03-08 1984-09-14 Toyobo Co Ltd Metal-halogen secondary battery
JPS61158673A (en) * 1984-08-16 1986-07-18 Meidensha Electric Mfg Co Ltd Zinc-halogen battery with porous electrode
JPS61103946A (en) * 1984-10-26 1986-05-22 Japan Goatetsukusu Kk Electrically conductive composite sheet
JPH0513178B2 (en) * 1984-10-26 1993-02-19 Japan Gore Tex Inc

Also Published As

Publication number Publication date
JPH0414466B2 (en) 1992-03-12

Similar Documents

Publication Publication Date Title
MY149961A (en) Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery
NZ514335A (en) Bipolar composite electrodes for use in electrochemical and redox cells, characterised by an electrochemically active layer bonded to a non-conductive substrate material
JPS61216257A (en) Separator for fuel cell
JPH081805B2 (en) Fuel cell
EP1207570A3 (en) Sandwich cathode design using chemically similar active materials for alkali metal electrochemical cells
JPS59134565A (en) Plastic electrode for zinc-bromine battery
JPH0529006A (en) Fuel cell
US3704171A (en) Catalytic membrane air electrodes for fuel cells and fuel cells containing same
KR20180117403A (en) Flow frame and secondary vattery comprising the same
JP3631467B2 (en) Electrolytic cell feeder and electrolytic cell
US6756145B2 (en) Electrode and interconnect for miniature fuel cells using direct methanol feed
JPS58164170A (en) Cell stack of fuel cell
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2002533869A (en) PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
ATE390721T1 (en) BATTERY WITH INCREASED ELECTRODE SURFACE AND WITH INCREASED ACTIVE MATERIAL DENSITY
JP2002516470A (en) Fuel cell
JP2003297389A (en) Polyelectrolyte fuel cell
JPS60221970A (en) Method of operating fuel battery
JPH0677449B2 (en) Lead acid battery
JPS62128451A (en) Vitreous carbon composite electrode
JPH0445937B2 (en)
JPH0713178Y2 (en) Zinc bromide battery electrode
JPS63166144A (en) Organic electrolyte battery
KR0121546Y1 (en) Lead of lithium thionyl cloride electrode
JP2658082B2 (en) Molten carbonate fuel cell