JPS59134494A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPS59134494A
JPS59134494A JP58007555A JP755583A JPS59134494A JP S59134494 A JPS59134494 A JP S59134494A JP 58007555 A JP58007555 A JP 58007555A JP 755583 A JP755583 A JP 755583A JP S59134494 A JPS59134494 A JP S59134494A
Authority
JP
Japan
Prior art keywords
heat
heat storage
fluid
capsule
capsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58007555A
Other languages
Japanese (ja)
Inventor
Nobuyuki Abe
宜之 阿部
Takeshi Nozaki
健 野崎
Takeo Ozawa
小沢 丈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58007555A priority Critical patent/JPS59134494A/en
Publication of JPS59134494A publication Critical patent/JPS59134494A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To accelerate transfer of heat of a fluid heat-accumulating substance sealed in capsules, by rotating and vibrating the capsules, in a capsule-type heat accumulator. CONSTITUTION:In each of capsules 2, round rods 4 of shape-stabilized polyethylene having a diameter of 2-5mm. are sealed as a fluid heat-accumulating substance together with a fluid 5 hardly compatible with polyethylene such as a silicone oil or water containing an anti-deterioration agent. When a hot heat- transmitting medium is introduced through an inflow port 1a of a tank 1 and is passed through the gaps between the capsules 2, it exchanges heat with the capsules 2, and when the temperature of the fluid 5 is raised to 135 deg.C, the round rods 4 are completely melted, and heat of melting is accumulated as latent heat in the capsules 2. In this heat accumulator, each of the capsules 2 is rotated in the interior of the tank 1 by a shaft 3, so that transfer of heat in the capsules 2 is accelerated, and heat-accumulating speed is increased.

Description

【発明の詳細な説明】 ネルギの貯蔵を行う蓄熱装置に関するものであi、、、
、4)潜熱を利用する蓄熱は、蓄熱密度が大きくカ令゛
→千一定温度の質のよい熱エネルギを放出する蓄熱装置
を作ることができる。
[Detailed Description of the Invention] This relates to a heat storage device for storing energy.
, 4) Heat storage using latent heat makes it possible to create a heat storage device that has a large heat storage density and releases high-quality thermal energy at a constant temperature of 1,000 degrees.

しかし、相変化、特忙放熱時の固相析出に伴い、熱伝達
が阻害されること、又は偏析等により可逆的な相変化が
起りにくくなること等によって、十分な熱出力が得られ
ず、放熱時に温度が低下する。
However, sufficient heat output cannot be obtained because heat transfer is inhibited due to phase change and solid phase precipitation during heat dissipation, or because reversible phase change becomes difficult to occur due to segregation, etc. The temperature decreases during heat dissipation.

このため、熱エネルギの有効成分、すなわちエクセルギ
の損失とナル。
This results in the loss of the active component of thermal energy, namely exergy and null.

また、可逆反応の反応熱を利用する場合は熱を高密度で
貯えることができるが、一般に粉体と気体との反応を利
用しているfこめ、粉体内の伝熱が不充分であり、この
ため、液体内の可逆的反応が利用されているが、反応の
エントロピ変化が大きい有機物を利用するため、やはり
伝熱に問題がある。
In addition, when using the reaction heat of a reversible reaction, heat can be stored at a high density, but in general, when the reaction between powder and gas is used, heat transfer within the powder is insufficient. For this reason, a reversible reaction within a liquid is used, but since an organic substance with a large reaction entropy change is used, there is still a problem with heat transfer.

そこで、このような問題を解決する禽めに潜熱蓄熱材料
のマイクロカプセル化により伝熱総面積の増加をはかっ
たり、流動化しないペンタエリスリトール、又は架橋等
によって融解しても流動化しない形状安定化ポリエチレ
にを潜熱蓄熱材料として使用し、熱媒体と直接接触させ
る発明もなされているが、これらの蓄熱装置では、熱媒
体な蓄熱槽外まで循環させて熱交換を行わせるため、蓄
熱槽設置後、現場での熱媒体の充てんを必要とし、生産
性9作業性が悪く、多量に高価な熱媒体が必要となると
いう問題がある。
Therefore, in order to solve such problems, we aim to increase the total heat transfer area by micro-encapsulating the latent heat storage material, or use pentaerythritol, which does not fluidize, or stabilize the shape, which does not fluidize even when melted, by crosslinking, etc. Some inventions have been made in which polyethylene is used as a latent heat storage material and brought into direct contact with the heat medium, but in these heat storage devices, the heat medium is circulated to the outside of the heat storage tank to perform heat exchange, so it is necessary to use polyethylene as a latent heat storage material after the heat storage tank is installed. However, there are problems in that the heating medium needs to be filled on-site, the productivity is poor, and a large amount of expensive heating medium is required.

この発明は、か匁る蓄熱技術の現状にかんがみてなされ
たもので、カプセル型蓄熱装置におし・て、カプセルに
振動、1A転等を加え熱伝達を促進させる蓄熱装置を提
供するものである。
This invention was made in view of the current state of thermal storage technology, and provides a capsule type thermal storage device in which vibration, 1A rotation, etc. are applied to the capsule to promote heat transfer. be.

ポリエチレンやペンタエリスリトールのような有機潜熱
蓄熱材料では、酸化劣化の必要上、窒素置換もしくは真
空下での密封が好ましく、同様に無機塩類の潜熱蓄熱材
料では、水分の混入が特性を低下させる場合が多く、や
はり乾燥密封を必要とする。
For organic latent heat storage materials such as polyethylene and pentaerythritol, nitrogen purging or sealing under vacuum is preferable to prevent oxidative deterioration. Similarly, for latent heat storage materials made of inorganic salts, contamination with moisture may deteriorate the properties. Many also require dry sealing.

ところで、大きな蓄熱槽にこれらの潜熱蓄熱材料を充て
んし、伝熱管を通る熱媒体で熱交換を行わせるシェル・
チューブ形潜熱蓄熱装置や前記の直接接触形蓄熱装置で
は、現場忙おける充てん。
By the way, a large heat storage tank is filled with these latent heat storage materials, and a shell/shell system that exchanges heat with a heat medium passing through heat transfer tubes is available.
The tube type latent heat storage device and the direct contact type heat storage device described above can be easily filled on-site.

窒素置換、減圧、乾燥を必要とするから、生産性。Productivity is reduced because nitrogen substitution, depressurization, and drying are required.

作業性が悪く使用中に密封か破す!、いされるおそれも
ある。
Poor workability and seals break during use! , there is a risk of being exposed.

その点、カプセル形蓄熱装置では一工場においてカプセ
ルへの充てん、窒素置換、減圧、乾燥妙;できるので、
生産性2作業性がよく、さらに同一規格のカプセルを多
量互換生産しその個数で蓄熱容量を調整することもでき
、前述した直接接触形蓄熱装置のように多量の熱媒体も
必要としない。
On the other hand, with capsule heat storage devices, filling the capsule, nitrogen replacement, depressurization, and drying can be done in one factory.
Productivity 2: It has good workability, and furthermore, it is possible to interchangeably produce a large number of capsules of the same specification and adjust the heat storage capacity by the number of capsules, and does not require a large amount of heat medium unlike the above-mentioned direct contact heat storage device.

しかしながら、カプセル内の伝熱促進をはかる点で困難
性があった。
However, there were difficulties in promoting heat transfer within the capsule.

第1図は伝熱促進をはかるためになされたこの発明の一
実施例を示すカプセル形蓄熱装置の概要を示すもので、
1は熱交換を行うタンク、1aは熱媒体の流入口、1b
はその流出口である。タンク1の内部には間隙をおいて
数本のカプセル2゜2・・・・・が配置され、これらは
図示しない駆動機構によって回転するシャフト3に連接
されている。
FIG. 1 shows an outline of a capsule-type heat storage device showing an embodiment of the present invention, which was made to promote heat transfer.
1 is a tank for heat exchange, 1a is a heat medium inlet, 1b
is its outlet. Inside the tank 1, several capsules 2, 2, .

カプセル2,2・・・・・の中には、第2図に示すよう
に直径2〜5mmの形状安定化ポリエチレン丸棒4,4
・・・・・・がカプセル2の長さの75〜80%の長さ
に切断して体積率で50=60%程度になるように配置
され、劣化防止剤2,6ジターシヤリープチルpクレノ
ール等を含むエチレングリコール、水、もしくはシリ♂
ツ油等の流体5と入京密封されている。
Inside the capsules 2, 2, there are shape-stabilized polyethylene round rods 4, 4 with a diameter of 2 to 5 mm, as shown in FIG.
. . . is cut into a length of 75 to 80% of the length of the capsule 2 and arranged so that the volume ratio is about 50 = 60%, and the anti-deterioration agent 2.6 Ethylene glycol, water, or silicone containing creol, etc.
It is sealed with fluid 5 such as oil.

したがって、流入口1aから高熱の熱媒体を導入し、前
記カプセル2,2・・・・・・の間隙を通して流すと、
カプセル2との間で熱交換が行われ、流体5及び形状安
定化ポリエチレン丸棒4,4・・・・・・が加熱される
。そして、流体5の温度が135°CK上昇すると形状
安定化ポリエチレン丸棒4,4・・・・・が融解を於9
、融解熱が潜熱としてカプセル2内に蓄熱される。
Therefore, when a high-temperature heat medium is introduced from the inlet 1a and flows through the gaps between the capsules 2, 2...
Heat exchange is performed with the capsule 2, and the fluid 5 and the shape-stabilized polyethylene rods 4, 4, . . . are heated. Then, when the temperature of the fluid 5 rises by 135°CK, the shape-stabilized polyethylene round rods 4, 4... melt 9.
, the heat of fusion is stored in the capsule 2 as latent heat.

この発明の蓄熱装置では、カプセル2の各々がシャツ)
3によってタンク1内で回動するように構成されている
ので、−カプセル2内の伝熱が促進され蓄放熱速度が増
加する。
In the heat storage device of this invention, each of the capsules 2 (shirt)
3 to rotate within the tank 1, heat transfer within the capsule 2 is promoted and the rate of heat storage and release is increased.

この実施例ではンヤフト3によってカプセル2に回転運
動を与えカプセル2内の伝熱を促進するように構成して
いるが、カプセル2内に密封されている流体5と形状安
定化ポリエチレン丸棒4の熱交換が促進される方法なら
ば、振動、又は円周方向の回転を与えるようにしてもよ
いことはいうまでもない。
In this embodiment, the capsule 2 is given rotational motion by the shaft 3 to promote heat transfer within the capsule 2. It goes without saying that vibration or rotation in the circumferential direction may be applied as long as the method promotes heat exchange.

カプセル2内に密封されているポリエチレン、特に結晶
化度の高いポリエチレンは、潜熱が太きく (200k
J/kg)  過冷却現象がみられない。
The polyethylene sealed inside the capsule 2, especially polyethylene with a high degree of crystallinity, has a large latent heat (200 k
J/kg) No supercooling phenomenon is observed.

そして、135℃で完全融解し、127℃で結晶化する
すぐれた蓄熱材料であるが、融解によっても流動しない
ように形状安定化を施すことが好ましい。
Although it is an excellent heat storage material that completely melts at 135°C and crystallizes at 127°C, it is preferable to stabilize its shape so that it does not flow even when melted.

そのため、ガンマ線、電子線、プラズマの照射によって
表面、あるいは全体の架橋(特願昭53−149877
号、特願昭55−151845号)。
Therefore, the surface or the entire surface can be cross-linked by irradiation with gamma rays, electron beams, or plasma.
(Japanese Patent Application No. 55-151845).

化学架橋剤による架橋(特願昭53−149877号)
Crosslinking using a chemical crosslinking agent (Japanese Patent Application No. 149877/1983)
.

シランカップリング剤、     −′   によるシ
リコーングラフト重合(特願昭53−1j4・謙・87
7号)、エチレンとシリコーンの共重合傘による表面被
覆(特願昭56−125312号り等−で形状安定化を
することが行われている。
Silicone graft polymerization using a silane coupling agent, -'
No. 7), surface coating with a copolymer of ethylene and silicone (Japanese Patent Application No. 125312/1984, etc.) has been used to stabilize the shape.

又、ポリエチレンを板状に形成し、同様に板状に形成し
たアルミニクムなどの金属板を積層して厚さ数mm、長
さ58 m +幅2〜3cmに切断した蓄熱材料を第2
図で示すようなカプセル2内に熱媒体と共に充てんして
もよい。
In addition, a second heat storage material was prepared by forming polyethylene into a plate shape and laminating metal plates such as aluminum, which were also formed into a plate shape, and cutting them into pieces several mm thick, 58 m long, and 2 to 3 cm wide.
The capsule 2 may be filled together with a heat medium as shown in the figure.

この場合は、蓄熱材料片と熱媒体となる流体の比重差が
太き(なるので、カプセル2に振動、又は回転な与えた
場合、カプセル2内の攪拌が強くなり、より十分な熱伝
達が実現されることになる。
In this case, there is a large difference in specific gravity between the heat storage material piece and the fluid serving as the heat medium, so when vibration or rotation is applied to the capsule 2, the agitation inside the capsule 2 becomes stronger and more sufficient heat transfer is achieved. It will be realized.

第3図は形状安定化したポリエチレンをペレット状の蓄
熱材料4aにし、内側に攪拌用のプレー)2aを設けた
カプセル2の中に熱媒体となる流体5と共に密封した実
施例の断面図である。
FIG. 3 is a cross-sectional view of an embodiment in which shape-stabilized polyethylene is made into a pellet-like heat storage material 4a and sealed together with a fluid 5 serving as a heat medium in a capsule 2 provided with a stirring plate 2a inside. .

この場合、ペレット状の蓄熱材料4aとしては固相転移
によって熱を吸収・放出するペンタエリスリトールを使
用し、その熱媒体として劣化防止剤のカルボン酸エステ
ル等を含む炭化水素系熱媒体(例えば、日本石油(株ン
−・イサーム1日鉄化学(匈す−ムエス、エクソン社 
カロリアHT、以上商品名)を混合してもよい。
In this case, pentaerythritol, which absorbs and releases heat through solid phase transition, is used as the pellet-shaped heat storage material 4a, and the heat medium is a hydrocarbon heat medium containing a carboxylic acid ester as a deterioration inhibitor (for example, Petroleum (N-Isam Co., Ltd., Nippon Steel Chemical Co., Ltd., Exxon Corporation
Caloria HT (trade name above) may be mixed.

さらに、カプセル2内には、蓄熱材料として転移・融解
により熱を吸収・放出する物質を高分子等でマイクロカ
プセル化したも(特開昭53−93436号公報ンを使
用し、その熱媒体としてマイクルカプセルを溶解しない
液体を混合した流動性蓄熱物質を収納してもよい。
Furthermore, inside the capsule 2, a substance that absorbs and releases heat through transfer and melting is microencapsulated with a polymer as a heat storage material (Japanese Patent Application Laid-open No. 53-93436), and as a heat medium. A fluid heat storage material mixed with a liquid that does not dissolve the microcapsules may be accommodated.

このようなカプセル2は、円周方向に回動することによ
ってカプセル壁に螺方是状に配置したプレート2aが蓄
熱材料と流体からなる流動性蓄熱物質を効果的に攪拌す
るので伝熱が促進さ4ることになる。
When such a capsule 2 rotates in the circumferential direction, the plates 2a arranged in a spiral pattern on the capsule wall effectively stir the fluid heat storage material made of the heat storage material and the fluid, thereby promoting heat transfer. It will be 4 days.

又、この実施例は、他の流動性蓄熱物質のカプセル化に
対しても効果的である。例えば、シクロペンタジェンが
反応熱を放出してシンクロペンタジェンとなり、反応熱
を与えるとシクロペンタジェンに可迎的にもどる化学反
応を蓄熱にオU用する場合、有機物液体であるため熱伝
達が悪い。しかし、第3図に示したカプセル2に収容し
、回転を与えれば伝熱が促進さね、実用的な蓄放熱が可
能になる。
This embodiment is also effective for encapsulating other flowable heat storage materials. For example, when using a chemical reaction for heat storage in which cyclopentadiene releases reaction heat and becomes synchlopentadiene, and when reaction heat is applied, it reverts back to cyclopentadiene, heat transfer is difficult because it is an organic liquid. bad. However, if it is housed in the capsule 2 shown in FIG. 3 and rotated, heat transfer will be promoted and practical heat storage and release will become possible.

これは他の同様なテイールス・フルダー反応にも応用で
きる。
This can also be applied to other similar Teils-Fulder reactions.

さらに、無機物の潜熱蓄熱物質においても固相内の伝熱
の悪さを解決するため、液体の熱媒体と共存させ、攪拌
を行うシェル・チューブ形蓄熱装置がつくられているが
、第3図に示したカプセル2を用いて回転を与えると、
カプセル形蓄熱装置でも同様な解決をはかることができ
る。
Furthermore, in order to solve the problem of poor heat transfer in the solid phase of inorganic latent heat storage materials, a shell-tube heat storage device has been created that coexists with a liquid heat medium and stirs it. When rotation is applied using the capsule 2 shown,
A similar solution can be achieved with a capsule heat storage device.

この場合、潜熱蓄熱物質としてNacl −Kcl −
Mgc12  の共融混合物を使用し、これを鉛とビス
マスの共融合金(融点125℃)と混合させればよい。
In this case, Nacl −Kcl − is used as the latent heat storage substance.
A eutectic mixture of Mgc12 may be used and mixed with a eutectic alloy of lead and bismuth (melting point 125°C).

さらに同様に、潜熱蓄熱物質としてNaNO2−NaN
 O,−KN O3の共融混合物を使用し、有機熱媒体
のGilotherm (商品名)と混合したもの。
Furthermore, similarly, NaNO2-NaN is used as a latent heat storage material.
A eutectic mixture of O,-KN O3 is used and mixed with Gilotherm (trade name), an organic heat transfer medium.

蓄熱材料Na2HPO4・12H20と熱媒体Ther
mino160(商品名)の組合せ等にも利用できる。
Heat storage material Na2HPO4・12H20 and heat medium Ther
It can also be used in combination with mino160 (product name).

第4図(a)、 (b)は円筒状のカプセル内に挿入す
る攪拌子の一実施例を示す。
FIGS. 4(a) and 4(b) show an embodiment of a stirring bar inserted into a cylindrical capsule.

攪拌子6は金属製とし、円筒状のカプセルの内周とほぼ
同一の寸法で丁字形に形成され、その下部KJt496
aを付加したものである。
The stirrer 6 is made of metal and is formed into a T-shape with approximately the same dimensions as the inner periphery of the cylindrical capsule.
This is with the addition of a.

動性蓄熱物質は効率よく攪拌される。The dynamic heat storage material is efficiently stirred.

この実施例の場合は、ペレント状の蓄熱材料を入れた流
動性蓄熱′物質に適用できるばかりでなく、固相を析出
する非流動性の潜熱蓄熱物質(例えば塩化カルシワム六
水和物、硫酸ナトリクム士水和物)の場合に使用すると
、放熱時にカプセルの管内壁に析出する固相をかき取り
、良好な熱伝達を保持させることができる。とくに、無
機水利塩では、攪拌が放熱時の偏析を防止する効果があ
る。
In the case of this embodiment, it can be applied not only to fluid heat storage materials containing pellet-like heat storage materials, but also to non-flowing latent heat storage materials that precipitate solid phases (e.g., calcium chloride hexahydrate, sodium sulfate). When used in the case of hydroxide hydrate), the solid phase deposited on the inner wall of the capsule tube during heat dissipation can be scraped off and good heat transfer can be maintained. In particular, for inorganic water salts, stirring has the effect of preventing segregation during heat dissipation.

第5図(a)、 (b)は第4図(a) 、(b)に示
した攪拌子の変形実施例を示す。この攪拌子7もその1
部に重り7aを設けることによって同様な作用効果を持
たせることができる。
FIGS. 5(a) and 5(b) show modified embodiments of the stirrer shown in FIGS. 4(a) and 4(b). This stirrer 7 is also part 1
Similar effects can be obtained by providing a weight 7a in the section.

第6図(a)、(b)、 (c )は円筒状のカプセル
内を長手方向に移動して攪拌を行わせる攪扶子を三例示
したものである。
FIGS. 6(a), (b), and (c) show three examples of stirrers that move longitudinally inside a cylindrical capsule to effect stirring.

攪拌子8は、はぼカプセルの内周と同径とされカプセル
を第1図の実施例に示すようにカプセルが軸方向に回転
]−た時、攪拌子8がカプセル内の長手方向に上下に運
動して攪拌を行う。
The stirring bar 8 has the same diameter as the inner periphery of the capsule, and when the capsule is rotated in the axial direction as shown in the embodiment of FIG. Exercise and stir.

この場合、特に第6図(a)、(c)に示すものはスク
リュー状に形成されているので、長手方向の運動と共に
回転運動も行うので流動性蓄熱物質の攪拌に好適であり
、前述したように管内壁に析出する固相のかきとりも可
能になる。
In this case, the ones shown in FIGS. 6(a) and 6(c) in particular are formed into a screw shape and perform rotational movement as well as longitudinal movement, so they are suitable for stirring fluid heat storage materials, and as described above. In this way, it is also possible to scrape off the solid phase deposited on the inner wall of the tube.

又、図示しないが、カプセル内に金属製の小球を攪拌子
として密封しておき、振動、廻転をカプセルに与えるこ
とによって攪拌し、伝熱を促進させるようKしてもよい
Although not shown, a small metal ball may be sealed inside the capsule as a stirrer, and the capsule may be stirred by applying vibration and rotation to promote heat transfer.

以上説明したように、この発明の蓄熱装置は、カプセル
形の蓄熱装置においてカプセル内忙密封した流動性蓄熱
物質に振動、または廻転を与え必要に応じて攪拌子を封
入するようにしたので、固相の固着を防止し、積極的に
攪拌を与えることによって伝熱の促進をはかることがで
きる。
As explained above, in the heat storage device of the present invention, in a capsule-shaped heat storage device, vibration or rotation is applied to the fluid heat storage material sealed inside the capsule, and a stirrer is enclosed as necessary. Heat transfer can be promoted by preventing the phases from sticking together and actively stirring the mixture.

したがって、この発明によれば同相の固着により伝熱面
の熱伝導が悪化し、放熱速度が減少して取り出される熱
エネルギが低下していた現象がなくなり、蓄熱物質内の
伝熱による温度勾配も小さくなるので、蓄放熱速度が増
し、特に潜熱の蓄熱効率が向上するという大きな効果が
得らハるものである。
Therefore, according to this invention, the phenomenon in which the heat conduction of the heat transfer surface deteriorates due to the fixation of the same phase, the heat radiation rate decreases, and the extracted thermal energy decreases, is eliminated, and the temperature gradient due to heat transfer within the heat storage material is also eliminated. Since it is smaller, the heat storage/radiation rate increases, and in particular, the heat storage efficiency of latent heat is improved, which is a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカプセル型の蓄熱装置の改質を示す模式図、第
2図はカプセルの一実M例を示す断面図、第3図は茄動
性蓄熱材料を充てんした円筒状カプセルの断面図、H4
h (a)、(b) + 94 s図(a)、 (b)
は円筒状カプセルに挿入する攪拌子の実施例を示す断面
図と、斜視図、第6図(a)〜(υは攪拌子の他の実施
列を示す斜視図である。 図中、1はタンク、2はカプセル、3はシャフト、4は
形状安定化したポリエチレン、5は熱媒体となる流体、
6.7.8は攪拌子を示す。 第1図    第2図 ? 第3図 第4図 (a)               (b )a 第5図 (a)     (b) 第6 (a) 一一′ ) 8
Fig. 1 is a schematic diagram showing modification of a capsule-type heat storage device, Fig. 2 is a sectional view showing an example of a capsule M, and Fig. 3 is a sectional view of a cylindrical capsule filled with a movable heat storage material. ,H4
h (a), (b) + 94 s figure (a), (b)
6A is a cross-sectional view and a perspective view showing an example of a stirring bar inserted into a cylindrical capsule, and FIGS. 6(a) to (υ are perspective views showing other rows of stirring bars. tank; 2 is a capsule; 3 is a shaft; 4 is shape-stabilized polyethylene; 5 is a fluid serving as a heat transfer medium;
6.7.8 indicates a stirring bar. Figure 1 Figure 2? Figure 3 Figure 4 (a) (b) a Figure 5 (a) (b) Figure 6 (a) 11') 8

Claims (1)

【特許請求の範囲】 (1)  カプセル型蓄熱装置において、該カプセルに
廻転、振動を与えることにより前記カプセル内に密封し
た流動性蓄熱物質の伝熱を促進させることを特徴とする
蓄熱装置。 (2)  カプセル内に攪拌子を入れたことを特徴とす
る特徴請求の範囲第(1)項記載の蓄熱装置。 (つ)流動性蓄熱物質として、相変化忙より潜熱の吸収
・放出を行う物質と、該物質なほとんど、溶解しない流
体の混合物で形成したことを特徴とする特徴請求の範囲
第(1)項記載の蓄熱装置。 (4)  流動性蓄熱物質として、ポリx−チンンと、
該ポリエチレンとほとんど溶は合わない流体の混合物と
したことを特徴とする特許請求の範囲第(1)項記載の
蓄熱装置。 (5)  流動性蓄熱物質として、ペンクエリスリトー
ルと、該ペンタエリスリトールと溶は合わない流体の混
合物としたことを特徴とする特許請求の範囲第(1)項
記載の蓄熱装置。 (6)流動、性蓄熱物質として、無機塩と、有機熱媒体
もしくは液体金属との混合物を使用することを特徴とす
る特許請求の範囲第(1)項記載の蓄熱装置。 (7)流動性蓄熱物質として、液体で可逆的な反応によ
り反応熱の吸収・放出を行5物質を使用することを特徴
とする特許請求の範囲第(1)項記載の蓄熱装置。
[Scope of Claims] (1) A capsule-type heat storage device, characterized in that heat transfer of a fluid heat storage material sealed within the capsule is promoted by applying rotation and vibration to the capsule. (2) The heat storage device according to claim (1), characterized in that a stirrer is placed in the capsule. (1) The fluid heat storage material is formed of a mixture of a material that absorbs and releases latent heat through phase change and a fluid that hardly dissolves the material. The heat storage device described. (4) Polyx-tin as a fluid heat storage material,
The heat storage device according to claim 1, characterized in that the heat storage device is a mixture of a fluid that is hardly soluble in the polyethylene. (5) The heat storage device according to claim (1), characterized in that the fluid heat storage material is a mixture of pentaerythritol and a fluid that does not dissolve in pentaerythritol. (6) The heat storage device according to claim (1), wherein a mixture of an inorganic salt and an organic heat medium or a liquid metal is used as the fluid heat storage material. (7) The heat storage device according to claim (1), characterized in that a liquid material that absorbs and releases reaction heat through a reversible reaction is used as the fluid heat storage material.
JP58007555A 1983-01-20 1983-01-20 Heat accumulator Pending JPS59134494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007555A JPS59134494A (en) 1983-01-20 1983-01-20 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007555A JPS59134494A (en) 1983-01-20 1983-01-20 Heat accumulator

Publications (1)

Publication Number Publication Date
JPS59134494A true JPS59134494A (en) 1984-08-02

Family

ID=11669041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007555A Pending JPS59134494A (en) 1983-01-20 1983-01-20 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS59134494A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957193A (en) * 1995-05-16 1999-09-28 Nippondenso Co., Ltd. Heat accumulator with agitating function
WO2001038811A1 (en) * 1999-11-26 2001-05-31 Nkk Corporation Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
JP2007263509A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Heat storage device
US7541009B2 (en) 2002-05-31 2009-06-02 Jfe Engineering Corporation Apparatus for producing hydrate slurry
JPWO2013061978A1 (en) * 2011-10-24 2015-04-02 国立大学法人北海道大学 Thermal storage
WO2018055242A1 (en) * 2016-09-26 2018-03-29 Amvalor Heat exchanger comprising at least one phase change material for optimising and controlling heat transfer
CN111363522A (en) * 2020-04-01 2020-07-03 黄寅福 Multilayer heat-storage heat-preservation microcapsule applied to fabric and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155090A (en) * 1981-03-20 1982-09-25 Toshiba Corp Heat accumulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155090A (en) * 1981-03-20 1982-09-25 Toshiba Corp Heat accumulator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957193A (en) * 1995-05-16 1999-09-28 Nippondenso Co., Ltd. Heat accumulator with agitating function
WO2001038811A1 (en) * 1999-11-26 2001-05-31 Nkk Corporation Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
US7246506B2 (en) 1999-11-26 2007-07-24 Jfe Engineering Corporation Thermal storage medium using a hydrate and apparatus thereof, and method for producing the thermal storage medium
US7541009B2 (en) 2002-05-31 2009-06-02 Jfe Engineering Corporation Apparatus for producing hydrate slurry
JP2007263509A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Heat storage device
JPWO2013061978A1 (en) * 2011-10-24 2015-04-02 国立大学法人北海道大学 Thermal storage
WO2018055242A1 (en) * 2016-09-26 2018-03-29 Amvalor Heat exchanger comprising at least one phase change material for optimising and controlling heat transfer
CN111363522A (en) * 2020-04-01 2020-07-03 黄寅福 Multilayer heat-storage heat-preservation microcapsule applied to fabric and preparation method thereof
CN111363522B (en) * 2020-04-01 2021-06-01 迈科凯普(杭州)生物科技有限公司 Multilayer heat-storage heat-preservation microcapsule applied to fabric and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105518100B (en) Hard shell microencapsulation latent heat transmission material and preparation method thereof
KR970008262B1 (en) Global shaped capsule of thermal energy storage material & process
EP0005362B1 (en) Heat exchange bodies utilizing heat of fusion effects and methods of making same
JPS59134494A (en) Heat accumulator
JP3742871B2 (en) Manufacturing method of heat storage body
EP0074612B1 (en) Heat-storing apparatus
US11060800B2 (en) Latent heat storage device
JPS5986894A (en) Regenerating method and regenerator
JP2007322102A (en) Heat storage device
JPS6086188A (en) Polyolefin thermal energy storage material
JPS6136696A (en) Steady heat generating heat exchanger
JP2000087020A (en) Heat storage material composition and heat storage type hot water supplying apparatus using the same
Sozen et al. Thermal energy storage by agitated capsules of phase change material. 1. Pilot scale experiments
JPH05215369A (en) Cooling or heating method utilizing latent heat
JPS5875690A (en) Multiple-shell heat-accumulating capsule
JPS6048494A (en) Capsule enclosed with heat accumulating material
JP2001031957A (en) Heat storage material composition and heat storage-type hot water supplying apparatus
JPS6048499A (en) Heat accumulator
JPH0737610B2 (en) Latent heat storage type heating device and solid-liquid two-phase heat medium
JPS6067582A (en) Method for encapsulating heat storage material of latent heat
JPH10204423A (en) Heat storage material composition
JPH0154638B2 (en)
JPS5855435B2 (en) heat storage body
JPS6356476B2 (en)
JPS6086190A (en) Polyolefin thermal energy storage material having heat- resistant fine powder coating layer