JPS6048499A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPS6048499A
JPS6048499A JP58156068A JP15606883A JPS6048499A JP S6048499 A JPS6048499 A JP S6048499A JP 58156068 A JP58156068 A JP 58156068A JP 15606883 A JP15606883 A JP 15606883A JP S6048499 A JPS6048499 A JP S6048499A
Authority
JP
Japan
Prior art keywords
heat storage
heat
inorganic hydrate
fusion point
heat accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58156068A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP58156068A priority Critical patent/JPS6048499A/en
Publication of JPS6048499A publication Critical patent/JPS6048499A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To eliminate the requirement for multi-tank structure of a heat accumulator and contrive the reducing of manufacturing cost of the heat accumulator by utilizing more than two kinds of heat accumulating meterials having non-mixing property each other an each different fusion point. CONSTITUTION:A heat accumulator 5 is composed of a paraffin group 6 and a heat accumulating material 7, those two materials are directly enclosed in the same heat accumulating vessel. The heat accumulating material has a non-mixing property for said paraffin group and consists of more than one kind of inorganic hydrate group having each different fusion point. A paraffin group having an optinonal fusion point can be utilized as the heat accumulating material, further, the material having not only lower fusion point than an inorganic hydrate, but also having higher fusion point than the inorganic hydrate can be utilized. At the operation of the heat accumulator or room heating or hot-water supply, the heat accumulating material suitable for the utilizing purpose is the inorganic hydrate having the fusion point of approximate 30-90 deg.C, but the inorganic hydrate satisfying said condtions is very few. Therefore, the temperature range which is not fully covered only by the inorganic hydrate is compensated by the paraffin group. In this case, when there is no problem concerned with the high or low temperature for the fusion point of the inorganic hydrate, the solution means can be easily obtained.

Description

【発明の詳細な説明】 本発明は、蓄??A器に関する。更に詳しくは、互いに
異なる融点を有する2種類以上の蓄熱材料を同一容器内
に封入してなる蓄熱器に関する。
[Detailed Description of the Invention] The present invention provides storage? ? Regarding A device. More specifically, the present invention relates to a heat storage device in which two or more types of heat storage materials having different melting points are sealed in the same container.

互いに異なる融点を有する2種類以上の蓄熱材料を同一
容器内に封入してなる蓄1fi!!j器に関しては、次
のような従来技術が存在する。
A storage device made by sealing two or more types of heat storage materials with different melting points in the same container! ! Regarding J-devices, there are the following conventional technologies.

(1)2種以上の互いに混和し7得る蓄熱材料、例えば
ベンゼンとパラフィン類とを用いたもの(特公昭51−
41779ぞ公報) これにより蓄冷と蓄濡とを同一蓄熱器において行なうこ
とができるが、この場合各蓄熱材別が互いに分離しない
ような努力がなされている。
(1) Heat storage materials that can be obtained by mixing two or more types of materials, such as benzene and paraffins (Japanese Patent Publication No. 1987-
41779) This allows cold storage and wet storage to be performed in the same heat storage device, but in this case efforts are being made to prevent the different heat storage materials from being separated from each other.

(2)例えば3紳類の蓄熱′4:Af1をそれぞれ別脳
に収容した311.v構造の蓄熱器としたもの(特開昭
53−15657汗公報、同56 10697 @公報
)蓄熱器の(jη造が復雑と7:rるため、技?4+i
的および価格的K j/て実用化に問題がある。
(2) For example, three gentlemen's heat storage '4: 311.Af1 were housed in separate brains. A heat storage device with a v structure (Japanese Unexamined Patent Application Publication No. 53-15657, No. 56 10697 @ publication).
There are problems in practical use due to the cost and K j /.

(3)カプセルに「入された無(丈:老木和物およびこ
のカプセル間の空間を充填する、1+1(磯水和物より
若干低い融点を有するパラフィン類を用いたもの(4つ
開昭57 40583号公報ン パラフィン類は、本来の蓄熱材料たる無機水和物の熱媒
体として作用すると共に蓄熱材料としても機能するが、
熱交換の効率をよくするためには、(、llt機水和水
和物イクロカプセル化という煩雑にして高価格化を招く
手段をとらなければならない。
(3) Capsules filled with 1+1 paraffins with a melting point slightly lower than Iso hydrate (1+1), which fills the space between the capsules and the space between the capsules. No. 40583 Paraffins act as a heat medium for inorganic hydrates, which are original heat storage materials, and also function as heat storage materials.
In order to improve the efficiency of heat exchange, it is necessary to take the complicated and expensive method of microencapsulation of hydrated hydrates.

ところで、このように互いに異なる融点を有する2種類
以上の蓄熱材料を用いると、例えば蓄熱器ヲソーラシス
テムに用いた場合の夏季と冬期あるいは11々天日と曇
天日のよってC人力レベルの変動に対しても十分対応で
きる蓄熱が可能となる。他の具体的な蓄熱材料としては
、暖房もしくは給湯を1]的とした蓄熱器では、無機水
和物系統と有機物系統の蓄熱材料が用いられており、こ
れらの無機水rfi物同士あるいけ有機物同士を2種類
以上混合して用いると、互いの相豆作用により材料自身
か’4’j(L、い物性を有するようになり、要求され
る温度レベルに適した副(点を有しl【いようになって
し−よう1易合が多い。
By the way, if two or more types of heat storage materials having different melting points are used in this way, for example, when used in a heat storage solar system, the level of human power will fluctuate due to summer and winter or sunny and cloudy days. This makes it possible to store enough heat to cope with the situation. As other specific heat storage materials, inorganic hydrate-based and organic-based heat storage materials are used in heat storage devices intended for space heating or hot water supply. When two or more of these are used in combination, the materials themselves will have good physical properties due to their mutual effects, and will have a secondary (point) suitable for the required temperature level. [It's been a long time since I've been in the middle of a long time since I've been in the middle of a long time since I've been in the middle of a long time.

そこ(゛、無機水和物と有機物とを互いに直接接触’l
−+iで使用する蓄熱杓料についてみると、無機J< 
In !吻t4.ぞバが融解すると無機塩の高濃度水溶
液を形成するため、有機物が水溶性であると、長期の熱
サイクルに対し−て互いの蓄熱材料は変質してし塘うの
で、例えば有機物と−してアルコール類や脂肪酸類は適
していない。それ故、無機水和物と併用される有機物は
、互いに混和せず、蓄熱材料として材料劣化を生じない
ものでなければならず、その点について検討の結果、か
かる目的に対してはパラフィン類が有効であった。
There (゛, inorganic hydrate and organic matter are brought into direct contact with each other'l)
Looking at the heat storage material used in -+i, inorganic J<
In! proboscis t4. When melted, a highly concentrated aqueous solution of inorganic salts is formed, so if the organic material is water-soluble, the heat storage materials will change in quality over long-term thermal cycles. Alcohols and fatty acids are not suitable. Therefore, organic substances used in combination with inorganic hydrates must be immiscible with each other and must not cause material deterioration as a heat storage material.As a result of consideration, we found that paraffins are suitable for such purposes. It was effective.

本発明は、かかる蓄熱4」料衾封入した蓄熱器に係り、
即ちこの蓄熱器は、パラフィン類およびこれとは混和せ
ずかつ融点の異なる1種類以上の無機水和物系の蓄熱材
料を直接同一蓄熱容器内に封入させてなる。
The present invention relates to such a heat accumulator encapsulating a heat accumulator,
That is, this heat storage device is made by directly sealing paraffins and one or more types of inorganic hydrate heat storage materials that are immiscible with paraffins and have different melting points into the same heat storage container.

かかる本発明の蓄熱器に用いら]する蓄熱材料は、カプ
セル化しない点を除けば前記先行技術(3)記載の蓄熱
材料と同じものであり得るが、無機水和物をカプセル化
せず直接パラフィン類と接触させて用いることにより、
かえって次のような利点が得らノする。
The heat storage material used in the heat storage device of the present invention may be the same as the heat storage material described in prior art (3) above, except that it is not encapsulated. By using it in contact with paraffins,
On the contrary, the following advantages are not obtained.

(a)パラフィン類と無機水和物とは相溶性がなくしか
も比重が異なるため、同一容器内においては完全に分離
して存在し得る。このため、前記先行技り:j (2)
に示されるように、各′It熱拐料材料々に分離するた
めの多槽構造の蓄熱器とする必要がなく、蓄:’?!%
 ji>の製造コストの低減を図ることができる。
(a) Since paraffins and inorganic hydrates are not compatible and have different specific gravities, they can exist completely separated in the same container. For this reason, the preceding technique: j (2)
As shown in Figure 1, there is no need for a multi-tank structure heat storage to separate each heat absorbing material. ! %
ji> manufacturing cost can be reduced.

(b)蓄熱)igの構造をシェル・チューブ型にし、熱
媒th r=る水などが通過するチューブを上下方向に
多%・状壮た1づ蛇管状に貫通させれば、互いに分離し
、上層を形成しているパラフィン)y1蓄熱材料と下j
・nを形成している無機水和塩蓄熱材料とを同時kl:
 、舊交換さゼることか1丁能である。
(b) Heat storage) If the structure of the ig is made into a shell-tube type, and the tube through which the heat medium th r = water passes through is passed through vertically in the shape of a serpentine tube, they can be separated from each other. , paraffin forming the upper layer) y1 heat storage material and lower layer j
・Kl simultaneously with the inorganic hydrated salt heat storage material forming n:
, it is possible to change the shape of the blade.

(c)パラフィン類としては、任意の融点を有するもの
を使用することができ、従ってカプセル化のIJ2合の
如くに無(3&水和物より融点の低いものばかりて(・
」なく、煎國水和物より融点の高いものも用いることが
できる。
(c) Paraffins that have any melting point can be used, and therefore, paraffins such as IJ2 for encapsulation, which have a lower melting point than hydrates (3), can be used.
It is also possible to use a product with a higher melting point than Senkoku hydrate.

沼熱蓄熱においては、蓄熱器を効率よく運転するには、
熱源温度に近くしかも熱源温度より若干低い融点を有す
る蓄熱材料を用いると有効であることが、一般的VC知
られている。しかるに、蓄熱器を1援房や給湯目的に使
1「Iする場合、その使/4−f目的に適合する蓄〃1
材料t」約30〜90℃の6:、合計イjする力!(残
水和物であるか、かh−るシ、ミドI;に加λ′ご低価
格、高’+1’f+’ i”!l ’f仕Ifどの実用
性を)114足させる無(親水和物は、1′11−酸す
L 11ウムd(和θ糸も−始め数える梶しかη「イ、
それぞ扛の模〃(材料の融点1/C4d、lhA 反曲
に大き7:「キャンプがみらねる。従って、熱源温度に
変動がある場合、その変動の範囲内て最適の無機水和物
を選定づるが、これたけでd、補ηfいきれない他の温
度範囲をパラフィン%iで対処するという対応の仕方を
する場合、無機水和物に対(7て融点の高い低いを間Q
l cしないで済むということは、このよう7:「対応
方法の有効性を更に一段と高めるものであるといえる。
In swamp heat storage, in order to operate the heat storage device efficiently,
It is known in general VC that it is effective to use a heat storage material having a melting point close to the heat source temperature and slightly lower than the heat source temperature. However, if a heat storage device is used for the purpose of heating or hot water supply, it is necessary to
Material t'' about 30 to 90℃ 6:, total power! (Is it a residual hydrate? Add λ' to low price, high'+1'f+'i'!l'f' if what practicality) Add 114 ( The hydrate is 1'11-acid,
Each of them has a pattern of tsunami (the melting point of the material is 1/C4d, lhA, and the curve is large 7: "Camp" is observed. Therefore, when there is a fluctuation in the heat source temperature, the optimal inorganic hydrate is found within the range of the fluctuation. However, when dealing with other temperature ranges where d and ηf cannot be compensated for by using paraffin% i, it is necessary to select
7: ``It can be said that the effectiveness of the response method is further increased by not having to do anything.

y(お、用し・らft不各谷熱材利のt目刺的な割合に
、各蓄熱材料の潜熱鼠からぞれぞれの蓄熱H↓を算出し
、そノ1を基準として決めらルるが、一般にはより融点
の低い方の蓄熱材料を多く用いることが好ましい。
Calculate each heat storage H↓ from the latent heat ratio of each heat storage material to the target ratio of each heat material, and decide based on Part 1. However, it is generally preferable to use a heat storage material with a lower melting point.

(d)前記先行技術(])に記載される如く、蓄熱利料
の過冷却を防止するための凍結促進剤(発核剤)は−1
9熱材刺ど分離し易く、そのため十分な発核作用を発1
i1i L得l【い場合もあるが、本発明Vこおいては
、fs; i’iムイ、イ料に添加さノtた発核剤はそ
の蓄熱材イ51から分離することなく、十分なる発核作
用全発現している。
(d) As described in the prior art (]), the freezing accelerator (nucleating agent) for preventing supercooling of the heat storage interest is -1
9 The heat material is easy to separate and therefore generates sufficient nucleating action 1
However, in the case of the present invention, the nucleating agent added to the material is not separated from the heat storage material 51 and is fully absorbed. The nucleation effect is fully expressed.

(θ)・1幻発明は、附記先行技術(s) llこ記載
さJ1L悪機水和物どパラフィン類とが相合さ瓦た蓄熱
材料ばかりでi:t rt < 1.’!yTいffC
混和せずかつ互いに異なる融点′:i:有する2補力1
以上の蓄熱材料であれば、いすJ゛1.のtlJ合ti
に係るものであっても所期の口重を達成汁しめることが
できる。
(θ)・1 The phantom invention is based on the attached prior art (s) ll. All of the heat storage materials described in the appended prior art (s) are combined with J1L hydrate and paraffins, i: rt < 1. '! yTffC
Immiscible and mutually different melting points':i: 2 complements 1
If the above heat storage material is used, Chair J゛1. tlj goti
Even if it is related to the above, it is possible to achieve the desired taste.

次に、実hdI例υζついて本発明の詳細な説明する。Next, the present invention will be explained in detail using an actual hdI example υζ.

ZJごf庫 [列 ] ;!+′1.G’d ノー ’リウム3水和物20り、
リン酊水素二すトリウム12水和’4h 0.29およ
び水0.769から調製さrLL蓄慈イΔ科(を触点5
8℃)の全量と固形パラフィン(融点52へ・54℃)
10りとを、容置50meのガブス瓶中に同時に入れ、
80℃に加熱した。
ZJ store [column] ;! +'1. G'd no 'rium trihydrate 20,
RLL prepared from phosphorous dihydrogen 12 hydrate 4h 0.29 and water 0.769 (touch point 5)
8℃) and solid paraffin (melting point 52/54℃)
10 liters at the same time in a 50 meter capacity gubbs bottle,
Heated to 80°C.

この加熱により、各苗熱利料は完全に融解するが、2層
に分離した。これを激しく攪拌し、約5分間放置すると
再び2層に分離することから、各蓄熱材料間には相溶性
のないことが確認された。更に、これを室温(20℃)
迄放冷すると、名蓄熱(A料は両者別々に、それぞれの
t、往点で固化した。このような加熱−放冷操作を20
回くり返したン);、そこには何らの変化もなく、両者
別々の固化がくり返された。
By this heating, each seedling heat harvest material was completely melted, but separated into two layers. When this was vigorously stirred and left for about 5 minutes, it separated into two layers again, confirming that there was no compatibility between the heat storage materials. Furthermore, store this at room temperature (20℃)
When left to cool until 20 minutes, heat storage (both materials A solidified separately at each point t. Such heating-cooling operation was continued for 20 minutes.
After repeating the process, there was no change, and the two solidified separately.

かかる加熱−放冷操作の各間におけろ酸6マナトリウム
糸蓄熱拐料(曲線I)および固形ノーラフ蓄熱材料拐料
(曲線11)の放熱時における経時的な温度変化が、こ
れら各蓄熱4′A料層の高さして4ηj人された熱電対
によってf(す定され、その結果を第1図のグラフに示
した。なお、測定結qtは、γσ回同じである。
During each heating-cooling operation, the temperature change over time of the heat storage material (curve I) and the solid noraf heat storage material material (curve 11) over time during the heating and cooling operations is as follows. The height of the A material layer was determined by a thermocouple set at 4ηj, and the results are shown in the graph of FIG. 1. Note that the measurement result qt is the same for γσ times.

実施例2 ?if!iGG亜鉛6水和物20gおよび水1)′f化
スストTJ :/チウム8水和物0.2 qから調製さ
れた一11゛i熱材14;l (融点36℃)の全量と
固形パラフィン(融点・16〜48G)109とを用い
、実施例Jと同様の加熱(60℃)−放冷操作をくり返
した。このような操作を10回くり返したが、そこには
何らの変化もなく、両者別々の同化がくり返された。
Example 2? If! Total amount of 111゛i thermal material 14;l (melting point 36°C) prepared from 20 g of iGG zinc hexahydrate and 1) chloride salt TJ:/0.2 q of lithium octahydrate (melting point 36°C) and solid paraffin. (Melting point: 16-48G) Using 109, the same heating (60° C.)-cooling operation as in Example J was repeated. This operation was repeated 10 times, but there was no change, and the assimilation of both was repeated.

実施例3 It’ll itレニッケル6水和物20シおよび水酸
化ストロンチウム8水和物02gから11悶jtW=5
れアこ蓄熱材第4(融点54℃)の全4f”−と固形パ
ラフィン(融点46〜48℃)1(19とを用い、実1
ii+i、 ’/AJ 1と同様の加熱(70?;)−
級冷操作谷一くり返したつこのよう/、f(☆き作を1
0回くり返し7こが、そこには何らの変化もf、C<、
両者別々の固イヒカ:くり返された。
Example 3 It'll be nickel hexahydrate 20 g and strontium hydroxide octahydrate 02 g to 11 w = 5
Using a total of 4 f'' of Reako heat storage material No. 4 (melting point 54°C) and solid paraffin (melting point 46-48°C) 1 (19), real 1
ii+i, '/AJ Same heating as 1 (70?;)-
Class cold operation Taniichi repeats Tsukoyo/, f(☆kisaku wo 1
7 times repeated 0 times, there is no change in f, C<,
Both of them have separate hard ihika: repeated.

実施例4 リンnρ水素二ナトリウム12水和押r (tel(、
d、 35℃)20シと固りレバラフ・rン(融点46
〜48℃)10gとをIliい、実施例1と同様の加熱
(60℃−)−放冷操1・Lをくり返した。このような
掃作を10回くり返し1.:が、そこには何らの変化も
なく、両者別・kの固化がくり返されに。
Example 4 Phosphorus nρ disodium hydrogen 12-hydrogen (tel(,
d, 35°C) hardened at 20 degrees Celsius (melting point 46°C).
The same heating (60°C -) and cooling operation (1 L) as in Example 1 was repeated. Repeat this kind of sweeping 10 times.1. : However, there was no change, and the two were repeatedly solidified.

実#i+i例5 水酸化バリウム8水和物20c/′j−)よび水へε1
化ストロンチウム0.2 !17から調製された蓄熱材
料(融点78℃)の全量と固形パラフィン(細;点58
〜60℃)10りとを用い、実施例1と同様の加熱(9
0℃)−奴冷採作をくり返し7に。このような操作を1
0回くり返し、たが、そこにな、L何らの多汁もfj<
、両者別々の固化がくり返さ71.た。
Actual #i+i Example 5 Barium hydroxide octahydrate 20c/'j-) and water ε1
Strontium chloride 0.2! The total amount of the heat storage material prepared from No. 17 (melting point 78°C) and solid paraffin (fine; point 58
Heating was carried out in the same manner as in Example 1 (9 to 60°C).
0℃) - Repeat cold harvesting to 7. 1 such operation
Repeatedly 0 times, but there, L there is no succulence fj<
, both of them solidify separately 71. Ta.

実施例6 第2図に示される蓄熱器、即ち21り入11 ] :i
、よひ液出口2にそi’l−(’ :?i熱′市討3,
3′丘倫ヤ1.−の液入D (!: h 出D (!:
 (r”) Iil ;’l’ 7.4): (1) 
7 インr−t’j:、’ l 、 4’ 。
Example 6 The heat storage device shown in FIG.
, At the liquid outlet 2, i'l-(' :?i heat' city test 3,
3' Oka Rinya 1. -Liquid inlet D (!: h Outer D (!:
(r”) Iil ;'l' 7.4): (1)
7 inr-t'j:,'l,4'.

・1〃、・・・・・で連結さJ]、た−1も熊谷器5内
(どこ、前記実施例1−(”用いられた酸1家すトリウ
ム糸b♀々(拐利(IJlべ(58C)6の10にりと
[、ζイ形パラフィン((411;点46〜48℃)7
の5に9とを直接封入した。これらの各蓄熱材料(・丁
1、互いしこ完全1fC分艮IIしている。
・1〃,... connected with J], ta-1 is also inside the Kumagai vessel 5 (where, the above-mentioned Example 1- Be (58C) 6 no.
5 and 9 were directly enclosed. Each of these heat storage materials (1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, , , , , , , , , , , , , , , , , 1, , , , , 1, , 1, , 1, , 1, , , , 1, , , 1, , , 1, , 1, 2, , 2, , 2, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,, t, t/l, t/l, t/l, and each other are completely coated in 1 fC).

このように構成された蓄熱器i/(−180℃の温水わ
よ0・20℃の冷水を交互に入れ、吸熱および放熱をく
り返し7こところ、蓄熱器のpfi 71冒] V″l
:5 I’llる経時的4L洗(度変化は、例えば放か
・時においては第3図のグラフに氷上れる如くと/X1
°す、2つの異なる温度レベルVこおいて有効7f蓄熱
がなされていることが分った。
Heat storage device configured in this manner (-180°C hot water and 0 and 20°C cold water were alternately added, heat absorption and heat radiation were repeated 7 times, and the pfi of the heat storage device was 71%) V″l
:5 I'll wash 4L over time (for example, when the temperature changes, the graph in Fig.
It was found that effective 7f heat storage was achieved at two different temperature levels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で用いられた各蓄熱材料の放IA 
JIG &ごおける経時的な温度変化を示すグラフであ
る。第2図は、実施例6で用いられた蓄熱器の中心線縦
断面図である。また、第3図は、実施例6にj3ける放
熱時の経時的な温度変「ヒを示すグラフである。 (?、)けの説明) 1・・・・・・液入口 2・・・・・・液出口 4・・・・・・フィン付管 5・・・・・・蓄熱器 6・・・・・・蓄熱材料I 7・・・・・・蓄熱材料■ 代理人 弁理士 吉 114 俊 夫
Figure 1 shows the radiation IA of each heat storage material used in Example 1.
It is a graph showing the temperature change over time in JIG&G. FIG. 2 is a longitudinal sectional view along the center line of the heat storage device used in Example 6. Moreover, FIG. 3 is a graph showing the temperature change over time during heat dissipation in Example 6. ...Liquid outlet 4...Finned tube 5...Heat storage device 6...Heat storage material I 7...Heat storage material■ Representative patent attorney Yoshi 114 Toshio

Claims (1)

【特許請求の範囲】 】、パラフィン類およびこれとは混和せずかつ融点の異
なる1種類以上の蓄熱材料を直接同一蓄熱容器内に封入
してなる蓄熱器。 2 蓄熱材料が無機水和物系蓄熱材料である特許請求の
範囲第1項記載の蓄熱器。 3 パラフィン類より高融点の無機水和物系゛L熱熱材
料用いられた特許請求の範囲第2項記載の蓄熱器。 4 パラフィン類より低融点の無機水和物系仏熱材、+
″)が用いられた特許請求の範囲第2項記載の蓄熱器。 5、 Ill!房および給湯目的に用いらねる特許請求
の範囲第1項記載の蓄熱器。
[Claims] A heat storage device comprising paraffins and one or more heat storage materials immiscible with paraffins and having different melting points directly sealed in the same heat storage container. 2. The heat storage device according to claim 1, wherein the heat storage material is an inorganic hydrate-based heat storage material. 3. The heat storage device according to claim 2, wherein an inorganic hydrate-based thermothermal material having a higher melting point than paraffins is used. 4 Inorganic hydrate-based Buddhist heat material with a lower melting point than paraffins, +
5. The heat storage device according to claim 1, which is used for the purpose of heating and hot water supply.
JP58156068A 1983-08-26 1983-08-26 Heat accumulator Pending JPS6048499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156068A JPS6048499A (en) 1983-08-26 1983-08-26 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156068A JPS6048499A (en) 1983-08-26 1983-08-26 Heat accumulator

Publications (1)

Publication Number Publication Date
JPS6048499A true JPS6048499A (en) 1985-03-16

Family

ID=15619595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156068A Pending JPS6048499A (en) 1983-08-26 1983-08-26 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS6048499A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240097A (en) * 1985-04-17 1986-10-25 Matsushita Electric Ind Co Ltd Regenerative element
JPS61240095A (en) * 1985-04-17 1986-10-25 Matsushita Electric Ind Co Ltd Regenerative element
US5488168A (en) * 1989-08-25 1996-01-30 Kao Corporation Tertiary amino alcohol and method of producing the same
WO2012010709A3 (en) * 2010-07-23 2012-07-05 Addlogic Labs Gmbh Device for storing heat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120083A (en) * 1982-01-08 1983-07-16 Toshiba Corp Heat accumulating tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120083A (en) * 1982-01-08 1983-07-16 Toshiba Corp Heat accumulating tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240097A (en) * 1985-04-17 1986-10-25 Matsushita Electric Ind Co Ltd Regenerative element
JPS61240095A (en) * 1985-04-17 1986-10-25 Matsushita Electric Ind Co Ltd Regenerative element
US5488168A (en) * 1989-08-25 1996-01-30 Kao Corporation Tertiary amino alcohol and method of producing the same
WO2012010709A3 (en) * 2010-07-23 2012-07-05 Addlogic Labs Gmbh Device for storing heat

Similar Documents

Publication Publication Date Title
Porisini Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance
Papadimitratos et al. Evacuated tube solar collectors integrated with phase change materials
Mathur et al. Using encapsulated phase change salts for concentrated solar power plant
Huang et al. Advances and applications of phase change materials (PCMs) and PCMs-based technologies
Nagano et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat
Seddegh et al. Solar domestic hot water systems using latent heat energy storage medium: a review
US5687706A (en) Phase change material storage heater
CN1229466A (en) Equipment and process for heat energy storage
Mu et al. Phase change materials applied in agricultural greenhouses
US20140261380A1 (en) Phase change heat packs
Khot Enhancement of thermal storage system using phase change material
JPS6048499A (en) Heat accumulator
Wang et al. Experimental investigation on discharging characteristics of supercooled CH3COONa· 3H2O-Na2S2O3· 5H2O mixtures triggered by local cooling with Peltier effect
JPS6343992A (en) Reversible phase transfer composition of calcium bromide hydrate
Dhaou et al. Experimental assessment of a solar water tank integrated with nano-enhanced PCM and a stirrer
JP2018162957A (en) Arrangement method of latent heat storage material in heat storage tank, and latent heat storage tank
Ryu et al. Heat transfer characteristics of cool-thermal storage systems
Kanimozhi et al. Review on heat transfer enhancement techniques in thermal energy storage systems
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
Sobhansarbandi Evacuated tube solar collector integrated with multifunctional absorption-storage materials
Sain et al. Study on behaviour of thermal energy storage materials under conventional and solar heating systems
JPS62294897A (en) Heat accumulation type heat exchanger
JP2569654B2 (en) Heat storage device
Rathod et al. Experimental study on phase change material based thermal energy storage system
Ekwomadu Performance evaluation of cascaded latent heat storage systems for domestic medium temperature applications