JP6588491B2 - Method for disposing latent heat storage material in heat storage tank and latent heat storage tank - Google Patents

Method for disposing latent heat storage material in heat storage tank and latent heat storage tank Download PDF

Info

Publication number
JP6588491B2
JP6588491B2 JP2017061715A JP2017061715A JP6588491B2 JP 6588491 B2 JP6588491 B2 JP 6588491B2 JP 2017061715 A JP2017061715 A JP 2017061715A JP 2017061715 A JP2017061715 A JP 2017061715A JP 6588491 B2 JP6588491 B2 JP 6588491B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
latent heat
latent
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017061715A
Other languages
Japanese (ja)
Other versions
JP2018162957A (en
Inventor
洸平 中村
洸平 中村
伊奈 孝
孝 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2017061715A priority Critical patent/JP6588491B2/en
Publication of JP2018162957A publication Critical patent/JP2018162957A/en
Application granted granted Critical
Publication of JP6588491B2 publication Critical patent/JP6588491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Central Heating Systems (AREA)

Description

本発明は、蓄熱またはその放熱を行う潜熱蓄熱材により、潜熱蓄熱槽内の熱媒体との間で、蓄熱材収容具を介して熱の移動を行うのにあたり、潜熱蓄熱材が蓄熱材収容具内に収容された状態にあるときの潜熱蓄熱材の配置態様である潜熱蓄熱材の蓄熱槽内配置方法、及びこの蓄熱槽内配置方法で潜熱蓄熱材が配設された潜熱蓄熱槽に関する。   The present invention relates to a case where a latent heat storage material is used to transfer heat to and from a heat medium in a latent heat storage tank via a heat storage material container by using a latent heat storage material that performs heat storage or heat dissipation. It is related with the latent heat storage material arrangement method of the latent heat storage material which is the arrangement mode of the latent heat storage material when it is housed in the inside, and the latent heat storage tank in which the latent heat storage material is provided by this internal storage method.

潜熱蓄熱材(PCM:Phase Change Material)は、相変化に伴う潜熱の出入りを利用して蓄熱または放熱を行う物性を有しており、本来廃棄される排熱を蓄熱し、蓄えた熱を必要に応じて取り出すことで、エネルギが無駄なく有効に活用できる。潜熱蓄熱材は、蓄熱材収容具内に充填されており、外部に漏れないよう、この蓄熱材収容具を密閉した状態で、蓄熱材収容具内に収容されている。蓄熱材収容具は、熱媒体である水等と潜熱蓄熱材との間で熱の移動を可能とした樹脂フィルム製の袋等からなり、熱の接触面積をより大きく確保できる扁平な形状に形成されている。蓄熱材収容具では、主として長辺側の面部が、熱媒体と潜熱蓄熱材との間で熱の移動を行う伝熱面になっている。   Latent heat storage material (PCM: Phase Change Material) has the physical property of storing or radiating heat using the input and output of latent heat that accompanies phase change, storing the waste heat that is originally discarded, and requiring the stored heat The energy can be effectively used without being wasted by taking it out according to the conditions. The latent heat storage material is filled in the heat storage material container, and is stored in the heat storage material container in a state where the heat storage material container is sealed so as not to leak outside. The heat storage material container is made of a resin film bag that allows heat to move between the heat medium such as water and the latent heat storage material, and is formed into a flat shape that can ensure a larger heat contact area. Has been. In the heat storage material container, the surface portion on the long side mainly serves as a heat transfer surface that transfers heat between the heat medium and the latent heat storage material.

このような潜熱蓄熱材入りの蓄熱材収容具は、蓄熱槽の側壁側に向けて寝かせた横向きの姿勢で、複数段に積み重ねた配置や、潜熱蓄熱槽の上方側に向けた縦置きの姿勢で、横並びに複数列に分けた配置等、種々の配置形態により、水等に完全に浸漬された状態で収容されている。蓄熱材収容具を縦置きの姿勢で配置した潜熱蓄熱槽の一例として、特許文献1の潜熱蓄熱槽が開示されている。   Such a heat storage material containing a latent heat storage material is placed in a horizontal orientation laid down toward the side wall side of the heat storage tank, stacked in multiple stages, or placed in a vertical position toward the upper side of the latent heat storage tank In various arrangement forms such as a horizontal arrangement and a plurality of arrangements, it is accommodated in a state completely immersed in water or the like. The latent heat storage tank of patent document 1 is disclosed as an example of the latent heat storage tank which arrange | positioned the thermal storage material accommodation tool with the attitude | position of vertical installation.

特許文献1は、アルミ箔と合成樹脂とをラミネート加工したフィルム状のパウチに、酢酸ナトリウム三水和物とする潜熱蓄熱材を充填して密封した潜熱蓄熱袋を複数列、潜熱蓄熱槽内に配置した潜熱蓄熱槽である。特許文献1には、電極間で電界ショックを与える電極印加手段が、潜熱蓄熱槽外に設けられ、電極印加手段のリード線が、槽内を通じて潜熱蓄熱袋に配線され、電極が潜熱蓄熱袋に設けられている。パウチをなすアルミ箔は、その電極印加手段のリード線の機能も担っている。特許文献1では、過冷却を解除して潜熱蓄熱材を凝固させる目的で、電界ショックによる衝撃が、潜熱蓄熱袋内で潜熱蓄熱材に与えられる。   Patent Document 1 discloses a plurality of rows of latent heat storage bags filled with a latent heat storage material made of sodium acetate trihydrate and sealed in a film-like pouch laminated with aluminum foil and a synthetic resin, in the latent heat storage tank. It is the arranged latent heat storage tank. In Patent Document 1, electrode application means for applying an electric field shock between the electrodes is provided outside the latent heat storage tank, the lead wire of the electrode application means is wired to the latent heat storage bag through the tank, and the electrode is connected to the latent heat storage bag. Is provided. The aluminum foil forming the pouch also functions as a lead wire for the electrode application means. In Patent Document 1, for the purpose of releasing supercooling and solidifying the latent heat storage material, an impact due to an electric field shock is applied to the latent heat storage material in the latent heat storage bag.

特開2015−94519号公報JP-A-2015-94519

しかしながら、潜熱蓄熱槽内の熱媒体中に存在する特許文献1のリード線等のように、潜熱蓄熱材に伴う機能とは無関係で、熱伝導に全く関与しない阻害物質が、熱媒体の中や、潜熱蓄熱材を充填した蓄熱材収容具の中に存在していると、熱媒体から潜熱蓄熱材への蓄熱や、潜熱蓄熱材から熱媒体への放熱を行うときに、阻害物質は、熱を伝導する上で弊害となる。また、一般的に無機塩水和物の融液は、酸性または塩基性を呈する傾向にあり、両性金属であるアルミニウムは、無機塩水和物において、酸性の融液と塩基性の融液とも溶解する。特許文献1の場合、酢酸ナトリウム三水和物の融液は、塩基性を呈するため、アルミニウムは、酢酸ナトリウム三水和物の融液に溶解する。そのため、パウチをなすアルミ箔が、酢酸ナトリウム三水和物の融液に触れてしまうと、アルミ箔が劣化してしまうほか、パウチの損傷に発展して、潜熱蓄熱材が熱媒体中に漏洩してしまう虞がある。また、リード線等のような阻害物質が、潜熱蓄熱槽内の熱媒体の中で存在すると、さらなる潜熱蓄熱材を収容できる空間に代えて、そのスペースが阻害物質で占有されてしまい、結果的に、潜熱蓄熱槽内に収容できる潜熱蓄熱材の容量が制限されて、潜熱蓄熱槽全体で蓄えることができる熱量も少なくなる。   However, like the lead wire of Patent Document 1 existing in the heat medium in the latent heat storage tank, an inhibitor that has nothing to do with heat conduction regardless of the function associated with the latent heat storage material is contained in the heat medium. If the heat storage material container filled with the latent heat storage material is present, when the heat storage from the heat medium to the latent heat storage material or the heat dissipation from the latent heat storage material to the heat medium, the inhibitor is It will be harmful in conducting. In general, melts of inorganic salt hydrates tend to be acidic or basic, and aluminum, an amphoteric metal, dissolves both acidic and basic melts in inorganic salt hydrates. . In the case of Patent Document 1, since the melt of sodium acetate trihydrate exhibits basicity, aluminum is dissolved in the melt of sodium acetate trihydrate. For this reason, if the aluminum foil forming the pouch touches the melt of sodium acetate trihydrate, the aluminum foil will deteriorate and the pouch will be damaged, and the latent heat storage material will leak into the heat medium. There is a risk of it. In addition, if an inhibitor such as a lead wire is present in the heat medium in the latent heat storage tank, the space is occupied by the inhibitor instead of the space that can accommodate further latent heat storage material. Furthermore, the capacity of the latent heat storage material that can be accommodated in the latent heat storage tank is limited, and the amount of heat that can be stored in the entire latent heat storage tank is reduced.

ところで、潜熱蓄熱材入りの蓄熱材収容具には、潜熱蓄熱材の収容時に混入した空気が内在している。潜熱蓄熱材入りの蓄熱材収容具が潜熱蓄熱槽内に収容され、潜熱蓄熱材が液相状態にあるときには、潜熱蓄熱材の融液が、自重により蓄熱材収容具の下側に偏り、蓄熱材収容具の上側には、混入した空気による空隙部が必然的に形成されてしまう。この空隙部のボリュームは、潜熱蓄熱材の体積変動によっても変化する。このような潜熱蓄熱材入りの蓄熱材収容具が、横向きの姿勢で潜熱蓄熱槽内に配置されると、蓄熱材収容具の上面やその下面全体が、熱媒体との伝熱面となる。   By the way, in the heat storage material container containing the latent heat storage material, air mixed when the latent heat storage material is stored is inherent. When the heat storage material container containing the latent heat storage material is stored in the latent heat storage tank and the latent heat storage material is in the liquid phase, the latent heat storage material melts under the heat storage material due to its own weight, On the upper side of the material container, a gap due to the mixed air is inevitably formed. The volume of the gap portion also changes depending on the volume variation of the latent heat storage material. When such a heat storage material container containing a latent heat storage material is disposed in the latent heat storage tank in a lateral orientation, the upper surface of the heat storage material container and the entire lower surface thereof serve as a heat transfer surface with the heat medium.

このとき、蓄熱材収容具に混入した空気は、蓄熱材収容具の上面全体に接した幅広な空隙部を形成し、蓄熱材収容具を介して、熱媒体から潜熱蓄熱材に蓄熱するときや、潜熱蓄熱材から熱媒体に放熱するときに、空隙部で熱伝導を遮る割合が増えてしまい、熱の伝導の低下を招いてしまう。そのため、伝熱面に接触する幅広な空隙部は、熱伝導にとって阻害要因になる。さらに、潜熱蓄熱材入りの蓄熱材収容具が、横向きの姿勢で複数段に積み重ねて配置されていると、積み重なっている潜熱蓄熱材入りの蓄熱材収容具の伝熱面同士が密着してしまい、水等(熱媒体)が伝熱面に流れず、このことが、熱伝導の効率の低下を招く一因となる。   At this time, the air mixed in the heat storage material container forms a wide gap in contact with the entire top surface of the heat storage material container, and heat is stored from the heat medium to the latent heat storage material via the heat storage material container. When the heat is radiated from the latent heat storage material to the heat medium, the ratio of blocking the heat conduction in the gap increases, leading to a decrease in heat conduction. For this reason, the wide gap that contacts the heat transfer surface becomes an impediment to heat conduction. Furthermore, if the heat storage material containers containing latent heat storage materials are arranged in a plurality of stages in a horizontal orientation, the heat transfer surfaces of the stacked heat storage material containers containing latent heat storage materials will be in close contact with each other. Water or the like (heat medium) does not flow to the heat transfer surface, which causes a decrease in heat conduction efficiency.

一方、潜熱蓄熱材入りの蓄熱材収容具が、特許文献1のように、縦向きの姿勢で潜熱蓄熱槽内に配置されていれば、蓄熱材収容具の側面が熱媒体との伝熱面になり、蓄熱材収容具の上部側に、幅狭な空隙部は形成されるが、同じ蓄熱材収容具の対比で、その空隙部と蓄熱材収容具の側面との接触面積は、蓄熱材収容具の側面全体の面積の一部に過ぎない。そのため、縦向きの姿勢は、横向きの姿勢の場合に比べ、熱伝導の低下を抑制することはできる。   On the other hand, if the heat storage material container containing a latent heat storage material is arrange | positioned in a latent heat storage tank with the attitude | position facing vertically like patent document 1, the side surface of a heat storage material container will be a heat-transfer surface with a heat medium. A narrow gap is formed on the upper side of the heat storage material container, but the contact area between the gap and the side surface of the heat storage material container is the same as that of the heat storage material container. It is only part of the area of the entire side of the container. Therefore, the vertical orientation can suppress a decrease in heat conduction compared to the horizontal orientation.

他方、潜熱蓄熱材が、例えば、アンモニウムミョウバン12水和物(AlNH(SO・12HO)等のような無機塩水和物である場合がある。この場合、潜熱蓄熱材の使用直後において、潜熱蓄熱材が固体状態であるときに、アンモニウムミョウバン(AlNH(SO)等の無機塩と水分子(HO)とが、互いの相互作用で結びついて、均一な結晶構造を形成する。また、潜熱蓄熱材が融液状態であるときには、アンモニウムミョウバン等の無機塩と水分子とが、均一に混ざった状態になっている。しかしながら、潜熱蓄熱槽内に縦向きの姿勢でこの潜熱蓄熱材入りの蓄熱材収容具を配置すると、蓄熱とその放熱のサイクルを複数回繰り返すうちに、各成分の密度差(比重差)により、無機塩と水とが分離する相分離が生じてしまう。 On the other hand, the latent heat storage material may be an inorganic salt hydrate such as ammonium alum 12 hydrate (AlNH 4 (SO 4 ) 2 · 12H 2 O). In this case, immediately after using the latent heat storage material, when the latent heat storage material is in a solid state, inorganic salts such as ammonium alum (AlNH 4 (SO 4 ) 2 ) and water molecules (H 2 O) are Combined by interaction, a uniform crystal structure is formed. Further, when the latent heat storage material is in a melt state, an inorganic salt such as ammonium alum and water molecules are uniformly mixed. However, when this heat storage material container containing the latent heat storage material is arranged in a vertical orientation in the latent heat storage tank, while repeating the cycle of heat storage and heat dissipation multiple times, due to the density difference (specific gravity difference) of each component, Phase separation in which the inorganic salt and water are separated occurs.

さらに、この潜熱蓄熱材に、過冷却防止剤や融点調整剤等の添加剤が配合されている潜熱蓄熱材組成物の場合には、蓄熱とその放熱のサイクルを複数回繰り返すうちに、組成物を構成する各成分の混ざり具合が、構成成分の密度差により不均一になる。横向きの姿勢の場合に比べ、潜熱蓄熱材入りの蓄熱材収容具を縦向きの姿勢で潜熱蓄熱槽内に配置した場合に、充填されている潜熱蓄熱材の層の高さが高くなるため、相分離や成分の不均一化が、顕著に表れる。このような相分離や成分の不均一化が蓄熱材収容具内で生じてしまうと、本来、潜熱蓄熱材に有する蓄放熱性能が発揮できなくなる。   Furthermore, in the case of a latent heat storage material composition in which additives such as a supercooling inhibitor and a melting point modifier are blended with this latent heat storage material, the composition is repeated while repeating the cycle of heat storage and its heat release a plurality of times. The degree of mixing of the components constituting the component becomes non-uniform due to the density difference between the components. Compared to the horizontal orientation, when the thermal storage material containing the latent heat storage material is placed in the latent heat storage tank in the vertical orientation, the height of the layer of the latent heat storage material filled is increased. Phase separation and component non-uniformity are noticeable. If such phase separation or component non-uniformity occurs in the heat storage material container, the heat storage performance of the latent heat storage material cannot be exhibited.

本発明は、上記問題点を解決するためになされたものであり、蓄熱またはその放熱を行う潜熱蓄熱材が蓄熱材収容具の内部に収容され、この蓄熱材収容具を介して、潜熱蓄熱槽内の熱媒体と潜熱蓄熱材との間で熱伝導を行うのにあたり、潜熱蓄熱材の蓄放熱性能を維持しながら、熱伝導を効率良く行うことができる潜熱蓄熱材の蓄熱槽内配置方法、及び潜熱蓄熱槽を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a latent heat storage material for storing or radiating heat is accommodated inside the heat storage material container, and the latent heat storage tank is provided via the heat storage material container. In conducting heat conduction between the heat medium and the latent heat storage material in the heat storage tank arrangement method of the latent heat storage material that can efficiently conduct the heat while maintaining the heat storage and release performance of the latent heat storage material, And it aims at providing a latent heat storage tank.

上記目的を達成するために、本発明に係る潜熱蓄熱材の蓄熱槽内配置方法は、以下の構成を有する。
(1)相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材を、蓄熱材収容具の内部に密閉し、該潜熱蓄熱材により、潜熱蓄熱槽内の熱媒体との間で該蓄熱材収容具を介して熱の移動を行うのにあたり、該潜熱蓄熱材が該蓄熱材収容具内に収容された状態にあるときの該潜熱蓄熱材の配置態様である潜熱蓄熱材の蓄熱槽内配置方法において、液相状態にある前記潜熱蓄熱材の融液の粘度を高める増粘剤が配合され、前記蓄熱材収容具内には、前記潜熱蓄熱材と前記増粘剤とを含む潜熱蓄熱材組成物が収容されていること、前記蓄熱材収容具内の前記潜熱蓄熱材組成物を、前記熱媒体の上方位置から鉛直方向下方に向けて投影したときの前記潜熱蓄熱材組成物の断面積を、鉛直側断面積Svとし、前記熱媒体を通じて水平方向に向けて投影したときの前記潜熱蓄熱材組成物の断面積を、水平側断面積Shとすると、前記蓄熱材収容具内に収容された状態にある前記潜熱蓄熱材組成物では、Sv<Sh ・・・式(1) 前記式(1)の条件を満たしていること、前記潜熱蓄熱材組成物を収容した状態にある前記蓄熱材収容具は、水平方向に沿う厚みの変化を許容範囲内に制限するガイド手段により、拘束された状態で、かつ配置姿勢を維持した状態で、前記熱媒体の中に収容されていること、を特徴とする。
(2)(1)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記蓄熱材収容具は、樹脂と金属とを積層した複層構造で、融着可能な材質からなる袋または容器であり、当該蓄熱材収容具の外形輪郭をなす外周縁の少なくとも一部に、融着により封止された融着部を有していること、を特徴とする。
(3)(2)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記蓄熱材収容具は、ポリエチレン(PE:polyethylene)、ポリプロピレン (PP:polypropylene)、またはポリエチレンテレフタラート(PET:polyethylene terephthalate)の少なくともいずれかの材質を含むフィルム状樹脂層に、アルミニウムを蒸着したラミネート構造の袋であること、を特徴とする。
(4)(2)または(3)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記潜熱蓄熱材組成物は、複数の前記蓄熱材収容具により、入れ子のように、多重に重ね合わせた状態の下で、収容されていること、を特徴とする。
(5)(1)乃至(4)のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記ガイド手段は、前記潜熱蓄熱材組成物を収容した状態にある前記蓄熱材収容具を1または複数、前記蓄熱材収容具の伝熱面で前記熱媒体と接触可能な状態で収容可能な内部空間を有し、前記内部空間を包囲する少なくとも側部を、目開きを有する網状に形成されたものであること、を特徴とする。
(6)(1)乃至(5)のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記潜熱蓄熱材は、無機塩水和物からなること、前記無機塩水和物に含む水和水を脱離した無水和物と、加えた水とを、前記蓄熱材収容具内で水和反応させることにより、前記無機塩水和物を生成し、前記蓄熱材収容具内に封入すること、を特徴とする。
(7)(1)乃至(6)のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記潜熱蓄熱材の主成分は、ミョウバン水和物であること、を特徴とする。
(8)(7)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記ミョウバン水和物は、アンモニウムミョウバン12水和物(AlNH(SO・12HO)、または、カリウムミョウバン12水和物(AlK(SO・12HO)であること、を特徴とする。
(9)(1)乃至(8)のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、前記増粘剤は、糖アルコールに属する物質であること、を特徴とする。
(10)(9)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、増粘剤は、マンニトール(C14)であること、を特徴とする。
(11)(1)乃至(8)のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、増粘剤は、ヘテロ多糖(hetero polysaccharide)に属する水溶性の多糖類で、前記潜熱蓄熱材組成物に含まれる水とカチオンとの相互作用に基づいて、液相状態にある前記潜熱蓄熱材組成物の融液の粘度を高める物性を有するゲランガム相当物質であること、を特徴とする。
In order to achieve the above object, a method for disposing a latent heat storage material in a heat storage tank according to the present invention has the following configuration.
(1) A latent heat storage material that stores or releases heat by utilizing the input and output of latent heat associated with phase change is sealed inside the heat storage material container, and the latent heat storage material is used to form a heat medium in the latent heat storage tank. The latent heat storage material is an arrangement mode of the latent heat storage material when the latent heat storage material is in the state of being stored in the heat storage material storage tool when transferring heat through the heat storage material storage tool In the heat storage tank arrangement method, a thickener that increases the viscosity of the melt of the latent heat storage material in a liquid phase is blended, and the latent heat storage material and the thickener are incorporated in the heat storage material container. The latent heat storage material composition containing the latent heat storage material composition, and the latent heat storage material composition when the latent heat storage material composition in the heat storage material container is projected downward from the upper position of the heat medium in the vertical direction. The cross-sectional area of the composition is defined as the vertical cross-sectional area Sv and horizontal through the heat medium. When the cross-sectional area of the latent heat storage material composition when projected toward the direction is a horizontal cross-sectional area Sh, in the latent heat storage material composition in the state of being stored in the heat storage material container, Sv < Sh ... Formula (1) The said thermal storage material container in the state which accommodated the conditions of the said Formula (1), and accommodated the said latent heat storage material composition is a tolerance | permissible_range for the thickness change along a horizontal direction. It is characterized in that it is housed in the heat medium in a restrained state and in a state in which the arrangement posture is maintained by guide means that restricts the inside.
(2) In the method for disposing a latent heat storage material in a heat storage tank described in (1), the heat storage material container is a bag or container made of a material that can be fused with a multilayer structure in which a resin and a metal are laminated. And having a fusion part sealed by fusion on at least a part of the outer peripheral edge forming the outer contour of the heat storage material container.
(3) In the method for disposing a latent heat storage material in a heat storage tank described in (2), the heat storage material container is made of polyethylene (PE), polypropylene (PP: polypropylene), or polyethylene terephthalate (PET). ), And a laminated resin bag in which aluminum is vapor-deposited on a film-like resin layer containing at least one of the above materials.
(4) In the method for disposing a latent heat storage material in a heat storage tank described in (2) or (3), the latent heat storage material composition is overlapped in a multiple manner like a nest by a plurality of the heat storage material containers. It is characterized in that it is housed under the condition of the
(5) In the method for disposing a latent heat storage material in a heat storage tank according to any one of (1) to (4), the guide means stores the heat storage material in a state of storing the latent heat storage material composition. One or a plurality of tools, an internal space that can be accommodated in a state where the heat storage surface of the heat storage material accommodation tool can contact the heat medium, and at least a side that surrounds the internal space has a mesh shape It is characterized by being formed.
(6) In the method for disposing a latent heat storage material in a heat storage tank according to any one of (1) to (5), the latent heat storage material is made of an inorganic salt hydrate, and is included in the inorganic salt hydrate. The inorganic salt hydrate is generated by hydrating the anhydrous product from which hydrated water has been removed and the added water in the heat storage material container, and enclosed in the heat storage material container. It is characterized by this.
(7) In the method for disposing a latent heat storage material in a heat storage tank described in any one of (1) to (6), a main component of the latent heat storage material is alum hydrate. .
(8) In the method for disposing a latent heat storage material in a heat storage tank described in (7), the alum hydrate is ammonium alum 12 hydrate (AlNH 4 (SO 4 ) 2 · 12H 2 O) or potassium It is alum 12 hydrate (AlK (SO 4 ) 2 · 12H 2 O).
(9) In the method for disposing a latent heat storage material in a heat storage tank according to any one of (1) to (8), the thickener is a substance belonging to a sugar alcohol.
(10) In the method for disposing a latent heat storage material in the heat storage tank described in (9), the thickener is mannitol (C 6 H 14 O 6 ).
(11) In the method for disposing a latent heat storage material in a heat storage tank according to any one of (1) to (8), the thickener is a water-soluble polysaccharide belonging to a heteropolysaccharide, Based on the interaction between water and cations contained in the latent heat storage material composition, it is a gellan gum equivalent substance having physical properties that increase the viscosity of the melt of the latent heat storage material composition in a liquid phase. To do.

なお、本発明に係る潜熱蓄熱材の蓄熱槽内配置方法において、「ゲランガム相当物質」とは、例えば、ゲランガム(gellan gum)をはじめ、ゲランガムの物性と同等な物性を有したゲランガムに相当する物質をいう。すなわち、ゲランガムは、下記の化学構造に示すように、単糖を直鎖状に連結したポリマーによる高分子化合物である。   In the method for disposing a latent heat storage material in a heat storage tank according to the present invention, the term “gellan gum equivalent substance” means, for example, gellan gum and a substance corresponding to gellan gum having the same physical properties as gellan gum. Say. That is, gellan gum is a polymer compound made of a polymer in which monosaccharides are linked in a straight chain, as shown in the chemical structure below.

Figure 0006588491
Figure 0006588491

ポリマーの基質となる単量体(モノマー)は、2つのD−グルコース残基と、1つのD−グルクロン酸残基と、1つのL−ラムノース残基とにより、計3種で4つの糖分子からなる。ゲランガムは、分子量の大きな高分子化合物であるにも関わらず、水溶性を有する。これは、ゲランガムがD−グルクロン酸残基上の1価の官能基であるカルボキシ基(carboxy group)(化学構造では、「COOH」と表記)を有するためである。すなわち、水中でカルボキシ基の一部が、プロトン(化学構造では、「H」)を放出し、負の電荷(化学構造では、「COO」と表記)を帯びることにより、ゲランガム分子が互いに静電反発して水中に分散するために、ゲランガムは水溶性を示す。水中に分散したゲランガムは、高温下では、ランダムコイル状の構造をなしているが、冷却されると、二重の螺旋構造を構成する。 A monomer (monomer) serving as a polymer substrate is composed of 4 sugar molecules in total of 3 types, consisting of 2 D-glucose residues, 1 D-glucuronic acid residue, and 1 L-rhamnose residue. Consists of. Although gellan gum is a high molecular compound having a large molecular weight, it has water solubility. This is because gellan gum has a carboxy group (denoted as “COOH” in the chemical structure) which is a monovalent functional group on the D-glucuronic acid residue. That is, some of the carboxy groups in water release protons (in the chemical structure, “H + ”) and carry a negative charge (in the chemical structure, expressed as “COO ”), thereby allowing the gellan gum molecules to interact with each other. Gellan gum is water-soluble due to electrostatic repulsion and dispersion in water. Gellan gum dispersed in water has a random coil-like structure at high temperatures, but forms a double helical structure when cooled.

さらに、このような状態になっているゲランガムに、カチオンが外部から供給されると、D−グルクロン酸残基において、負の電荷を帯びたカルボキシ基と、正の電荷を帯びたカチオン(陽イオン)(化学構造では「M」と表記)とが、互いに引き寄せ合う静電相互作用が生じる。このとき、カチオンが1価の場合、カチオンの1価の電荷と、ゲランガムのカルボキシ基上の負の電荷とが、互いに打ち消し合い、二重螺旋構造を形成するゲランガム同士の静電反発が解消される。さらに、これらの二重螺旋構造は、当該二重螺旋構造に含まれる酸素原子と水素原子との間で相互に作用する水素結合により、会合する。カチオンが2価の場合、各二重螺旋構造に含まれる負の電荷を帯びたカルボキシ基が、正の電荷を有するカチオンとの静電相互作用を介して架橋されることで、これらの二重螺旋構造は、互いに会合する。 Furthermore, when a cation is supplied to gellan gum in such a state from the outside, a negatively charged carboxy group and a positively charged cation (cation) in the D-glucuronic acid residue. ) (Denoted as “M + ” in the chemical structure) is attracted to each other. At this time, when the cation is monovalent, the monovalent charge of the cation and the negative charge on the carboxy group of the gellan gum cancel each other, and the electrostatic repulsion between the gellan gums forming a double helix structure is eliminated. The Furthermore, these double helix structures are associated by hydrogen bonds that interact between oxygen atoms and hydrogen atoms contained in the double helix structure. When the cation is divalent, the negatively charged carboxy group included in each double helix structure is cross-linked through electrostatic interaction with the positively charged cation, and thus these double helix structures. Helical structures associate with each other.

このような会合により、カチオンが供給されたゲランガムはゲル化する。このようなゲランガムに相当する物質として、単一種または複数種に関わらず、糖分子を複数連結してなる高分子化合物を対象に、構成する糖分子に、例えば、カルボキシ基等のように、親水基を有することで、高分子化合物に水溶性を付与し、かつ水中で電離して負の電荷を帯びる官能基を有し、水との共存下において、外部から供給されるカチオンとこの官能基との間で、静電相互作用の形成を可能とする物質が該当する。また、ゲランガムの物性と同等な物性として、水溶性を有し、分子内の官能基同士の相互作用によって、少なくとも螺旋構造等の三次元構造を形成する性質を持ち、水との共存下において、外部から供給されるカチオンと官能基との静電相互作用により、これらの螺旋構造が会合し、ネットワーク構造を形成してゲル化を促す特性が該当する。本発明に係る潜熱蓄熱材組成物では、ゲランガムのほか、このような特性を具備した物質を対象に、「ゲランガム相当物質」と定義している。   Due to such association, the gellan gum supplied with the cation gels. As a substance corresponding to such gellan gum, regardless of whether it is a single species or a plurality of species, a high molecular compound obtained by linking a plurality of sugar molecules is used as a target, and for example, a saccharide group such as a carboxy group is hydrophilic. Having a functional group that imparts water solubility to the polymer compound and is negatively charged by ionization in water, and in the presence of water, a cation supplied from the outside and the functional group Among these, substances that enable the formation of electrostatic interactions fall under this category. In addition, as a physical property equivalent to the physical property of gellan gum, it has water solubility, has the property of forming at least a three-dimensional structure such as a helical structure by the interaction between functional groups in the molecule, and in the coexistence with water, This characteristic is that the helical structure associates by an electrostatic interaction between a cation and a functional group supplied from the outside to form a network structure to promote gelation. In the latent heat storage material composition according to the present invention, in addition to gellan gum, a substance having such characteristics is defined as “gellan gum equivalent substance”.

(12)(11)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、増粘剤は、ゲランガム(gellan gum)であること、を特徴とする。 (12) In the method for disposing a latent heat storage material in a heat storage tank described in (11), the thickener is gellan gum.

また、上記目的を達成するために、本発明に係る潜熱蓄熱槽は、以下の構成を有する。
(13)相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材に、該潜熱蓄熱材の物性を調整する添加剤を配合してなる潜熱蓄熱材組成物と、前記潜熱蓄熱材組成物との間で熱を移動させるための媒体である熱媒体と、前記潜熱蓄熱材組成物を内部に収容する蓄熱材収容具とを、備えた潜熱蓄熱槽において、前記潜熱蓄熱材組成物は、(1)乃至(12)のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法で、配設されていること、を特徴とする。
Moreover, in order to achieve the said objective, the latent heat storage tank which concerns on this invention has the following structures.
(13) A latent heat storage material composition obtained by blending an additive that adjusts the physical properties of the latent heat storage material with a latent heat storage material that stores or radiates heat using the input and output of latent heat accompanying phase change, and the latent heat In the latent heat storage tank, comprising: a heat medium that is a medium for transferring heat to and from the heat storage material composition; and a heat storage material container that houses the latent heat storage material composition therein, the latent heat storage material The composition is disposed by the method for disposing a latent heat storage material in a heat storage tank described in any one of (1) to (12).

上記構成を有する本発明の潜熱蓄熱材の蓄熱槽内配置方法の作用・効果について説明する。
(1)相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材を、蓄熱材収容具の内部に密閉し、該潜熱蓄熱材により、潜熱蓄熱槽内の熱媒体との間で該蓄熱材収容具を介して熱の移動を行うのにあたり、該潜熱蓄熱材が該蓄熱材収容具内に収容された状態にあるときの該潜熱蓄熱材の配置態様である潜熱蓄熱材の蓄熱槽内配置方法において、液相状態にある潜熱蓄熱材の融液の粘度を高める増粘剤が配合され、蓄熱材収容具内には、潜熱蓄熱材と増粘剤とを含む潜熱蓄熱材組成物が収容されていること、蓄熱材収容具内の潜熱蓄熱材組成物を、熱媒体の上方位置から鉛直方向下方に向けて投影したときの潜熱蓄熱材組成物の断面積を、鉛直側断面積Svとし、熱媒体を通じて水平方向に向けて投影したときの潜熱蓄熱材組成物の断面積を、水平側断面積Shとすると、蓄熱材収容具内に収容された状態にある潜熱蓄熱材組成物では、Sv<Sh ・・・式(1) 式(1)の条件を満たしていること、潜熱蓄熱材組成物を収容した状態にある蓄熱材収容具は、水平方向に沿う厚みの変化を許容範囲内に制限するガイド手段により、拘束された状態で、かつ配置姿勢を維持した状態で、熱媒体の中に収容されていること、を特徴とする。この特徴により、潜熱蓄熱材組成物が融液の状態になったときに、潜熱蓄熱材組成物の融液が、蓄熱完了時に蓄熱材収容具の下方に移動し、潜熱蓄熱材組成物の入った蓄熱材収容具の厚みが、その上下側で均一ではないため、熱媒体は、潜熱蓄熱材組成物の入った蓄熱材収容具同士の間を流通し易くなる。しかも、膨張した、潜熱蓄熱材組成物の入った蓄熱材収容具の態様は、隣接する蓄熱材収容具毎に異なるため、たとえ膨張部分で局部的に接触したとしても、その接触面積は、比較的小さく抑えることができる。また、潜熱蓄熱材組成物を蓄熱材収容具内に収容した蓄熱材封入パックが、縦置き姿勢で潜熱蓄熱槽に配されても、潜熱蓄熱材組成物の融液では、増粘剤により、構成成分を均一に分散した状態が維持できている。そのため、潜熱蓄熱材組成物が、液相と固相との間で相変化を繰り返し行っても、構成成分の分布を均一に保つことができている。ひいては、潜熱蓄熱材組成物の融点・凝固点等の物性が変動するのを抑制することができる。
The operation and effect of the method for arranging the latent heat storage material of the present invention having the above-described configuration in the heat storage tank will be described.
(1) A latent heat storage material that stores or releases heat by utilizing the input and output of latent heat associated with phase change is sealed inside the heat storage material container, and the latent heat storage material is used to form a heat medium in the latent heat storage tank. The latent heat storage material is an arrangement mode of the latent heat storage material when the latent heat storage material is in the state of being stored in the heat storage material storage tool when transferring heat through the heat storage material storage tool In the heat storage tank arrangement method, a thickener that increases the viscosity of the melt of the latent heat storage material in a liquid phase is blended, and the latent heat storage containing the latent heat storage material and the thickener is contained in the heat storage material container. That the material composition is contained, the cross-sectional area of the latent heat storage material composition when the latent heat storage material composition in the heat storage material container is projected downward from the upper position of the heat medium in the vertical direction, Latent heat storage material with side sectional area Sv and projected in the horizontal direction through the heat medium Assuming that the cross-sectional area of the product is the horizontal cross-sectional area Sh, in the latent heat storage material composition in the state of being stored in the heat storage material container, the condition of Sv <Sh (1) Formula (1) The heat storage material container in a state of containing the latent heat storage material composition is constrained by the guide means that limits the change in thickness along the horizontal direction to within an allowable range, and is disposed in the orientation. It is characterized in that it is housed in a heat medium while maintaining the above. Due to this feature, when the latent heat storage material composition is in a melt state, the melt of the latent heat storage material composition moves below the heat storage material container when the heat storage is completed, and the latent heat storage material composition is contained. Since the thickness of the heat storage material container is not uniform on the upper and lower sides, the heat medium can easily flow between the heat storage material containers containing the latent heat storage material composition. Moreover, since the aspect of the heat storage material container that contains the expanded latent heat storage material composition is different for each adjacent heat storage material container, even if it contacts locally at the expansion portion, the contact area is compared. Can be kept small. Moreover, even if the heat storage material encapsulated pack containing the latent heat storage material composition in the heat storage material container is arranged in the latent heat storage tank in a vertical orientation, in the melt of the latent heat storage material composition, The state in which the constituent components are uniformly dispersed can be maintained. Therefore, even if the latent heat storage material composition repeats a phase change between the liquid phase and the solid phase, the distribution of the constituent components can be kept uniform. As a result, it can suppress that physical properties, such as melting | fusing point and a freezing point, of a latent heat storage material composition are fluctuate | varied.

従って、本発明に係る潜熱蓄熱材の蓄熱槽内配置方法によれば、蓄熱またはその放熱を行う潜熱蓄熱材が蓄熱材収容具の内部に収容され、蓄熱材収容具を介して、潜熱蓄熱槽内の熱媒体と潜熱蓄熱材との間で熱伝導を行うのにあたり、潜熱蓄熱材の蓄放熱性能を維持しながら、熱伝導を効率良く行うことができる、という優れた効果を奏する。   Therefore, according to the method for disposing a latent heat storage material in a heat storage tank according to the present invention, the latent heat storage material that stores heat or releases the heat is stored inside the heat storage material container, and the latent heat storage tank is interposed through the heat storage material container. When conducting heat conduction between the inner heat medium and the latent heat storage material, an excellent effect is achieved in that heat conduction can be performed efficiently while maintaining the heat storage and heat dissipation performance of the latent heat storage material.

(2)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、蓄熱材収容具は、樹脂と金属とを積層した複層構造で、融着可能な材質からなる袋または容器であり、当該蓄熱材収容具の外形輪郭をなす外周縁の少なくとも一部に、融着により封止された融着部を有していること、を特徴とする。この特徴により、潜熱蓄熱材組成物を蓄熱材収容具内に収容した蓄熱材封入パックの剛性が、融着部によって増強される。また、蓄熱材封入パックの伝熱面は、融着部より内側にあるため、潜熱蓄熱材組成物の融液が、蓄熱完了時に蓄熱材収容具の下方に移動しても、蓄熱材収容具の厚みは、蓄熱材収容具の上方と下方で、極端に大きく変化せず、下方に移動した潜熱蓄熱材組成物そのものによる伝熱阻害を低減することができる。 In the method for disposing a latent heat storage material in a heat storage tank described in (2), the heat storage material container is a bag or container made of a material that can be fused with a multilayer structure in which a resin and a metal are laminated, and the heat storage It is characterized by having a fusion part sealed by fusion in at least a part of the outer peripheral edge forming the outline of the material container. By this feature, the rigidity of the heat storage material encapsulated pack in which the latent heat storage material composition is accommodated in the heat storage material container is enhanced by the fused portion. Further, since the heat transfer surface of the heat storage material encapsulated pack is on the inner side of the fusion part, even if the melt of the latent heat storage material composition moves below the heat storage material container when the heat storage is completed, the heat storage material container The thickness of the heat storage material container does not change greatly between the upper and lower portions of the heat storage material container, and the heat transfer inhibition by the latent heat storage material composition itself moved downward can be reduced.

(3)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、蓄熱材収容具は、ポリエチレン(PE:polyethylene)、ポリプロピレン (PP:polypropylene)、またはポリエチレンテレフタラート(PET:polyethylene terephthalate)の少なくともいずれかの材質を含むフィルム状樹脂層に、アルミニウムを蒸着したラミネート構造の袋であること、を特徴とする。この特徴により、潜熱蓄熱材組成物を蓄熱材収容具内に収容した蓄熱材封入パックにおいて、全ての蓄熱材収容具の厚みが、例えば、100μm程度であれば、蓄熱材収容具での熱伝導の低下がほとんどなく、潜熱蓄熱材組成物の潜熱蓄熱材と熱媒体との間で、潜熱蓄熱材への蓄熱と、潜熱蓄熱材からの放熱が十分にできる。また、熱媒体の温度が、例えば、100℃近くても、蓄熱材封入パックの耐熱性は確保できている。また、アルミニウムがフィルム状樹脂層に蒸着された構造になっているため、潜熱蓄熱槽内の熱媒体や、酸素等の気体が、フィルム状樹脂層を通じて潜熱蓄熱材組成物に接触するのを、アルミニウムの被覆層によって遮断することができる。 In the method for disposing a latent heat storage material in the heat storage tank described in (3), the heat storage material container is at least one of polyethylene (PE), polypropylene (PP: polypropylene), or polyethylene terephthalate (PET). It is a bag having a laminated structure in which aluminum is vapor-deposited on a film-like resin layer containing such a material. With this feature, in the heat storage material encapsulated pack in which the latent heat storage material composition is accommodated in the heat storage material container, if the thickness of all the heat storage material containers is about 100 μm, for example, heat conduction in the heat storage material container There is almost no decrease in the temperature, and heat storage to the latent heat storage material and heat radiation from the latent heat storage material can be sufficiently performed between the latent heat storage material of the latent heat storage material composition and the heat medium. Moreover, even if the temperature of the heat medium is close to 100 ° C., for example, the heat resistance of the heat storage material-enclosed pack can be secured. Moreover, since aluminum has a structure deposited on the film-like resin layer, the heat medium in the latent heat storage tank and the gas such as oxygen come into contact with the latent heat storage material composition through the film-like resin layer. It can be blocked by an aluminum coating layer.

(4)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、潜熱蓄熱材組成物は、複数の蓄熱材収容具により、入れ子のように、多重に重ね合わせた状態の下で、収容されていること、を特徴とする。この特徴により、万一、潜熱蓄熱材組成物を蓄熱材収容具内に収容した蓄熱材封入パックを潜熱蓄熱槽の内外に移動させるときや、蓄熱材収容具本体の経年劣化等に起因して、潜熱蓄熱材組成物を覆う蓄熱材収容具が損傷した場合でも、蓄熱材収容具が複数に重ね合わせた複層構造になっているため、潜熱蓄熱材組成物の外部への漏洩を防止することができる。 In the arrangement method of the latent heat storage material in the heat storage tank described in (4), the latent heat storage material composition is accommodated by a plurality of heat storage material accommodation devices in a nested manner, such as nested. It is characterized by that. Due to this feature, when the heat storage material encapsulated pack containing the latent heat storage material composition in the heat storage material container is moved into or out of the latent heat storage tank, or due to aging deterioration of the heat storage material container body, etc. Even if the heat storage material container covering the latent heat storage material composition is damaged, the heat storage material container has a multilayer structure in which the heat storage material container is overlapped, thereby preventing leakage of the latent heat storage material composition to the outside. be able to.

(5)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、ガイド手段は、潜熱蓄熱材組成物を収容した状態にある蓄熱材収容具を1または複数、蓄熱材収容具の伝熱面で熱媒体と接触可能な状態で収容可能な内部空間を有し、内部空間を包囲する少なくとも側部を、目開きを有する網状に形成されたものであること、を特徴とする。この特徴により、潜熱蓄熱材組成物を蓄熱材収容具内に収容した蓄熱材封入パックの伝熱面と熱媒体との接触を確保した上で、上記蓄熱材封入パック内の潜熱蓄熱材組成物の相変化により、蓄熱材封入パックに多少の変形が生じても、内部空間に収容した蓄熱材封入パックの配置状態が、潜熱蓄熱槽内でほぼ一定に保持できる。 In the method for disposing a latent heat storage material in the heat storage tank described in (5), the guide means includes one or a plurality of heat storage material containers in a state in which the latent heat storage material composition is stored, on the heat transfer surface of the heat storage material container. It has an internal space that can be accommodated in a state where it can come into contact with the heat medium, and at least a side portion that surrounds the internal space is formed in a net shape having openings. With this feature, after ensuring the contact between the heat transfer surface of the heat storage material encapsulated pack containing the latent heat storage material composition in the heat storage material container and the heat medium, the latent heat storage material composition in the heat storage material encapsulated pack Even if some deformation occurs in the heat storage material-enclosed pack due to this phase change, the arrangement state of the heat storage material-enclosed pack accommodated in the internal space can be kept almost constant in the latent heat storage tank.

(6)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、潜熱蓄熱材は、無機塩水和物からなること、無機塩水和物に含む水和水を脱離した無水和物と、加えた水とを、蓄熱材収容具内で水和反応させることにより、無機塩水和物を生成し、蓄熱材収容具内に封入すること、を特徴とする。この特徴により、無水和物の容器への充填前、隣接する粉末同士の間にあった間隙は水和反応時に、容器に加えた水で満たされるため、容器の内容積に対し、潜熱蓄熱材が占める体積充填率は、粉末状の無機塩水和物を容器内に直に充填した場合に比べて、大幅に向上する。また、間隙の発生を抑えているため、このような場合との対比で、潜熱蓄熱材と潜熱蓄熱槽内の熱媒体との間の熱伝導に要する時間も短くなるため、このような伝熱性能は高くなる。また、潜熱蓄熱材や、これに添加剤を配合した潜熱蓄熱材組成物を生成するのに、加熱設備を一切必要とせず、このような潜熱蓄熱材組成物等を、容器内で常温のまま簡単に生成することができる。しかも、融点が、例えば、約90℃のような比較的高い潜熱蓄熱材組成物等でも、液相状態の潜熱蓄熱材組成物等を直接取り扱うことがなく、潜熱蓄熱材組成物等の充填・封入作業は、安全である。 In the method for disposing the latent heat storage material in the heat storage tank described in (6), the latent heat storage material is made of an inorganic salt hydrate, and an anhydrous product from which hydrated water contained in the inorganic salt hydrate has been desorbed. It is characterized in that water is hydrated in the heat storage material container to produce an inorganic salt hydrate and enclosed in the heat storage material container. Because of this feature, the gap between adjacent powders before filling the container with the anhydrous product is filled with water added to the container during the hydration reaction, so the latent heat storage material occupies the internal volume of the container. The volume filling rate is greatly improved as compared with the case where the powdered inorganic salt hydrate is directly filled in the container. In addition, since the generation of gaps is suppressed, the time required for heat conduction between the latent heat storage material and the heat medium in the latent heat storage tank is shortened in comparison with such a case. Performance is high. In addition, in order to produce a latent heat storage material and a latent heat storage material composition containing an additive thereto, no heating equipment is required, and such a latent heat storage material composition is kept at room temperature in a container. It can be generated easily. Moreover, even with a relatively high latent heat storage material composition such as about 90 ° C., the liquid phase latent heat storage material composition or the like is not directly handled, The sealing operation is safe.

(7)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、潜熱蓄熱材の主成分は、ミョウバン水和物であること、を特徴とする。この特徴により、様々な種類の無機塩水和物の中でも、例えば、アンモニウムミョウバン12水和物等のようなミョウバン水和物を用いた潜熱蓄熱材は、相変化に伴う潜熱が比較的大きい物性を有する。そのため、このような物性の潜熱蓄熱材では、蓄熱できる蓄熱量も比較的大きい。また、ミョウバン水和物である潜熱蓄熱材を含む潜熱蓄熱材組成物は、大容量の熱を蓄熱し、それを放熱する蓄放熱性能を具備できている点で、優れている。 In the method for disposing a latent heat storage material in a heat storage tank described in (7), the main component of the latent heat storage material is alum hydrate. Due to this feature, among various types of inorganic salt hydrates, for example, a latent heat storage material using alum hydrate such as ammonium alum 12 hydrate has a relatively large physical property due to the phase change. Have. Therefore, in such a latent heat storage material having physical properties, the amount of heat storage that can store heat is relatively large. Moreover, the latent heat storage material composition containing the latent heat storage material which is alum hydrate is excellent at the point which has the heat storage-and-dissipation performance which heat-stores a large capacity | capacitance heat and thermally radiates it.

(8)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、ミョウバン水和物は、アンモニウムミョウバン12水和物(AlNH(SO・12HO)、または、カリウムミョウバン12水和物(AlK(SO・12HO)であること、を特徴とする。この特徴により、アンモニウムミョウバン12水和物やカリウムミョウバン12水和物は、市場で幅広く流通して入手し易く、安価である。 In the method for disposing a latent heat storage material in a heat storage tank described in (8), alum hydrate is ammonium alum 12 hydrate (AlNH 4 (SO 4 ) 2 · 12H 2 O) or potassium alum 12 hydrate. it is an object (AlK (SO 4) 2 · 12H 2 O), and wherein. Due to this feature, ammonium alum 12 hydrate and potassium alum 12 hydrate are easily distributed in the market and are inexpensive.

(9)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、増粘剤は、糖アルコールに属する物質であること、を特徴とする。この特徴により、無機塩水和物が、例えば、アンモニウムミョウバン12水和物等のミョウバン水和物である場合に、増粘剤は、無機塩水和物の構成成分である水に溶解し易く、組成した蓄熱材組成物は、化学的に安定している。 In the method for disposing a latent heat storage material in a heat storage tank described in (9), the thickener is a substance belonging to a sugar alcohol. Due to this feature, when the inorganic salt hydrate is alum hydrate such as ammonium alum 12 hydrate, the thickener is easily dissolved in water, which is a constituent of the inorganic salt hydrate, and has a composition. The heat storage material composition thus obtained is chemically stable.

(10)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、増粘剤は、マンニトール(C14)であること、を特徴とする。この特徴により、マンニトールは、液相状態にある潜熱蓄熱材の融液の粘度を高めると共に、潜熱蓄熱材組成物を構成する成分同士の相分離現象や、この潜熱蓄熱材組成物を構成する成分で、密度が互いに異なる成分同士に対し、密度差による成分同士の不均一化を防止することができる。また、マンニトールは、無毒で非危険物であるため、取扱いが容易である上に、安価でもある。 In the method for disposing a latent heat storage material in a heat storage tank described in (10), the thickener is mannitol (C 6 H 14 O 6 ). Due to this feature, mannitol increases the viscosity of the melt of the latent heat storage material in the liquid phase, phase separation between components constituting the latent heat storage material composition, and components constituting this latent heat storage material composition Thus, non-uniformity of components due to density difference can be prevented for components having different densities. Moreover, since mannitol is nontoxic and non-dangerous, it is easy to handle and inexpensive.

(11)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、増粘剤は、ヘテロ多糖(hetero polysaccharide)に属する水溶性の多糖類で、潜熱蓄熱材組成物に含まれる水とカチオンとの相互作用に基づいて、液相状態にある潜熱蓄熱材組成物の融液の粘度を高める物性を有するゲランガム相当物質であること、を特徴とする。また、(12)に記載する潜熱蓄熱材の蓄熱槽内配置方法において、増粘剤は、ゲランガム(gellan gum)であること、を特徴とする。この特徴により、ゲランガム自体は、蓄熱特性を具備していないが、アンモニウムミョウバン12水和物等の潜熱蓄熱材にゲランガム等を、例えば、1.0wt%以下という少量添加するだけで、潜熱蓄熱材組成物の融液を増粘することができ、潜熱蓄熱材組成物における構成成分の分離を、より効果的に抑制することができる。また、例えば、増粘剤がゲランガム等の場合、例えば、アンモニウムミョウバン12水和物やカリウムミョウバン12水和物等の融液が、酸性を呈する物性であっても、例示したゲランガムは、耐酸性の物性を有しているため、ゲランガム等の添加に起因して、潜熱蓄熱材組成物が、経時的に変性、変質してしまうこともない。 In the method for disposing a latent heat storage material in a heat storage tank described in (11), the thickener is a water-soluble polysaccharide belonging to a heteropolysaccharide, and is composed of water and a cation contained in the latent heat storage material composition. It is characterized by being a gellan gum equivalent substance having physical properties that increase the viscosity of the melt of the latent heat storage material composition in the liquid phase based on the interaction. In the method for disposing a latent heat storage material in a heat storage tank described in (12), the thickener is gellan gum. Due to this feature, gellan gum itself does not have heat storage characteristics, but by adding gellan gum or the like to a latent heat storage material such as ammonium alum 12 hydrate, for example, a small amount of 1.0 wt% or less, the latent heat storage material The viscosity of the melt of the composition can be increased, and separation of constituent components in the latent heat storage material composition can be more effectively suppressed. For example, when the thickener is gellan gum or the like, for example, even if the melt such as ammonium alum 12 hydrate or potassium alum 12 hydrate has an acidic property, the exemplified gellan gum is resistant to acid. Therefore, the latent heat storage material composition will not be denatured or altered over time due to the addition of gellan gum or the like.

また、上記構成を有する本発明の潜熱蓄熱槽の作用・効果について説明する。
(13)相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材に、該潜熱蓄熱材の物性を調整する添加剤を配合してなる潜熱蓄熱材組成物と、潜熱蓄熱材組成物との間で熱を移動させるための媒体である熱媒体と、潜熱蓄熱材組成物を内部に収容する蓄熱材収容具とを、備えた潜熱蓄熱槽において、潜熱蓄熱材組成物は、(1)乃至(12)のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法で、配設されていること、を特徴とする。上述の潜熱蓄熱材の蓄熱槽内配置方法により、潜熱蓄熱材組成物内の潜熱蓄熱材に対し、熱媒体と当該潜熱蓄熱材の間の伝熱速度を、比較的速くすることができる。そのため、潜熱蓄熱材組成物の過冷却現象を防止し、潜熱蓄熱材組成物の相変化に伴う状態変化(蓄熱材としての機能)が安定し、このような潜熱蓄熱材組成物を用いた潜熱蓄熱槽は、熱供給源と熱提供先との間で行う熱エネルギの授受について、高い信頼性で実現することができる。
Moreover, the effect | action and effect of the latent-heat storage tank of this invention which has the said structure are demonstrated.
(13) A latent heat storage material composition obtained by blending an additive that adjusts the physical properties of the latent heat storage material with a latent heat storage material that stores or releases heat using the input and output of latent heat accompanying phase change, and latent heat storage In the latent heat storage tank provided with a heat medium that is a medium for transferring heat to and from the material composition, and a heat storage material container that stores the latent heat storage material composition therein, the latent heat storage material composition is , (1) thru | or (12), It arrange | positions by the arrangement | positioning method in the thermal storage tank of the latent heat storage material. With the above-described arrangement method of the latent heat storage material in the heat storage tank, the heat transfer rate between the heat medium and the latent heat storage material can be made relatively high with respect to the latent heat storage material in the latent heat storage material composition. Therefore, the supercooling phenomenon of the latent heat storage material composition is prevented, the state change accompanying the phase change of the latent heat storage material composition (function as a heat storage material) is stabilized, and the latent heat using such a latent heat storage material composition The heat storage tank can be realized with high reliability for the transfer of thermal energy between the heat supply source and the heat supply destination.

本実施形態に係る潜熱蓄熱槽を例示した模式図である。It is the schematic diagram which illustrated the latent heat storage tank which concerns on this embodiment. 本実施形態に係る潜熱蓄熱槽に収容された潜熱蓄熱材組成物を模式的に示す説明図である。It is explanatory drawing which shows typically the latent heat storage material composition accommodated in the latent heat storage tank which concerns on this embodiment. 本実施形態の実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法に対応した潜熱蓄熱材ユニットを模式的に示す説明図である。It is explanatory drawing which shows typically the latent heat storage material unit corresponding to the arrangement method in the thermal storage tank of the latent heat storage material which concerns on Example 1 of this embodiment. 実施例1に係る蓄熱材収容ユニットに具備した潜熱蓄熱材組成物の作製工程を示すフロー図である。It is a flowchart which shows the preparation process of the latent heat storage material composition with which the thermal storage material accommodation unit which concerns on Example 1 comprised. 本実施形態に係る蓄熱材収容ユニットの蓄熱材封入パックの作製工程を示すフロー図である。It is a flowchart which shows the preparation process of the thermal storage material enclosure pack of the thermal storage material accommodation unit which concerns on this embodiment. 実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法であるときの蓄熱材封入パックの断面を示す模式図である。It is a schematic diagram which shows the cross section of the thermal storage material enclosure pack when it is the arrangement method in the thermal storage tank of the latent heat storage material which concerns on Example 1. FIG. 実施例1に係る潜熱蓄熱材ユニット内に収容された蓄熱材封入パックの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state of the heat storage material enclosure pack accommodated in the latent heat storage material unit which concerns on Example 1. FIG. 本実施形態の比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法に対応した潜熱蓄熱材ユニットを模式的に示す説明図である。It is explanatory drawing which shows typically the latent heat storage material unit corresponding to the arrangement method in the thermal storage tank of the latent heat storage material which concerns on the comparative example 1 of this embodiment. 比較例1に係る蓄熱材収容ユニットに具備した潜熱蓄熱材組成物の作製工程を示すフロー図である。It is a flowchart which shows the preparation process of the latent heat storage material composition with which the thermal storage material accommodation unit which concerns on the comparative example 1 comprised. 比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法であるときの蓄熱材封入パックの断面を示す模式図である。It is a schematic diagram which shows the cross section of the thermal storage material enclosure pack when it is the arrangement method in the thermal storage tank of the latent heat storage material which concerns on the comparative example 1. FIG. 比較例1に係る潜熱蓄熱材ユニット内に収容された蓄熱材封入パックの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state of the heat storage material enclosure pack accommodated in the latent heat storage material unit which concerns on the comparative example 1. FIG. 実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法で収容された潜熱蓄熱材組成物に対し、その潜熱蓄熱材組成物1L当たりの蓄熱量と時間との関係を調査した検証実験1で、試料の蓄熱量の測定結果を示したグラフである。In the verification experiment 1 in which the relationship between the amount of heat stored per 1 L of the latent heat storage material composition and the time was investigated for the latent heat storage material composition housed in the arrangement method of the latent heat storage material in the heat storage tank according to Example 1. It is the graph which showed the measurement result of the heat storage amount of a sample. 図12に続き、同じ試料による放熱量の測定結果を示すグラフである。It is a graph which shows the measurement result of the heat radiation amount by the same sample following FIG. 図12と同様、潜熱蓄熱材組成物1L当たりの蓄熱量と時間との関係を調査した検証実験1で、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法で収容された潜熱蓄熱材組成物に対し、その蓄熱量の測定結果を示したグラフである。As in FIG. 12, in the verification experiment 1 in which the relationship between the heat storage amount per 1 L of the latent heat storage material composition and the time was investigated, the latent heat storage material composition accommodated by the latent heat storage material placement method in the heat storage tank according to Comparative Example 1 It is the graph which showed the measurement result of the amount of heat storage to a thing. 図14に続き、同じ試料による放熱量の測定結果を示すグラフである。It is a graph which shows the measurement result of the thermal radiation amount by the same sample following FIG. 検証実験1及び検証実験2に関し、実施例1に係る試料と、比較例1に係る試料との対比による蓄熱速度・放熱速度の結果をまとめた表である。6 is a table summarizing the results of the heat storage rate and the heat release rate by comparing the sample according to Example 1 and the sample according to Comparative Example 1 with respect to Verification Experiment 1 and Verification Experiment 2. 実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法により配設された蓄熱材封入パックを対象とした確認調査で、蓄熱材封入パックの厚みを測定する部位を模式的に示した説明図である。It is explanatory drawing which showed typically the site | part which measures the thickness of a heat storage material enclosure pack by the confirmation investigation for the heat storage material enclosure pack arrange | positioned by the arrangement method in the heat storage tank of the latent heat storage material which concerns on Example 1. FIG. is there. 確認調査で蓄熱材封入パックの厚みの測定結果をまとめた表である。It is the table | surface which put together the measurement result of the thickness of the thermal storage material enclosure pack by confirmation investigation.

(実施形態)
以下、本発明に係る潜熱蓄熱材組成物、及びこの潜熱蓄熱材組成物を用いた潜熱蓄熱槽について、実施形態を図面に基づいて詳細に説明する。本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法は、相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材を、蓄熱材収容具の内部に密閉し、この潜熱蓄熱材により、潜熱蓄熱槽内の熱媒体との間で蓄熱材収容具を介して熱の移動を行うのにあたり、潜熱蓄熱材が、蓄熱材収容具内に収容された状態にあるときの潜熱蓄熱材の配置態様である。
(Embodiment)
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a latent heat storage material composition according to the present invention and a latent heat storage tank using the latent heat storage material composition will be described in detail with reference to the drawings. The arrangement method of the latent heat storage material in the heat storage tank according to the present embodiment is to seal the latent heat storage material that stores or radiates heat by using the input and output of the latent heat accompanying the phase change inside the heat storage material container. The latent heat when the latent heat storage material is housed in the heat storage material container when the heat storage material performs heat transfer with the heat medium in the latent heat storage tank via the heat storage material container. It is an arrangement | positioning aspect of a thermal storage material.

また、潜熱蓄熱槽は、潜熱蓄熱材に、潜熱蓄熱材の物性を調整する添加剤を配合してなる潜熱蓄熱材組成物と、潜熱蓄熱材組成物との間で熱を移動させるための媒体である熱媒体と、潜熱蓄熱材組成物を内部に収容する蓄熱材収容具とを、備えている。本実施形態では、実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法と、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法を挙げて説明する。はじめに、実施例1と比較例1との共通する部分を説明した後、実施例1を説明し、続いて比較例1を説明する。   The latent heat storage tank is a medium for transferring heat between a latent heat storage material composition obtained by blending an additive that adjusts the physical properties of the latent heat storage material with the latent heat storage material, and the latent heat storage material composition. And a heat storage material container that houses the latent heat storage material composition therein. In the present embodiment, the latent heat storage material arrangement method of the latent heat storage material according to Example 1 and the latent heat storage material arrangement method of the latent heat storage material according to Comparative Example 1 will be described. First, common parts of Example 1 and Comparative Example 1 will be described, then Example 1 will be described, and then Comparative Example 1 will be described.

<実施例1と比較例1との共通部分>
はじめに、潜熱蓄熱槽の概要について、簡単に説明する。図1は、本実施形態に係る潜熱蓄熱槽を例示した模式図である。図1に示すような潜熱蓄熱槽80は、例えば、病院やビルの発電に用いるコジェネレーション(CogenerationまたはCombined Heat and Power)のガスエンジンシステム等の熱供給源と、この熱供給源で生じた排熱に有する熱エネルギを利用する熱提供先の設備との間に設置される。潜熱蓄熱槽80は、何れも図示しない第1熱交換器及び第2熱交換器と配管で接続されており、潜熱蓄熱槽80、第1熱交換器、及び第2熱交換器は、循環流路をなす配管系統で連通している。潜熱蓄熱槽80の容積は、本実施形態では、160Lである。
<Common part between Example 1 and Comparative Example 1>
First, an outline of the latent heat storage tank will be briefly described. FIG. 1 is a schematic view illustrating a latent heat storage tank according to this embodiment. A latent heat storage tank 80 as shown in FIG. 1 includes, for example, a heat supply source such as a cogeneration (Cogeneration or Combined Heat and Power) gas engine system used for power generation in a hospital or a building, and exhaust generated by the heat supply source. It is installed between the equipment of the heat supply destination using the heat energy possessed by the heat. The latent heat storage tank 80 is connected to a first heat exchanger and a second heat exchanger (not shown) by piping, and the latent heat storage tank 80, the first heat exchanger, and the second heat exchanger are circulated. It communicates with the piping system that makes the road. The volume of the latent heat storage tank 80 is 160 L in this embodiment.

この潜熱蓄熱槽80には、後に詳述するように、蓄熱材収容ユニット70,70Aが、熱媒体83に浸漬した状態で収容されている。実施例1と比較例1で使用した潜熱蓄熱槽80は、ステンレス鋼製で、縦40cm×横40cm×高さ140cmで直方体に形成されている。熱媒体83は、本実施形態では、水であり、蓄熱材収容ユニット70,70Aを収容した状態において、熱媒体83の深さは、100cmである。蓄熱材収容ユニット70,70Aは、潜熱蓄熱材10と増粘剤22等とを含む潜熱蓄熱材組成物3が封入袋50内に封入された蓄熱材封入パック1を、バスケット71,71A(ガイド手段)(図3及び図8参照)内に複数収容し、保持されたものである。なお、図1には、説明の都合上、熱媒体83の中に蓄熱材収容ユニット70等を1つだけ収容した潜熱蓄熱槽80を図示しているが、実際には、このような蓄熱材収容ユニット70等は、潜熱蓄熱槽80内に複数収容されることもあり、蓄熱材収容ユニット等の数量や配置形態は、限定されるものではない。   In the latent heat storage tank 80, as will be described in detail later, the heat storage material storage units 70 and 70A are stored in a state of being immersed in the heat medium 83. The latent heat storage tank 80 used in Example 1 and Comparative Example 1 is made of stainless steel, and is formed in a rectangular parallelepiped with a length of 40 cm × width of 40 cm × height of 140 cm. The heat medium 83 is water in the present embodiment, and the depth of the heat medium 83 is 100 cm when the heat storage material accommodation units 70 and 70A are accommodated. The heat storage material accommodation units 70, 70A are provided with baskets 71, 71A (guides) for the heat storage material encapsulated pack 1 in which the latent heat storage material composition 3 including the latent heat storage material 10, the thickener 22 and the like is enclosed in an enclosing bag 50. (Means) (refer to FIG. 3 and FIG. 8). For convenience of explanation, FIG. 1 shows a latent heat storage tank 80 in which only one heat storage material storage unit 70 or the like is stored in the heat medium 83. A plurality of the accommodation units 70 and the like may be accommodated in the latent heat storage tank 80, and the quantity and arrangement form of the heat storage material accommodation units and the like are not limited.

潜熱蓄熱槽80内には、熱供給源の排熱により、第1の熱交換器を介して約90℃に加熱された水等の熱媒体83が、取水口81から供給される。蓄熱材収容ユニット70等では、潜熱蓄熱材組成物3内の潜熱蓄熱材10が、潜熱蓄熱槽80内の熱媒体83により、封入袋50を介して、80〜90℃の温度帯域で蓄熱を行う。また、潜熱蓄熱材10は、その蓄熱により、潜熱蓄熱槽80内の熱媒体83にこの温度帯域で放熱され、伝熱により温められた熱媒体83は、排水口82を通じて第2熱交換器に流される。そして、熱媒体83に有する熱が、第2熱交換器を介して、例えば、図示しない給湯設備や、冷暖房を行う空気調和設備等の熱提供先の設備向けの熱源(熱エネルギ)として、活用される。その後、第2熱交換器で熱が奪われた熱媒体83は、第1の熱交換器に還流され、第1の熱交換器で再び、熱供給源の排熱より加熱される。潜熱蓄熱槽80では、このように一連の熱交換を伴った熱媒体83の循環を1サイクルとして、このサイクルが、複数回繰り返し行われる。   In the latent heat storage tank 80, a heat medium 83 such as water heated to about 90 ° C. is supplied from the intake port 81 through the first heat exchanger by the exhaust heat of the heat supply source. In the heat storage material accommodation unit 70 and the like, the latent heat storage material 10 in the latent heat storage material composition 3 stores heat in the temperature range of 80 to 90 ° C. via the encapsulating bag 50 by the heat medium 83 in the latent heat storage tank 80. Do. Further, the latent heat storage material 10 is radiated to the heat medium 83 in the latent heat storage tank 80 by this heat storage in this temperature band, and the heat medium 83 warmed by heat transfer passes through the drain port 82 to the second heat exchanger. Washed away. And the heat which the heat medium 83 has is utilized as a heat source (heat energy) for heat supply destination facilities, such as a hot water supply facility (not shown) and an air conditioning facility which performs air conditioning, via the second heat exchanger. Is done. Thereafter, the heat medium 83 deprived of heat by the second heat exchanger is returned to the first heat exchanger, and is again heated by the exhaust heat of the heat supply source in the first heat exchanger. In the latent heat storage tank 80, the circulation of the heat medium 83 accompanied with a series of heat exchanges in this way is set as one cycle, and this cycle is repeated a plurality of times.

次に、潜熱蓄熱材組成物3について、図2を用いて説明する。図2は、図1に示す蓄熱材収容ユニットに収容された潜熱蓄熱材組成物を模式的に示す説明図である。図2に示すように、潜熱蓄熱材組成物3は、潜熱蓄熱材10に、2種の添加剤20を配合してなる。なお、図2には、2種の添加剤20として、融点調整剤21と増粘剤22の両方を図示しているが、後述する実施例1では、融点調整剤21も兼ねる増粘剤22が用いられているため、図2中、クロスハッチングで示した添加剤20(融点調整剤21)は含まれない。他方、後述する比較例1では、融点調整剤21と増粘剤22とは、互いに独立した添加剤20であるため、クロスハッチングで示した添加剤20(融点調整剤21)と、白抜きで示した添加剤20(増粘剤22)の両方が存在する。   Next, the latent heat storage material composition 3 will be described with reference to FIG. FIG. 2 is an explanatory view schematically showing a latent heat storage material composition housed in the heat storage material housing unit shown in FIG. 1. As shown in FIG. 2, the latent heat storage material composition 3 is obtained by blending two types of additives 20 with the latent heat storage material 10. In FIG. 2, both the melting point adjusting agent 21 and the thickening agent 22 are shown as two types of additives 20, but in Example 1 described later, the thickening agent 22 that also serves as the melting point adjusting agent 21. Therefore, additive 20 (melting point adjusting agent 21) indicated by cross hatching in FIG. 2 is not included. On the other hand, in Comparative Example 1 to be described later, the melting point adjusting agent 21 and the thickening agent 22 are the additives 20 independent of each other, and therefore, the additive 20 (melting point adjusting agent 21) shown by cross hatching is outlined. Both of the indicated additive 20 (thickener 22) are present.

潜熱蓄熱材10は、相変化に伴う潜熱の出入りにより、蓄熱またはその放熱を可能とする潜熱蓄熱材である。潜熱蓄熱材10は、主成分をミョウバン水和物とする蓄熱材であり、本実施形態では、アンモニウムミョウバン12水和物(硫酸アンモニウムアルミニウム・12水:AlNH(SO・12HO)(以下、単に「アンモニウムミョウバン」と称する。)である。アンモニウムミョウバンは、融点93.5℃、酸性(1%水溶液の場合、pHは約3.6)を呈する物性で、常温では固体の物質である。そのため、アンモニウムミョウバンが、単体で融点未満の90℃程度に加熱されたとしても、アンモニウムミョウバンは、ほとんど溶融することなく、潜熱を蓄熱することもできない。 The latent heat storage material 10 is a latent heat storage material that enables heat storage or heat dissipation by entering and exiting latent heat associated with phase change. The latent heat storage material 10 is a heat storage material whose main component is alum hydrate, and in this embodiment, ammonium alum 12 hydrate (ammonium sulfate aluminum · 12 water: AlNH 4 (SO 4 ) 2 · 12H 2 O). (Hereinafter simply referred to as “ammonium alum”). Ammonium alum has a melting point of 93.5 ° C. and is acidic (in the case of a 1% aqueous solution, the pH is about 3.6), and is a solid substance at room temperature. Therefore, even if ammonium alum is heated to about 90 ° C. below the melting point as a single substance, ammonium alum hardly melts and cannot store latent heat.

なお、本実施形態では、潜熱蓄熱材組成物3の主成分である潜熱蓄熱材10を、アンモニウムミョウバン12水和物(硫酸アンモニウムアルミニウム・12水:AlNH(SO・12HO)とした。しかしながら、潜熱蓄熱材は、無機塩水和物からなり、アンモニウムミョウバン以外にも、例えば、カリウムミョウバン12水和物(AlK(SO・12HO)、クロムミョウバン(CrK(SO・12HO)、鉄ミョウバン(FeNH(SO・12HO)等、1価の陽イオンの硫酸塩M (SO)と、3価の陽イオンの硫酸塩MIII (SOとの複硫酸塩である「ミョウバン」であっても良い。また、この「ミョウバン」に含まれる3価の金属イオンは、アルミニウムイオン、クロムイオン、鉄イオン以外に、例えば、コバルトイオン、マンガンイオン等の金属イオンでも良い。さらに、潜熱蓄熱材10は、このような「ミョウバン」に属する物質を、少なくとも二種以上含む混合物、または混晶を主成分とした蓄熱材であっても良い。 In addition, in this embodiment, the latent heat storage material 10 which is the main component of the latent heat storage material composition 3 is ammonium alum 12 hydrate (ammonium sulfate aluminum 12 water: AlNH 4 (SO 4 ) 2 12H 2 O). did. However, the latent heat storage material is composed of an inorganic salt hydrate, and besides ammonium alum, for example, potassium alum 12 hydrate (AlK (SO 4 ) 2 · 12H 2 O), chrome alum (CrK (SO 4 ) 2・ 12H 2 O), iron alum (FeNH 4 (SO 4 ) 2 .12H 2 O), etc. Monovalent cation sulfate M I 2 (SO 4 ) and trivalent cation sulfate M III “Alum” which is a bisulfate with 2 (SO 4 ) 3 may be used. Further, the trivalent metal ions contained in the “alum” may be metal ions such as cobalt ions and manganese ions in addition to aluminum ions, chromium ions and iron ions. Further, the latent heat storage material 10 may be a mixture containing at least two kinds of substances belonging to “Alum” or a heat storage material mainly composed of a mixed crystal.

添加剤20は2種(第1の添加剤、第2の添加剤)とも、潜熱蓄熱材10の物性を調整する役割を担う水溶性の添加剤である。第1の添加剤20は、潜熱蓄熱材10の融点を、必要に応じて任意の温度に調整する融点調整剤21である。第2の添加剤20は、液相状態にある潜熱蓄熱材組成物3の融液の粘度を高める増粘剤22である。なお、本実施形態では、潜熱蓄熱材組成物3に配合する添加剤20として、融点調整剤21と増粘剤22とを挙げたが、増粘剤22以外に潜熱蓄熱材組成物に配合する添加剤は、融点調整剤21に限らず、例えば、融液状態にある蓄熱材の結晶化の誘起を促す過冷却防止剤や、潜熱蓄熱材組成物に着色する着色剤等も挙げることができる。   The two additives (first additive and second additive) are water-soluble additives that play a role of adjusting the physical properties of the latent heat storage material 10. The first additive 20 is a melting point adjusting agent 21 that adjusts the melting point of the latent heat storage material 10 to an arbitrary temperature as necessary. The second additive 20 is a thickener 22 that increases the viscosity of the melt of the latent heat storage material composition 3 in a liquid phase. In the present embodiment, the melting point adjusting agent 21 and the thickener 22 are exemplified as the additive 20 to be blended with the latent heat storage material composition 3, but in addition to the thickener 22, the additive 20 is blended with the latent heat storage material composition. The additive is not limited to the melting point adjusting agent 21, and examples thereof include a supercooling preventing agent that promotes crystallization of the heat storage material in a melt state, and a colorant that colors the latent heat storage material composition. .

<実施例1>
実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法では、潜熱蓄熱材組成物3の作製方法、融点調整剤21と増粘剤22とを兼ねた添加剤20の使用、バスケット71の大きさ、蓄熱材収容ユニット70の態様が、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法と異なっている。添加剤20は、糖アルコールに属する物質であり、本実施例1では、融点調整剤21と増粘剤22とを兼ねたマンニトール(C14)である。
<Example 1>
In the method for arranging the latent heat storage material in the heat storage tank according to the first embodiment, the method for producing the latent heat storage material composition 3, the use of the additive 20 serving as the melting point adjusting agent 21 and the thickener 22, and the size of the basket 71. The aspect of the heat storage material accommodation unit 70 is different from the arrangement method of the latent heat storage material in the heat storage tank according to Comparative Example 1. The additive 20 is a substance that belongs to a sugar alcohol, and in Example 1, is mannitol (C 6 H 14 O 6 ) that also serves as the melting point adjusting agent 21 and the thickener 22.

はじめに、潜熱蓄熱材組成物3の作製方法について、図4を用いて説明する。図4は、実施例1に係る蓄熱材収容ユニットに具備した潜熱蓄熱材組成物の作製工程を示すフロー図である。   First, the preparation method of the latent heat storage material composition 3 is demonstrated using FIG. FIG. 4 is a flowchart showing a production process of the latent heat storage material composition provided in the heat storage material accommodation unit according to the first embodiment.

前述したように、潜熱蓄熱槽80内には、蓄熱材封入パック1が収容されている。図4及び図5に示すように、蓄熱材封入物2として、潜熱蓄熱材組成物3は、漏洩防止用内袋40内に充填されている。蓄熱材封入物2は、2枚重ね合わせた封入袋50(第1封入袋50A、第2封入袋50B)(蓄熱材収容具)のうち、内側の第1封入袋50A内に、蓄熱材封入プレパック1Aとして収容されている。そして、さらにこの蓄熱材封入プレパック1Aは、潜熱蓄熱槽80内に蓄熱材封入パック1を収容する態様として、外側の第2封入袋50B内に収容されている。漏洩防止用内袋40は、本実施形態では、例えば、縦23cm×横12cmの長方形で、厚さ0.02mm程度の薄いポリエチレン(PE:polyethylene)製の包装用袋等である。   As described above, the heat storage material-enclosed pack 1 is accommodated in the latent heat storage tank 80. As shown in FIGS. 4 and 5, the latent heat storage material composition 3 is filled in the leakage prevention inner bag 40 as the heat storage material enclosure 2. The heat storage material enclosure 2 includes a heat storage material enclosed in the first enclosure bag 50A on the inner side of the two encapsulated bags 50 (first enclosure bag 50A, second enclosure bag 50B) (heat storage material container). It is accommodated as a prepack 1A. And this heat storage material enclosure prepack 1A is accommodated in the outer 2nd enclosure bag 50B as an aspect which accommodates the heat storage material enclosure pack 1 in the latent heat storage tank 80. FIG. In the present embodiment, the leakage preventing inner bag 40 is, for example, a packaging bag made of thin polyethylene (PE) having a rectangular shape of 23 cm long × 12 cm wide and having a thickness of about 0.02 mm.

蓄熱材封入物2内に含む潜熱蓄熱材組成物3で、その主成分である潜熱蓄熱材10は、無機塩水和物の一種とするアンモニウムミョウバンである。実施例1では、無機塩水和物に含む水和水を脱離した無水和物と、加えた水とを、漏洩防止用内袋40内で水和反応させることにより、無機塩水和物を生成し、漏洩防止用内袋40(蓄熱材収容具)を封入する方法を用いて、潜熱蓄熱材10が生成される。   The latent heat storage material composition 3 contained in the heat storage material enclosure 2 and the latent heat storage material 10 as the main component thereof are ammonium alum which is a kind of inorganic salt hydrate. In Example 1, an anhydrous salt from which hydrated water contained in the inorganic salt hydrate is eliminated and the added water are hydrated in the inner bag 40 for preventing leakage, thereby generating an inorganic salt hydrate. And the latent heat storage material 10 is produced | generated using the method of enclosing the inner bag 40 for leak prevention (heat storage material accommodation tool).

具体的には、無機塩水和物は、前述したように、アンモニウムミョウバン12水和物(硫酸アンモニウムアルミニウム・12水:AlNH(SO・12HO)であり、その無水和物は、アンモニウムミョウバン12水和物に含む水和水(12HO)を脱離した焼アンモニウムミョウバン(AlNH(SO)である。水は、例えば、純水、イオン交換水、水道水等である。 Specifically, as described above, the inorganic salt hydrate is ammonium alum 12 hydrate (ammonium ammonium sulfate · 12 water: AlNH 4 (SO 4 ) 2 · 12H 2 O). It is calcined ammonium alum (AlNH 4 (SO 4 ) 2 ) from which hydrated water (12H 2 O) contained in ammonium alum 12 hydrate has been eliminated. The water is, for example, pure water, ion exchange water, tap water or the like.

実施例1に係る潜熱蓄熱材の袋内封入方法は、焼アンモニウムミョウバン11を、平均1mm程度の大きさに粒子を粉砕して粉末状態(図4中、(a))にした後、48.2g秤量して、開口41を通じて漏洩防止用内袋40内に充填する(図4中、(b))。なお、焼アンモニウムミョウバン11の粒子の大きさが、平均1mm程度よりも細かくなると、粒子間の間隙がより少なくなるため、好ましい。   The method for enclosing a latent heat storage material in a bag according to Example 1 is as follows. After the baked ammonium alum 11 is pulverized to an average size of about 1 mm to obtain a powder state ((a) in FIG. 4), 48. 2 g is weighed and filled into the leakage preventing inner bag 40 through the opening 41 ((b) in FIG. 4). In addition, since the space | interval between particle | grains will become smaller when the magnitude | size of the particle | grains of the baking ammonium alum 11 becomes finer than about 1 mm on average, it is preferable.

他方で、添加剤20であるマンニトールの粉末を、8.0g秤量して、常温の水12と共に、容量250mlのポリプロピレン (PP:polypropylene)製の第1瓶91に投入し、常温のまま撹拌することにより、マンニトール20が水12に溶解したマンニトール水溶液30を調製する(図4中、(c))。マンニトール20は、平均数百μm程度の大きさに粉砕されたものである。水12の投入量は、無水和物である焼アンモニウムミョウバン11に対し、その水和物であるアンモニウムミョウバン水和物10(潜熱蓄熱材10)を生成するのに必要な加水量と同量、または加水量を超える量の水である。この加水量は、すなわちアンモニウムミョウバン水和物10に含む水和水(12HO)に相当する量である。実施例1では、水12として、純水を43.8g秤取した。これは、48.2gの焼アンモニウムミョウバン11を、アンモニウムミョウバン12水和物10とするために、過不足なく必要な加水量である。 On the other hand, 8.0 g of mannitol powder as additive 20 is weighed and put into a first bottle 91 made of polypropylene (PP) having a capacity of 250 ml together with water 12 at room temperature and stirred at room temperature. Thus, an aqueous mannitol solution 30 in which mannitol 20 is dissolved in water 12 is prepared ((c) in FIG. 4). Mannitol 20 is pulverized to an average size of about several hundred μm. The amount of water 12 input is the same as the amount of water required to produce ammonium alum hydrate 10 (latent heat storage material 10), which is a hydrate, of calcined ammonium alum 11 which is an anhydrous product, Alternatively, the amount of water exceeds the amount of water added. This amount of water is an amount corresponding to the hydration water (12H 2 O) contained in ammonium alum hydrate 10. In Example 1, 43.8 g of pure water was weighed as the water 12. This is the amount of water necessary to make 48.2 g of calcined ammonium alum 11 into ammonium alum 12 hydrate 10 without excess or deficiency.

次に、焼アンモニウムミョウバン11を漏洩防止用内袋40内に充填後、開口41を通じてマンニトール水溶液を漏洩防止用内袋40内に注ぎ(図4中、(d))、漏洩防止用内袋40内で焼アンモニウムミョウバン11と水12との水和反応が終了するまで、この漏洩防止用内袋40を水平に静置する。これにより、漏洩防止用内袋40には、焼アンモニウムミョウバン11と、水和水(12HO)に相当する加水量の水12と、マンニトール20とが、互いに混ざり合う。常温下にある焼アンモニウムミョウバン11とマンニトール水溶液30との混合物は、図4中、(e)に示すように、スラリー状混合物15を経て、次第に凝固する。これにより、焼アンモニウムミョウバン11と水12により生成されたアンモニウムミョウバン水和物10に、融点調整剤と増粘剤の機能を伴ったマンニトール20を配合した潜熱蓄熱材組成物3が、漏洩防止用内袋40内で生成される。 Next, after the baked ammonium alum 11 is filled in the inner bag 40 for preventing leakage, an aqueous mannitol solution is poured into the inner bag 40 for preventing leakage through the opening 41 ((d) in FIG. 4), and the inner bag 40 for preventing leakage is filled. The inner bag 40 for leakage prevention is allowed to stand horizontally until the hydration reaction between the calcined ammonium alum 11 and the water 12 is completed. As a result, the calcined ammonium alum 11, the water amount 12 corresponding to the hydrated water (12H 2 O), and the mannitol 20 are mixed with each other in the leakage preventing inner bag 40. The mixture of the calcined ammonium alum 11 and the mannitol aqueous solution 30 at room temperature gradually solidifies through the slurry mixture 15 as shown in FIG. Thereby, the latent heat storage material composition 3 which mix | blended the mannitol 20 with the function of a melting | fusing point regulator and a thickener in the ammonium alum hydrate 10 produced | generated by the baked ammonium alum 11 and the water 12 is for leak prevention. It is generated in the inner bag 40.

次に、漏洩防止用内袋40の開口41側の折返し部42を折り返して、漏洩防止用内袋40を閉塞する。折返し部42で折り返した漏洩防止用内袋40は、本実施形態では、例えば、縦18cm×横12cmの長方形である。かくして、潜熱蓄熱材組成物3を漏洩防止用内袋40内に収容した蓄熱材封入物2を作製する(図4中、(f))。   Next, the folded portion 42 on the opening 41 side of the leakage preventing inner bag 40 is folded back to close the leakage preventing inner bag 40. In the present embodiment, the leakage preventing inner bag 40 folded back by the folded portion 42 is, for example, a rectangle of 18 cm long × 12 cm wide. Thus, the heat storage material enclosure 2 in which the latent heat storage material composition 3 is accommodated in the inner bag 40 for preventing leakage is produced ((f) in FIG. 4).

次に、蓄熱材収容ユニット70を構成する蓄熱材封入パック1の作製工程について、図5を用いて説明する。図5は、本実施形態に係る蓄熱材収容ユニットの蓄熱材封入パックの作製工程を示すフロー図である。封入袋50は、開口51から蓄熱材封入物2を収容可能な大きさに形成され、柔軟性を有した袋であり、約100℃という高温下でもほとんど収縮しない非変形性と、優れた伝熱性を有し、水等の熱媒体83の浸透を防止できる機能を備えている。封入袋50は、樹脂と金属とを積層した複層構造で、融着可能な材質からなる袋である。   Next, the manufacturing process of the heat storage material enclosure pack 1 constituting the heat storage material accommodation unit 70 will be described with reference to FIG. FIG. 5 is a flowchart showing a process for producing a heat storage material enclosure pack of the heat storage material accommodation unit according to the present embodiment. The encapsulating bag 50 is formed in a size that can accommodate the heat storage material encapsulating material 2 through the opening 51, and is a flexible bag. The encapsulating bag 50 is non-deformable and hardly contracts even at a high temperature of about 100 ° C. It has heat and has a function of preventing the penetration of the heat medium 83 such as water. The enclosing bag 50 is a bag made of a material that can be fused and has a multilayer structure in which a resin and a metal are laminated.

具体的には、封入袋50は、本実施形態では、例えば、ポリエチレン(PE:polyethylene)、ポリプロピレン (PP:polypropylene)、ポリエチレンテレフタラート(PET:polyethylene terephthalate)等、少なくともいずれかの材質を含むフィルム状の樹脂を用い、この樹脂フィルムの外側に、アルミニウムを蒸着した二層以上の構造を持つラミネート袋であり、厚さ約0.05〜0.15mmで長方形に形成された包装用袋等である。この封入袋50は、大きさの異なる袋を2枚1組として、入れ子のように、二重(第1封入袋50A、第2封入袋50B)に包み込んだ二重袋構造で用いられる。内側となる第1封入袋50Aは、縦さ21.5cm×横14.8cmの長方形の袋であり、外側の第2封入袋50Bは、縦さ25.0cm×横17.3cmの長方形の袋である。封入袋50は、その外形輪郭をなす外周縁の三辺に、融着により封止された1cm程の融着部54と、外周縁の残り一辺に、蓄熱材封入物2を収容するための開口51とを有している。   Specifically, in the present embodiment, the encapsulating bag 50 is, for example, a film containing at least one material such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), or the like. A laminated bag having a structure of two or more layers in which aluminum is vapor-deposited on the outside of the resin film, and a packaging bag formed in a rectangular shape with a thickness of about 0.05 to 0.15 mm. is there. The enclosing bag 50 is used in a double bag structure in which two bags of different sizes are grouped as a set and wrapped in a double (first enclosing bag 50A, second enclosing bag 50B). The first enclosed bag 50A which is the inner side is a rectangular bag having a length of 21.5 cm and a width of 14.8 cm, and the outer second enclosed bag 50B is a rectangular bag having a length of 25.0 cm and a width of 17.3 cm. It is. The encapsulating bag 50 is for accommodating the heat storage material encapsulant 2 on the three sides of the outer peripheral edge forming the outer contour thereof, on the fusion part 54 of about 1 cm sealed by fusion, and on the remaining one side of the outer peripheral edge. And an opening 51.

なお、封入袋50の最も外側にある面に、この面に垂設された突起が、高さ数mm程度、複数箇所に設けられていても良い。但し、本実施形態のように、複数の封入袋50を重ね合わせて用いる場合には、このような突起は、第2封入袋50Bのように、最も外側となる封入袋50に配設すればよい。後述する蓄熱材封入パック1において、隣り合う蓄熱材封入パック1の第2封入袋50Bの伝熱面5同士の接触を抑制するためである。   In addition, the processus | protrusion suspended from this surface may be provided in several places about several mm in height on the outermost surface of the enclosing bag 50. However, when a plurality of encapsulating bags 50 are used in an overlapping manner as in the present embodiment, such a protrusion is provided on the outermost enclosing bag 50 as in the second enclosing bag 50B. Good. This is to suppress contact between the heat transfer surfaces 5 of the second enclosing bags 50B of the adjacent heat storage material-enclosed packs 1 in the heat storage material-enclosed pack 1 described later.

図5中、(a)に示す蓄熱材封入物2は、開口51を通じて第1封入袋50A(封入袋50)内に収容される(図5中、(b))。その後、図5中、(c)に示すように、周知の真空脱気シーラにより、第1封入袋50A内を吸引しながら脱気すると同時に、第1封入袋50Aの開口51を幅1cm程融着した封止部52(なお、図5(c)及び図5(e)では、作図の都合上、吸引と融着とが別々の工程のように図示されているが、実際には、封入袋50内の真空引きと、封止部52全面の熱融着は同時に進行している。)で、第1封入袋50Aを完全に封止する(図5中、(d))。このとき、蓄熱材封入物2の漏洩防止用内袋40が、収縮した第1封入袋50Aに密着した状態になるまで、吸引を行って第1封入袋50Aの開口51を封止する。これにより、蓄熱材封入物2を第1封入袋50Aに内包した蓄熱材封入プレパック1Aが作製される。すなわち、蓄熱材封入プレパック1Aでは、第1封入袋50Aは、その外形輪郭をなす外周縁四辺のうち、三辺の融着部54と、外周縁の残り一辺の封止部52を含んでおり、第1封入袋50Aの外周縁全辺が、幅1cm程融着されている。   In FIG. 5, the heat storage material enclosure 2 shown in FIG. 5A is accommodated in the first enclosure bag 50 </ b> A (encapsulation bag 50) through the opening 51 (FIG. 5B). Thereafter, as shown in FIG. 5 (c), a known vacuum deaeration sealer is used to deaerate the inside of the first enclosing bag 50A, and at the same time, the opening 51 of the first enclosing bag 50A is melted by about 1 cm in width. The attached sealing portion 52 (in FIG. 5C and FIG. 5E, suction and fusion are illustrated as separate processes for the sake of drawing, but in actuality, sealing is performed. The evacuation in the bag 50 and the thermal fusion of the entire sealing portion 52 are proceeding at the same time) to completely seal the first sealed bag 50A ((d) in FIG. 5). At this time, suction is performed to seal the opening 51 of the first encapsulating bag 50A until the inner bag 40 for preventing leakage of the heat storage material enclosure 2 comes into close contact with the contracted first enclosing bag 50A. Thereby, the heat storage material enclosure prepack 1A which encloses the heat storage material enclosure 2 in the 1st enclosure bag 50A is produced. That is, in the heat storage material-enclosed prepack 1A, the first encapsulating bag 50A includes a fusion part 54 on three sides and a sealing part 52 on the other side of the outer peripheral edge among the four outer peripheral edges forming the outer contour. The entire outer peripheral edge of the first enclosing bag 50A is fused by about 1 cm in width.

次に、作製した蓄熱材封入プレパック1Aは、開口51を通じて、第1封入袋50Aとは別の第2封入袋50B(封入袋50)内に収容される。この後、図5中、(e)に示すように、再び真空脱気シーラにより、第2封入袋50B内を吸引しながら脱気すると同時に、第2封入袋50Bの開口51(図5中、(b)参照)を幅1cm程融着した封止部52で、第2封入袋50Bを完全に封止する(図5中、(f))。このとき、蓄熱材封入プレパック1Aが、収縮した第2封入袋50Bに密着した状態になるまで、吸引を行って第2封入袋50Bの開口51を封止する。かくして、潜熱蓄熱槽80内に収容する態様として、蓄熱材封入物2を内包した漏洩防止用内袋40を、二重袋構造の封入袋50(第1封入袋50A、第2封入袋50B)で覆った蓄熱材封入パック1が、作製される。   Next, the produced heat storage material-enclosed prepack 1A is accommodated in the second encapsulating bag 50B (encapsulating bag 50) different from the first enclosing bag 50A through the opening 51. Thereafter, as shown in FIG. 5 (e), the inside of the second enclosing bag 50B is again deaerated by the vacuum deaeration sealer, and at the same time, the opening 51 of the second enclosing bag 50B (in FIG. 5, The second enclosing bag 50B is completely sealed with the sealing portion 52 in which (b) is fused about 1 cm in width ((f) in FIG. 5). At this time, suction is performed to seal the opening 51 of the second encapsulating bag 50B until the heat storage material encapsulating prepack 1A comes into close contact with the contracted second enclosing bag 50B. Thus, as an aspect to be accommodated in the latent heat storage tank 80, the leakage preventing inner bag 40 including the heat storage material sealing material 2 is replaced with a double bag structure sealing bag 50 (first sealing bag 50A, second sealing bag 50B). The heat storage material enclosing pack 1 covered with is produced.

すなわち、潜熱蓄熱材組成物3は、2つの(第1封入袋50A、第2封入袋50B)により、入れ子のように、二重に重ね合わせた状態の下で、収容されている。また、蓄熱材封入パック1では、第2封入袋50Bは、その外形輪郭をなす外周縁四辺のうち、三辺の融着部54と、外周縁の残り一辺の封止部52を含んでおり、第2封入袋50Bの外周縁全辺が、幅1cm程融着されている。   That is, the latent heat storage material composition 3 is accommodated by two (first enclosing bag 50A and second enclosing bag 50B) under a double overlapped state like a nesting. Further, in the heat storage material encapsulating pack 1, the second enclosing bag 50B includes a fusion part 54 on three sides and a sealing part 52 on the other side of the outer peripheral edge among the four outer peripheral edges forming the outer contour. The entire outer peripheral edge of the second enclosing bag 50B is fused by about 1 cm in width.

なお、実施形態では、蓄熱材封入物2を内包した漏洩防止用内袋40を、二重袋構造の封入袋50で包み込んだが、漏洩防止用内袋40を包む封入袋50は、二重袋構造以外にも、1枚だけの封入袋50による一重袋構造のほか、三重袋構造、それ以上に封入袋50を多重に重ね合わせても良い。すなわち、潜熱蓄熱材10や潜熱蓄熱材組成物3を内包した漏洩防止用内袋40を、さらに包み込む蓄熱材収容具は、単数の蓄熱材収容具による単層の状態、または、複数の蓄熱材収容具により、入れ子のように、多重に重ね合わせた複層の状態になっていれば良い。   In the embodiment, the leakage preventing inner bag 40 enclosing the heat storage material enclosure 2 is encased in the double bag structure encapsulating bag 50. However, the enclosing bag 50 enclosing the leakage preventing inner bag 40 is a double bag. In addition to the structure, in addition to a single bag structure with only one encapsulating bag 50, the encapsulating bag 50 may be superimposed on a triple bag structure or more. That is, the heat storage material container that further encloses the leakage preventing inner bag 40 including the latent heat storage material 10 and the latent heat storage material composition 3 is a single layer by a single heat storage material container, or a plurality of heat storage materials. It is only necessary that the container is in a multi-layered state such as nesting.

次に、蓄熱材収容ユニット70について、図3、図6及び図7を用いて説明する。図3は、本実施形態の実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法に対応した潜熱蓄熱材ユニットを模式的に示す説明図である。図6は、実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法であるときの蓄熱材封入パックの断面を示す模式図である。図7は、実施例1に係る潜熱蓄熱材ユニット内に収容された蓄熱材封入パックの状態を模式的に示す説明図である。   Next, the heat storage material accommodation unit 70 is demonstrated using FIG.3, FIG6 and FIG.7. FIG. 3 is an explanatory view schematically showing a latent heat storage material unit corresponding to the arrangement method of the latent heat storage material in the heat storage tank according to Example 1 of the present embodiment. FIG. 6 is a schematic diagram illustrating a cross-section of the heat storage material enclosure pack when the latent heat storage material is disposed in the heat storage tank according to the first embodiment. FIG. 7 is an explanatory diagram schematically illustrating a state of the heat storage material enclosure pack accommodated in the latent heat storage material unit according to the first embodiment.

蓄熱材収容ユニット70は、バスケット71(ガイド手段)と、80個の蓄熱材封入パック1とからなる。バスケット71は、本実施例1では、ステンレス鋼製の網かごであり、外形が直方体(縦22cm×横16cm×高さ100cm)で、底部74の四辺に沿って立設する4つの側部73を有し、底部74と4つの側部73に囲まれた内部空間72を具備している。底部74と各側部73は、例えば、数〜数十mmの比較的大きな目開きを有する網状に形成され、本実施例1のようなステンレス鋼製の金網のほか、樹脂製の網等で、水等の熱媒体83に耐腐食性を有した材質からなり、バスケット71では、底部74と各側部73とが、図示しないリブ等により、補強されている。   The heat storage material accommodation unit 70 includes a basket 71 (guide means) and 80 heat storage material enclosure packs 1. The basket 71 is a stainless steel net cage in the first embodiment, and has an outer shape of a rectangular parallelepiped (length 22 cm × width 16 cm × height 100 cm), and four side portions 73 erected along four sides of the bottom 74. And an inner space 72 surrounded by a bottom 74 and four side portions 73. The bottom portion 74 and each side portion 73 are formed in a net shape having a relatively large opening of several to several tens of millimeters, for example, in addition to a stainless steel wire net as in the first embodiment, a resin net or the like. The heat medium 83 such as water is made of a material having corrosion resistance. In the basket 71, the bottom 74 and the side parts 73 are reinforced by ribs (not shown).

内部空間72に潜熱蓄熱材組成物3を収容した状態にある蓄熱材封入パック1は、水平方向Hに沿う厚みtの変化を許容範囲内に制限するバスケット71の各側部73により、拘束された状態で、かつ配置姿勢を維持した状態で、熱媒体83の中に収容されている。変化する厚みt(図7参照)の許容範囲として、バスケット71に配置したときの初期状態にある蓄熱材封入パック1の厚みt0を基準に、膨らんだ厚みt1は、例えば、初期状態の厚みt0の3倍までの範囲等にあることが望ましい。   The heat storage material-enclosed pack 1 in a state in which the latent heat storage material composition 3 is accommodated in the internal space 72 is restrained by each side portion 73 of the basket 71 that limits the change in the thickness t along the horizontal direction H within an allowable range. And in the heat medium 83 with the arrangement posture maintained. As an allowable range of the changing thickness t (see FIG. 7), the swelled thickness t1 is, for example, the initial thickness t0 based on the thickness t0 of the heat storage material encapsulating pack 1 in the initial state when placed in the basket 71. It is desirable that it is in a range up to three times as large as.

すなわち、バスケット71の内部空間72には、80個の蓄熱材封入パック1が、上下3段に分けて収容でき、本実施形態では、下2段を各27個、上段26個が、図3に示すように、上下に交差した状態で、積み重ねて内部空間72に収容される。各段でそれぞれ、両端に位置する蓄熱材封入パック1は、第2封入袋50Bの融着部54を、多少変形させた状態でバスケット71の3面側の側部73に押圧して保持されており、両端の間に挟まれた蓄熱材封入パック1は、第2封入袋50Bの融着部54を、多少変形させた状態でバスケット71の対向面側の側部73に押圧して保持されている。何れの蓄熱材封入パック1でも、隣り合う蓄熱材封入パック1の伝熱面5同士が、間隙Kを挟んで離れており、蓄熱材封入パック1の伝熱面5が熱媒体83と接触可能な状態になっている。   That is, in the internal space 72 of the basket 71, 80 heat storage material enclosure packs 1 can be accommodated in three upper and lower stages. In this embodiment, the lower two stages are 27 pieces each and the upper stage 26 pieces are shown in FIG. As shown in FIG. 4, the two are stacked and accommodated in the internal space 72 in a state of crossing up and down. In each stage, the heat storage material encapsulating packs 1 positioned at both ends are pressed and held by the side portions 73 on the three surfaces of the basket 71 in a state where the fusion portion 54 of the second enclosing bag 50B is slightly deformed. The heat storage material enclosing pack 1 sandwiched between both ends is held by pressing the fusion portion 54 of the second enclosing bag 50B against the side portion 73 on the opposite surface side of the basket 71 in a slightly deformed state. Has been. In any heat storage material encapsulated pack 1, the heat transfer surfaces 5 of adjacent heat storage material encapsulated packs 1 are separated from each other with a gap K therebetween, and the heat transfer surface 5 of the heat storage material encapsulated pack 1 can contact the heat medium 83. It is in a state.

そのため、熱媒体83が、潜熱蓄熱槽80内を、例えば、鉛直方向V下方に向けて流れるとき、熱媒体83は、各蓄熱材封入パック1の伝熱面5に沿って流れ、熱媒体83と、蓄熱材封入パック1内の潜熱蓄熱材組成物3(潜熱蓄熱材10)との間で、熱伝導ができる。なお、隣り合う蓄熱材封入パック1の伝熱面5同士を、間隙Kを挟んで離間させるために、蓄熱材封入パック1の伝熱面5同士の間に、スペーサを配設しても良い。   Therefore, when the heat medium 83 flows in the latent heat storage tank 80, for example, downward in the vertical direction V, the heat medium 83 flows along the heat transfer surface 5 of each heat storage material enclosure pack 1, and the heat medium 83 And the latent heat storage material composition 3 (latent heat storage material 10) in the heat storage material enclosure pack 1 can conduct heat. In order to separate the heat transfer surfaces 5 of adjacent heat storage material-enclosed packs 1 with a gap K therebetween, spacers may be provided between the heat transfer surfaces 5 of the heat storage material-enclosed packs 1. .

バスケット71に収容された状態の蓄熱材封入パック1では、潜熱蓄熱材組成物3が、液相状態になると、図6に示すように、潜熱蓄熱材組成物3は、自重により封入袋50内の下方部に移動し、その上方部に、厚みd1(0≦d1)の空隙部4が生じる。   In the heat storage material enclosure pack 1 in the state of being accommodated in the basket 71, when the latent heat storage material composition 3 is in a liquid phase, the latent heat storage material composition 3 is contained in the enclosed bag 50 by its own weight as shown in FIG. The gap portion 4 having a thickness d1 (0 ≦ d1) is generated in the upper portion.

ここで、潜熱蓄熱槽80において、熱媒体83の上方位置から鉛直方向V下方に向けて投影したときに、蓄熱材封入パック1内の潜熱蓄熱材組成物3の断面積を、鉛直側断面積Svとし、熱媒体83を通じて水平方向Hに向けて投影したときに、蓄熱材封入パック1内の潜熱蓄熱材組成物3の断面積を、水平側断面積Shとする。実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法は、蓄熱材封入パック1内に収容された状態にある潜熱蓄熱材組成物3では、
Sv<Sh ・・・式(1)
式(1)の条件を満たしている。つまり、空隙部4は必然的に生じてしまうが、その空隙部4と蓄熱材封入パック1の側面(図6中、左右の側面)との接触面積は、蓄熱材封入パック1の側面全体の面積の一部に過ぎない。
Here, in the latent heat storage tank 80, the cross-sectional area of the latent heat storage material composition 3 in the heat storage material enclosure pack 1 when projected from the upper position of the heat medium 83 downward in the vertical direction V is the vertical side cross-sectional area. When it is set to Sv and projected in the horizontal direction H through the heat medium 83, the cross-sectional area of the latent heat storage material composition 3 in the heat storage material enclosure pack 1 is defined as the horizontal side cross-sectional area Sh. The arrangement method of the latent heat storage material in the heat storage tank according to Example 1 is the latent heat storage material composition 3 in the state of being accommodated in the heat storage material enclosure pack 1.
Sv <Sh (1)
The condition of formula (1) is satisfied. That is, the gap portion 4 is inevitably generated, but the contact area between the gap portion 4 and the side surface of the heat storage material enclosure pack 1 (left and right side surfaces in FIG. 6) is the entire side surface of the heat storage material enclosure pack 1. It is only part of the area.

次に、増粘剤22について説明する。前述したように、増粘剤22として用いるマンニトール20(添加剤20)は、融点調整剤21も兼ねている。添加剤20は、潜熱蓄熱材10との溶解で、負の溶解熱を発生する物性を有する物質からなり、糖アルコールに属する物質である。   Next, the thickener 22 will be described. As described above, the mannitol 20 (additive 20) used as the thickener 22 also serves as the melting point adjusting agent 21. The additive 20 is made of a substance having a physical property that generates a negative heat of dissolution when dissolved with the latent heat storage material 10, and is a substance belonging to sugar alcohol.

ここで、「負の溶解熱を発生する物性を有する物質」の定義について、説明する。前述したように、潜熱蓄熱材組成物3は、アンモニウムミョウバン(硫酸アンモニウムアルミニウム・12水和物)からなる潜熱蓄熱材10を主成分に、増粘剤22と融点調整剤21も兼ねた添加剤20(マンニトール20)を配合してなる。添加剤20が潜熱蓄熱材10に溶解するとき、この添加剤20において、外部から熱を吸収して吸熱反応が生じるものを、本実施形態に係る潜熱蓄熱材組成物3では、「負の溶解熱を発生する物性を有する物質」と定義している。   Here, the definition of “substance having a physical property that generates negative heat of dissolution” will be described. As described above, the latent heat storage material composition 3 is composed of the latent heat storage material 10 made of ammonium alum (ammonium aluminum sulfate 12 hydrate) as a main component, and the additive 20 that also serves as the thickener 22 and the melting point modifier 21. (Mannitol 20) is blended. When the additive 20 is dissolved in the latent heat storage material 10, the additive 20 that absorbs heat from the outside and generates an endothermic reaction is referred to as “negative dissolution” in the latent heat storage material composition 3 according to the present embodiment. It is defined as “a substance having physical properties that generate heat”.

「負の溶解熱を発生する物性を有する物質」には、例えば、エリスリトールやキシリトールのほか、マンニトール(C14)、ソルビトール(C14)、ラクチトール(C122411)等の「糖アルコール類に属する物質」がある。また、塩化カルシウム六水和物(CaCl・6HO)、塩化マグネシウム六水和物(MgCl・6HO)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)等の「塩化物に属する物質」がある。また、上述の「糖アルコール類に属する物質」に該当する物質のうち、少なくとも一種以上を含む場合や、上述の「塩化物に属する物質」に該当する物質のうち、少なくとも一種以上含む場合も該当する。さらに、上述の「糖アルコール類に属する物質」に該当する物質のいずれかと、上述の「塩化物に属する物質」に該当する物質のいずれかとの混合物もある。 Examples of the “substance having a property of generating a negative heat of solution” include erythritol and xylitol, mannitol (C 6 H 14 O 6 ), sorbitol (C 6 H 14 O 6 ), lactitol (C 12 H 24). There are “substances belonging to sugar alcohols” such as O 11 ). In addition, calcium chloride hexahydrate (CaCl 2 · 6H 2 O), magnesium chloride hexahydrate (MgCl 2 · 6H 2 O), potassium chloride (KCl), sodium chloride (NaCl), etc. There is a substance. Also applicable to cases where at least one of the substances corresponding to the above-mentioned “substances belonging to sugar alcohols” is included, and cases where at least one of the substances corresponding to the “substances belonging to chloride” is included. To do. Further, there is a mixture of any of the substances corresponding to the above-mentioned “substances belonging to sugar alcohols” and any of the substances corresponding to the above-mentioned “substances belonging to chloride”.

本実施形態の実施例1では、潜熱蓄熱材組成物3全体の重量に占める配合比率として、マンニトール(C14)の配合比率は、10wt%以下の範囲内である。マンニトールが、潜熱蓄熱材組成物3全体の重量に対し、例えば、8wt%の配合比率で、アンモニウムミョウバン(潜熱蓄熱材10)に添加されると、潜熱蓄熱材組成物3の融点は、約90℃になる。 In Example 1 of this embodiment, the blending ratio of mannitol (C 6 H 14 O 6 ) is in the range of 10 wt% or less as the blending ratio of the total weight of the latent heat storage material composition 3. When mannitol is added to ammonium alum (latent heat storage material 10), for example, at a blending ratio of 8 wt% with respect to the total weight of the latent heat storage material composition 3, the melting point of the latent heat storage material composition 3 is about 90%. It becomes ℃.

なお、融点調整剤21は、「負の溶解熱を発生する物性を有する物質」に該当する物質以外に、例えば、無水硫酸ナトリウム(NaSO)等であっても良い。無水硫酸ナトリウムは、融点884℃の物性で、常温では固体の物質である。潜熱蓄熱材組成物3全体の重量に占める無水硫酸ナトリウムの配合比率は、10wt%以下の範囲内であり、無水硫酸ナトリウムが、例えば、2〜5wt%の配合比率で、潜熱蓄熱材10(アンモニウムミョウバン)に添加されていると、潜熱蓄熱材組成物3の融点は、約90℃になる。 The melting point adjusting agent 21 may be, for example, anhydrous sodium sulfate (Na 2 SO 4 ) or the like other than the substance corresponding to “a substance having a physical property that generates negative heat of dissolution”. Anhydrous sodium sulfate has a melting point of 884 ° C. and is a solid substance at room temperature. The blending ratio of anhydrous sodium sulfate in the total weight of the latent heat storage material composition 3 is in the range of 10 wt% or less, and the anhydrous sodium sulfate is, for example, 2 to 5 wt% in the mixing ratio of the latent heat storage material 10 (ammonium When added to alum, the melting point of the latent heat storage material composition 3 is about 90 ° C.

また、本実施形態の実施例1の変形例に係る増粘剤22について、説明する。増粘剤22は、多糖類に属する水溶性の物質であり、潜熱蓄熱材組成物3に含まれる水とカチオンとの相互作用に基づいて、液相状態にある潜熱蓄熱材組成物3の融液の粘度を高める物質であり、ヘテロ多糖(hetero polysaccharide)に属する水溶性のゲランガム相当物質である。ゲランガム相当物質については、後述する。   Moreover, the thickener 22 which concerns on the modification of Example 1 of this embodiment is demonstrated. The thickener 22 is a water-soluble substance belonging to the polysaccharide, and melts the latent heat storage material composition 3 in a liquid phase based on the interaction between water and cations contained in the latent heat storage material composition 3. It is a substance that increases the viscosity of the liquid, and is a water-soluble gellan gum equivalent substance that belongs to a heteropolysaccharide. The gellan gum equivalent substance will be described later.

具体的に説明する。増粘剤22は、本実施形態では、ゲランガム(gellan gum)(別名:ゲラン、ポリサッカライドS−60)の一種であるLAゲランガム(Low acyl gellan gum)である。ゲランガムは、下記の化学構造に示すように、単糖を直鎖状に連結したポリマーによる高分子化合物である。潜熱蓄熱材組成物3全体の重量に占めるLAゲランガムの配合比率は、1wt%以下の範囲内である。   This will be specifically described. In this embodiment, the thickener 22 is LA gellan gum (Low acyl gellan gum), which is a kind of gellan gum (also known as gellan, polysaccharide S-60). Gellan gum is a polymer compound made of a polymer in which monosaccharides are linked in a straight chain, as shown in the chemical structure below. The blending ratio of LA gellan gum in the total weight of the latent heat storage material composition 3 is in the range of 1 wt% or less.

Figure 0006588491
Figure 0006588491

LAゲランガムは、単糖を直鎖状に連結したポリマーによる高分子化合物であり、多糖類に属する。ポリマーの基質となる単量体(モノマー)は、2つのD−グルコース残基と、1つのD−グルクロン酸残基と、1つのL−ラムノース残基とにより、計3種で4つの糖分子からなる。LAゲランガムは、常温下において結晶性粉末状であり、LAゲランガムが約85℃以上の温度で、水に溶解して分散する。水に分散したLAゲランガムが、約85℃未満に冷却されると、それまでランダムコイル状の構造だったものから、二重の螺旋構造に変化する。さらに、このような二重螺旋構造になったゲランガムに、外部からカチオンの供給を受けると、LAゲランガムは、酸性及び中性の液体中で、二重の螺旋構造が会合したネットワーク構造を形成し、透明度の高いゲルを形成する。   LA gellan gum is a polymer compound made of a polymer in which monosaccharides are linked in a straight chain, and belongs to a polysaccharide. A monomer (monomer) serving as a polymer substrate is composed of 4 sugar molecules in total of 3 types, consisting of 2 D-glucose residues, 1 D-glucuronic acid residue, and 1 L-rhamnose residue. Consists of. LA gellan gum is in a crystalline powder form at room temperature, and LA gellan gum is dissolved and dispersed in water at a temperature of about 85 ° C. or higher. When LA gellan gum dispersed in water is cooled to below about 85 ° C., it changes from a random coiled structure to a double helical structure. Further, when gellan gum having such a double helix structure is supplied with a cation from the outside, LA gellan gum forms a network structure in which the double helix structure is associated in acidic and neutral liquids. Forms a highly transparent gel.

すなわち、LAゲランガムに、カチオンが外部から供給されると、LAゲランガムのD−グルクロン酸残基において、負の電荷を帯びた官能基であるカルボキシ基(carboxy group)(化学構造では、「COO」と表記)と、正の電荷を帯びたカチオン(陽イオン)(同じく、「M」と表記)とが、互いに引き寄せ合う静電相互作用が生じる。このとき、カチオンが1価の場合、カチオンの正電荷と、LAゲランガムのカルボキシ基上の負の電荷とが、互いに打ち消し合い、二重の螺旋構造を形成するLAゲランガム同士の静電反発が、解消される。さらに、これらの二重螺旋構造は、当該二重螺旋構造に含まれる酸素原子と水素原子との間で相互に作用する水素結合により、会合する。また、カチオンが2価の場合には、各二重螺旋構造に含まれる負の電荷を帯びたカルボキシ基(「COO」)が、正の電荷を有するカチオン(「M2+」)との静電相互作用を介して架橋されることで、これらの二重螺旋構造は、互いに会合する。このような会合により、カチオンが供給されたLAゲランガムは、ゲル化する。 That is, when a cation is supplied to LA gellan gum from the outside, a carboxy group (a COO − in the chemical structure) is a negatively charged functional group in the D-glucuronic acid residue of LA gellan gum. )) And a positively charged cation (positive ion) (also denoted as “M + ”) attract each other. At this time, when the cation is monovalent, the positive charge of the cation and the negative charge on the carboxy group of LA gellan gum cancel each other, and the electrostatic repulsion between LA gellan gums forming a double helical structure, It will be resolved. Furthermore, these double helix structures are associated by hydrogen bonds that interact between oxygen atoms and hydrogen atoms contained in the double helix structure. Further, when the cation is divalent, the negatively charged carboxy group (“COO ”) included in each double helix structure is separated from the positively charged cation (“M 2+ ”). By being bridged through electrical interactions, these double helix structures associate with each other. By such association, the LA gellan gum supplied with the cation gels.

ゲランガム相当物質とは、このようなLAゲランガムに相当する物質として、単一種または複数種に関わらず、糖分子を複数連結してなる高分子化合物を対象に、構成する糖分子に、例えば、カルボキシ基等のように、親水基を有することで、高分子化合物に水溶性を付与し、かつ水中で電離して負の電荷を帯びる官能基を有し、水との共存下において、外部から供給されるカチオンとこの官能基との間で、静電相互作用の形成を可能とする物質が該当する。また、LAゲランガムの物性と同等な物性として、水溶性を有し、分子内の官能基同士の相互作用によって、少なくとも螺旋構造等の三次元構造を形成する性質を持ち、水との共存下において、外部から供給されるカチオンと官能基との静電相互作用により、これらの螺旋構造が会合し、ネットワーク構造を形成してゲル化を促す特性が該当する。本実施形態に係る潜熱蓄熱材組成物3では、LAゲランガムのほか、このような特性を具備した物質を対象に、「ゲランガム相当物質」と定義している。   The gellan gum equivalent substance is a substance corresponding to such LA gellan gum, regardless of whether it is a single species or a plurality of species. By having a hydrophilic group such as a group, it has a functional group that imparts water solubility to the polymer compound and is negatively charged by ionizing in water, and is supplied from the outside in the presence of water. Corresponding substances are those that allow the formation of electrostatic interactions between the cation to be formed and this functional group. In addition, as a physical property equivalent to that of LA gellan gum, it has water solubility, and has the property of forming at least a three-dimensional structure such as a helical structure by the interaction between functional groups in the molecule. In addition, the electrostatic interaction between a cation and a functional group supplied from the outside causes these helical structures to associate to form a network structure to promote gelation. In the latent heat storage material composition 3 according to the present embodiment, in addition to LA gellan gum, a substance having such characteristics is defined as “gellan gum equivalent substance”.

増粘剤22は、LAゲランガム以外にも、ゲランガム相当物質の一例として、HAゲランガムでも良い。HAゲランガム(High acyl gellan gum)は、ゲランガムの一種であり、LAゲランガムに有する2つのD−グルコース残基のうち、一方のD−グルコース残基において、2つのヒドロキシ基(「OH」)の水素原子(「H」)を、別の置換基に置き換えた構造である。HAゲランガムの場合、HAゲランガムが約90℃以上に加熱されると、HAゲランガムAは、水に溶解して分散する。なお、水に分散したHAゲランガムが、約90℃未満に冷却されてゲル化するときには、ゲル化を促進する上で、カチオンの存在は必須ではない。但し、カチオンが、一定の範囲内において、高い濃度で存在する場合には、ゲル組織の強度は高くなる。   In addition to LA gellan gum, the thickener 22 may be HA gellan gum as an example of a gellan gum equivalent substance. HA gellan gum (High acyl gellan gum) is a type of gellan gum, and one of the two D-glucose residues of LA gellan gum has one hydroxy group ("OH") hydrogen in one D-glucose residue. In this structure, the atom (“H”) is replaced with another substituent. In the case of HA gellan gum, when HA gellan gum is heated above about 90 ° C., HA gellan gum A dissolves and disperses in water. When HA gellan gum dispersed in water is gelled by being cooled to less than about 90 ° C., the presence of cations is not essential for promoting gelation. However, when cations are present at a high concentration within a certain range, the strength of the gel structure increases.

<比較例1>
比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法について、実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法と異なる点だけを挙げて説明する。なお、説明の中で、本実施形態の実施例2に係る蓄熱材の容器内封入方法の内容と重複する部分は、省略または簡潔化する。
<Comparative Example 1>
The arrangement method of the latent heat storage material in the heat storage tank according to Comparative Example 1 will be described with reference to only the differences from the arrangement method of the latent heat storage material in the heat storage tank according to Example 1. In addition, in the description, the part which overlaps with the content of the method for enclosing the heat storage material in the container according to Example 2 of the present embodiment is omitted or simplified.

<潜熱蓄熱材組成物3の作製方法>
比較例1に係る蓄熱材の容器内封入方法の概要について、図9を用いて簡単に説明する。図9は、比較例1に係る蓄熱材収容ユニットに具備した潜熱蓄熱材組成物の作製工程を示すフロー図である。潜熱蓄熱材組成物3を生成するにあたり、潜熱蓄熱材10であるアンモニウムミョウバン水和物10の粉末を90g、融点調整剤21である無水硫酸ナトリウム(NaSO)の粉末を2g、増粘剤22であるマンニトールの粉末を8g、それぞれ秤量し、これらを採取する。アンモニウムミョウバン水和物10は、粒子を平均1mm程度の大きさに粉砕した粉末状である。融点調整剤21と増粘剤22とは何れも、粒子を平均数百μm程度の大きさに粉砕した粉末状である(図9中、(a))。
<Production Method of Latent Heat Storage Material Composition 3>
An outline of the method for enclosing the heat storage material in the container according to Comparative Example 1 will be briefly described with reference to FIG. FIG. 9 is a flowchart showing a process for producing a latent heat storage material composition provided in the heat storage material accommodation unit according to Comparative Example 1. In producing the latent heat storage material composition 3, 90 g of the ammonium alum hydrate 10 powder as the latent heat storage material 10, 2 g of anhydrous sodium sulfate (Na 2 SO 4 ) powder as the melting point modifier 21, and thickening 8 g of mannitol powder, which is agent 22, is weighed and collected. The ammonium alum hydrate 10 is in the form of a powder obtained by pulverizing particles to an average size of about 1 mm. Each of the melting point adjusting agent 21 and the thickener 22 is in the form of a powder obtained by pulverizing particles to an average size of several hundred μm ((a) in FIG. 9).

これらのアンモニウムミョウバン水和物10と、融点調整剤21と、増粘剤22とが、万遍に撹拌され、これらの混合物が、複数の漏洩防止用内袋40内にそれぞれ、開口41を通じて投入され、小分けされる(図9中、(b))。漏洩防止用内袋40は、本実施形態では、例えば、縦25cm×横15cmの長方形で、厚さ0.02mm程度の薄いポリエチレン(PE:polyethylene)製の包装用袋等である。これにより、潜熱蓄熱材組成物3が各漏洩防止用内袋40内で生成される。そして、漏洩防止用内袋40の開口41は、開口41側の折返し部42を折り畳むことにより閉塞され(図9中、(c))、この状態の漏洩防止用内袋40を封入袋50内に収容し、封入袋50の開口を融着することにより、封入袋50が封止される。折返し部42を折り畳んだ後の漏洩防止用内袋40は、縦9.5cm×横15cmの長方形である。かくして、潜熱蓄熱材組成物3が漏洩防止用内袋40内で生成され、潜熱蓄熱材組成物3を漏洩防止用内袋40内に収容した蓄熱材封入物2が作製される。   The ammonium alum hydrate 10, the melting point adjusting agent 21, and the thickener 22 are uniformly stirred, and these mixtures are put into a plurality of leakage prevention inner bags 40 through the openings 41, respectively. And subdivided ((b) in FIG. 9). In the present embodiment, the leakage preventing inner bag 40 is, for example, a packaging bag made of thin polyethylene (PE) having a rectangular shape of 25 cm long × 15 cm wide and having a thickness of about 0.02 mm. Thereby, the latent heat storage material composition 3 is produced | generated in each inner bag 40 for leak prevention. The opening 41 of the leakage preventing inner bag 40 is closed by folding the folded portion 42 on the opening 41 side ((c) in FIG. 9), and the leakage preventing inner bag 40 in this state is placed in the enclosing bag 50. And sealing the opening of the encapsulating bag 50 to seal the enclosing bag 50. The inner bag 40 for preventing leakage after the folded portion 42 is folded is a rectangle of 9.5 cm long × 15 cm wide. Thus, the latent heat storage material composition 3 is generated in the leakage preventing inner bag 40, and the heat storage material enclosure 2 in which the latent heat storage material composition 3 is accommodated in the leakage prevention inner bag 40 is produced.

蓄熱材封入パック1の作製工程については、図5に示すように、実施例1と同じであり、作製された蓄熱材封入物2を、二重袋構造の封入袋50(第1封入袋50A、第2封入袋50B)で覆うことで、蓄熱材封入パック1が作製される。   As shown in FIG. 5, the manufacturing process of the heat storage material enclosure pack 1 is the same as that of Example 1, and the produced heat storage material enclosure 2 is replaced with an enclosure bag 50 (first enclosure bag 50 </ b> A) having a double bag structure. By covering with the second enclosing bag 50B), the heat storage material enclosing pack 1 is produced.

次に、蓄熱材収容ユニット70Aについて、図1、図8、図10及び図11を用いて説明する。図8は、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法に対応した潜熱蓄熱材ユニットを模式的に示す説明図である。図10は、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法であるときの蓄熱材封入パックの断面を示す模式図である。図11は、比較例1に係る潜熱蓄熱材ユニット内に収容された蓄熱材封入パックの状態を模式的に示す説明図である。   Next, the heat storage material accommodation unit 70 </ b> A will be described with reference to FIGS. 1, 8, 10, and 11. FIG. 8 is an explanatory view schematically showing a latent heat storage material unit corresponding to the arrangement method of the latent heat storage material in the heat storage tank according to Comparative Example 1. FIG. 10 is a schematic diagram illustrating a cross-section of the heat storage material enclosure pack when the latent heat storage material is disposed in the heat storage tank according to Comparative Example 1. FIG. 11 is an explanatory diagram schematically illustrating a state of the heat storage material encapsulated pack accommodated in the latent heat storage material unit according to Comparative Example 1.

蓄熱材収容ユニット70Aは、バスケット71Aと、80個の蓄熱材封入パック1とからなる。バスケット71Aは、本比較例1では、ステンレス鋼製の網かごであり、外形が直方体(縦19cm×横13cm×高さ100cm)で、底部74Aの四辺に沿って立設する4つの側部73Aを有し、底部74Aと4つの側部73Aに囲まれた内部空間72Aを具備している。底部74Aと各側部73Aは、例えば、数〜数十mmの比較的大きな目開きを有する網状に形成され、ステンレス鋼製の金網等、水等の熱媒体83に耐腐食性を有した材質からなる。   The heat storage material accommodation unit 70 </ b> A includes a basket 71 </ b> A and 80 heat storage material enclosure packs 1. In this comparative example 1, the basket 71A is a stainless steel net cage, and has an outer shape of a rectangular parallelepiped (vertical 19 cm × width 13 cm × height 100 cm), and four side portions 73A standing along four sides of the bottom 74A. And has an inner space 72A surrounded by a bottom portion 74A and four side portions 73A. The bottom part 74A and each side part 73A are formed in a net shape having a relatively large opening of, for example, several to several tens of millimeters, and are made of a material having corrosion resistance to a heat medium 83 such as water such as a stainless steel wire net. Consists of.

バスケット71Aの内部空間72Aには、80個の蓄熱材封入パック1が、伝熱面5を水平方向Hに横たわらせた状態で、80段に積み重ねて内部空間72Aに収容される。80個の蓄熱材封入パック1ではそれぞれ、バスケット71の4つ全ての側部73に、第2封入袋50Bの融着部54と封止部52とを多少変形させた状態で保持されている。潜熱蓄熱材組成物3入りの蓄熱材封入パック1が、横向きの姿勢で複数段に積み重ねて配置されていると、積み重なっている潜熱蓄熱材組成物3入りの蓄熱材封入パック1の伝熱面5同士が密着してしまい、水等(熱媒体)83が伝熱面に十分に流れず、このことが、熱伝導の効率低下の一因を招いている。   In the internal space 72A of the basket 71A, 80 heat storage material-enclosed packs 1 are stacked in 80 stages and accommodated in the internal space 72A with the heat transfer surface 5 lying in the horizontal direction H. In each of the 80 heat storage material enclosure packs 1, the fusion part 54 and the sealing part 52 of the second enclosure bag 50 </ b> B are held on all four side parts 73 of the basket 71 in a slightly deformed state. . When the heat storage material encapsulated packs 1 containing the latent heat storage material composition 3 are arranged in a plurality of stages in a horizontal orientation, the heat transfer surface of the heat storage material encapsulated pack 1 containing the stacked latent heat storage material compositions 3 is stacked. 5 are in close contact with each other, and water or the like (heat medium) 83 does not sufficiently flow to the heat transfer surface, which causes a decrease in heat conduction efficiency.

バスケット71Aに収容された状態の蓄熱材封入パック1では、潜熱蓄熱材組成物3が、液相状態になると、図6に示すように、潜熱蓄熱材組成物3は、自重により封入袋50内の下方部に移動し、その上方部に、厚みd2(0≦d2)の空隙部4が生じる。   In the heat storage material encapsulated pack 1 in the state of being accommodated in the basket 71A, when the latent heat storage material composition 3 is in a liquid phase, the latent heat storage material composition 3 is contained in the enclosed bag 50 by its own weight as shown in FIG. The gap portion 4 having a thickness d2 (0 ≦ d2) is generated in the upper portion.

潜熱蓄熱槽80では、潜熱蓄熱材組成物3の状態は、鉛直側断面積Sv>水平側断面積Shとなり、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法は、蓄熱材封入パック1内に収容された状態にある潜熱蓄熱材組成物3では、
Sv<Sh ・・・式(1)
式(1)の条件は満たしていない。つまり、蓄熱材封入パック1内に混入した空気は、封入袋50の上面全体に接した幅広な空隙部4を形成している。幅広な空隙部4が生じると、封入袋50を介して、熱媒体83から潜熱蓄熱材組成物3(潜熱蓄熱材10)に蓄熱するときや、潜熱蓄熱材10から熱媒体83に放熱するときに、空隙部4で熱伝導を遮る割合が増えてしまい、熱伝導の低下を招いてしまう。
In the latent heat storage tank 80, the state of the latent heat storage material composition 3 is vertical cross-sectional area Sv> horizontal side cross-sectional area Sh, and the arrangement method of the latent heat storage material in the heat storage tank according to Comparative Example 1 is the heat storage material enclosure pack 1. In the latent heat storage material composition 3 in a state accommodated in the interior,
Sv <Sh (1)
The condition of formula (1) is not satisfied. That is, the air mixed in the heat storage material enclosure pack 1 forms a wide gap 4 that is in contact with the entire upper surface of the enclosure bag 50. When the wide gap portion 4 is generated, heat is stored from the heat medium 83 to the latent heat storage material composition 3 (latent heat storage material 10) or is radiated from the latent heat storage material 10 to the heat medium 83 via the encapsulating bag 50. In addition, the ratio of blocking heat conduction in the gap 4 increases, leading to a decrease in heat conduction.

次に、実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法と、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法とを対比して、潜熱蓄熱材組成物3(潜熱蓄熱材10)における蓄熱量と放熱量とに関し、それぞれの挙動の違いを確認する検証実験1を行った。その検証実験1について、説明する。   Next, the latent heat storage material composition 3 (latent heat storage material 10 is compared with the latent heat storage material arrangement method of the latent heat storage material according to Example 1 and the latent heat storage material arrangement method of the latent heat storage material according to Comparative Example 1 in comparison. The verification experiment 1 which confirms the difference in each behavior regarding the heat storage amount and the heat radiation amount in) was conducted. The verification experiment 1 will be described.

<実施例1と比較例1との共通条件>
・検証実験1では、前述した実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法による潜熱蓄熱材組成物3の状態(実施例1の試料)と、前述した比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法による潜熱蓄熱材組成物3の状態(比較例1の試料)を用いてそれぞれ、蓄熱試験と放熱試験とを行った。
・検証実験1では、潜熱蓄熱槽80はタンク容量160Lである。
・蓄熱材封入パック1で、封入袋50内に封入した潜熱蓄熱材組成物3は100gである。
・潜熱蓄熱槽80内に、実施例1では蓄熱材収容ユニット70を、比較例1では蓄熱材収容ユニット70Aを、熱媒体83である水に浸漬させ、実施例1と比較例1とも、水位を100cmとした。
・さらに実施例1と比較例1とも、潜熱蓄熱槽80内の水に、流動パラフィンを1.5L(潜熱蓄熱槽80の深さで1cm相当分)加えることにより、流動パラフィンによる層を水面上に形成し、潜熱蓄熱槽80内から水分の蒸発を防止した。実際に別の実験で、2日間、90℃に保持された温水に流動パラフィン層を形成した場合でも、流動パラフィン層により温水の水位に変動はなく、水分の蒸発はないことが確認できている。
<Common conditions for Example 1 and Comparative Example 1>
In the verification experiment 1, the state of the latent heat storage material composition 3 (sample of Example 1) by the method for arranging the latent heat storage material in the heat storage tank according to Example 1 described above and the latent heat storage material according to Comparative Example 1 described above. A heat storage test and a heat release test were performed using the state of the latent heat storage material composition 3 (the sample of Comparative Example 1) according to the heat storage tank arrangement method.
In the verification experiment 1, the latent heat storage tank 80 has a tank capacity of 160L.
The latent heat storage material composition 3 enclosed in the sealing bag 50 in the heat storage material enclosure pack 1 is 100 g.
In the latent heat storage tank 80, the heat storage material accommodation unit 70 in Example 1 and the heat storage material accommodation unit 70A in Comparative Example 1 are immersed in water that is the heat medium 83. Was 100 cm.
In addition, in both Example 1 and Comparative Example 1, 1.5 L of liquid paraffin was added to the water in the latent heat storage tank 80 (corresponding to 1 cm in depth of the latent heat storage tank 80), so that a layer of liquid paraffin was on the water surface. The evaporation of moisture from the inside of the latent heat storage tank 80 was prevented. Actually, in another experiment, even when a liquid paraffin layer was formed on hot water maintained at 90 ° C. for 2 days, it was confirmed that there was no fluctuation in the water level of the warm water due to the liquid paraffin layer, and there was no evaporation of moisture. .

<蓄熱試験>
・蓄熱試験では、潜熱蓄熱槽80の外部に、電気ヒータ(前述した第1熱交換器に相当)と冷水との間で熱を交換する熱交換器(前述した第2熱交換器に相当)を直列に配管した管路で、熱媒体83である温水をポンプにより循環させ、熱交換器には冷水を流さず、温水を、電気ヒータにより設定温度の80℃まで昇温して、この温度に保持させた。
・その後、この電気ヒータの設定温度を90℃に変更し、水温を80℃から90℃に昇温し、蓄熱材封入パック1内の潜熱蓄熱材組成物3に蓄熱を行った。このとき、ポンプで循環させる温水の流量は、7.5L/min.で一定とした。
<Heat storage test>
In the heat storage test, a heat exchanger that exchanges heat between the electric heater (equivalent to the first heat exchanger described above) and cold water outside the latent heat storage tank 80 (equivalent to the second heat exchanger described above). The hot water that is the heat medium 83 is circulated by a pump in a pipe line that is connected in series, and the hot water is heated up to a set temperature of 80 ° C. by an electric heater without flowing cold water through the heat exchanger. Held.
Thereafter, the set temperature of the electric heater was changed to 90 ° C., the water temperature was raised from 80 ° C. to 90 ° C., and the latent heat storage material composition 3 in the heat storage material enclosure pack 1 was stored. At this time, the flow rate of the hot water circulated by the pump is 7.5 L / min. And constant.

<放熱試験>
・放熱試験では、電気ヒータと冷水との間で熱を交換する熱交換器を直列に配管した上述の管路で、潜熱蓄熱槽80の温水をポンプにより循環させ、電気ヒータの設定温度を80℃とした上で、熱交換器に冷水を通じることにより、潜熱蓄熱槽80内の温水を、90℃から80℃まで低下させ、蓄熱材封入パック1内の潜熱蓄熱材組成物3で放熱を行った。このとき、ポンプで循環させる温水の流量は、7.5L/min.で一定とした。
<Heat dissipation test>
In the heat dissipation test, the hot water in the latent heat storage tank 80 is circulated by the pump in the above-described pipe line in which the heat exchanger for exchanging heat between the electric heater and the cold water is connected in series, and the set temperature of the electric heater is set to 80 The temperature of the hot water in the latent heat storage tank 80 is lowered from 90 ° C. to 80 ° C. by passing cold water through the heat exchanger, and heat is radiated by the latent heat storage material composition 3 in the heat storage material enclosure pack 1. went. At this time, the flow rate of the hot water circulated by the pump is 7.5 L / min. And constant.

<実験の評価方法>
・蓄熱試験では、実施例1と比較例1とにおいて、潜熱蓄熱材組成物3(潜熱蓄熱材10)の蓄熱量が、300kJ/Lに到達するまでの所要時間を求めた後、蓄熱速度を算出した。
・そして、実施例1と比較例1との対比により、蓄熱速度に差異があるか否かを調べ、蓄熱速度の違いにより、実施例1の有意性の有無を確認した。
・放熱試験では、実施例1と比較例1とにおいて、潜熱蓄熱材組成物3(潜熱蓄熱材10)の放熱量が、300kJ/Lに到達するまでの所要時間を求めた後、放熱速度を算出した。
・そして、実施例1と比較例1との対比により、放熱速度に差異があるか否かを調べ、放熱速度の違いにより、実施例1の有意性の有無を確認した。
<Experiment evaluation method>
In the heat storage test, in Example 1 and Comparative Example 1, after determining the time required for the heat storage amount of the latent heat storage material composition 3 (latent heat storage material 10) to reach 300 kJ / L, the heat storage rate was determined. Calculated.
-Then, by comparing Example 1 and Comparative Example 1, whether or not there is a difference in the heat storage speed was examined, and the presence or absence of significance of Example 1 was confirmed by the difference in the heat storage speed.
In the heat dissipation test, after obtaining the time required for the heat dissipation amount of the latent heat storage material composition 3 (latent heat storage material 10) to reach 300 kJ / L in Example 1 and Comparative Example 1, Calculated.
-Then, by comparing Example 1 and Comparative Example 1, it was examined whether there was a difference in the heat release rate, and the presence or absence of significance of Example 1 was confirmed by the difference in the heat release rate.

<蓄熱速度・放熱速度の算出方法>
蓄熱速度の算出と放熱速度の算出にあたり、次の式(2)を用いた。なお、式(2)では、潜熱蓄熱材組成物3(潜熱蓄熱材10)を、「PCM」と略記している。
<Calculation method of heat storage rate / heat release rate>
In calculating the heat storage rate and the heat release rate, the following equation (2) was used. In the formula (2), the latent heat storage material composition 3 (latent heat storage material 10) is abbreviated as “PCM”.

Figure 0006588491
…式(2)
Figure 0006588491
... Formula (2)

但し、式(2)では、
PCM[kJ/L]:PCMの蓄熱密度、またはPCMの放熱密度
ρPCM[kg/L]:PCMの密度
PCM[kg]:潜熱蓄熱槽(160L)へのPCMの充填量
t[s]:測定開始からの時刻
Cp[kJ/kg・K]:水の定圧比熱
ρ[kg/L]:水の密度
[L/s]:循環温水の流量
in[℃]:潜熱蓄熱槽への循環温水の流入温度
out[℃]:潜熱蓄熱槽からの循環温水の流出温度
K[kJ/K]:槽内温水と潜熱蓄熱槽外面の間の総括伝熱係数
av[℃]:潜熱蓄熱槽内の平均水温
air[℃]:外気温
V[L]:潜熱蓄熱槽内充填物の体積合計
α[−]:PCMの袋充填に伴う体積増加率
[kg]:ステンレス鋼製バスケットの重量
ρ[kg/L]:ステンレス鋼の密度
Cp[kJ/kg・K]:ステンレス鋼の定圧比熱
[℃]:時間tにおける潜熱蓄熱槽内の平均水温
[℃]:潜熱蓄熱槽内の平均水温の初期値
However, in equation (2):
H PCM [kJ / L]: PCM heat storage density or PCM heat release density ρ PCM [kg / L]: PCM density M PCM [kg]: Filling amount of PCM into the latent heat storage tank (160L) t [s ]: Time from the start of measurement Cp w [kJ / kg · K]: Specific pressure specific heat of water ρ W [kg / L]: Water density Q w [L / s]: Flow rate of circulating hot water T in [° C.]: Circulating hot water inflow temperature T out [° C.]: Outflow temperature of circulating hot water from the latent heat storage tank K [kJ / K]: Overall heat transfer coefficient T av between the hot water in the tank and the outer surface of the latent heat storage tank [° C.] Average water temperature in the latent heat storage tank T air [° C.] Outside air temperature V [L]: Total volume of filling in the latent heat storage tank α [−]: Volume increase rate M s [ kg]: the weight of the stainless steel basket ρ s [kg / L]: stainless steel Degrees Cp s [kJ / kg · K ]: specific heat at constant pressure T t [° C.] Stainless steel: average temperature T 0 [° C.] of the latent heat storage tank at time t: the initial value of the average temperature of the latent heat storage tank

式(2)では、
・第一項において、循環温水に対し、流量、潜熱蓄熱槽80の流入口側と流出口側との温度差、密度、比熱より、昇温時の潜熱蓄熱槽80への入熱量、または降温時の潜熱蓄熱槽80からの抜熱量について、熱量の総量を算出した。
・第二項において、潜熱蓄熱槽80の平均水温と外気温の差より、潜熱蓄熱槽80の側壁面からの放熱ロスの総量を求めた。但し、潜熱蓄熱槽80内で、温水の水面に浮かべた流動パラフィンにより、潜熱蓄熱槽80内の温水の蒸発は抑止できているため、温水蒸発による影響は無視した。
・第三項において、潜熱蓄熱槽80の温水と、ステンレス鋼製のバスケット71,71Aの顕熱の蓄熱量、またはその顕熱の放熱量を演算した。
・そして、第一項の演算結果から、第二項の演算結果と第三項の演算結果とを、減算処理することで、PCMの蓄熱密度、またはPCMの放熱密度を導出した。
In equation (2):
-In the first term, the amount of heat input to the latent heat storage tank 80 at the time of temperature rise or the temperature drop from the flow rate, the temperature difference between the inlet side and the outlet side of the latent heat storage tank 80, the density, and the specific heat with respect to the circulating hot water For the amount of heat removed from the latent heat storage tank 80 at the time, the total amount of heat was calculated.
In the second term, the total amount of heat radiation loss from the side wall surface of the latent heat storage tank 80 was obtained from the difference between the average water temperature of the latent heat storage tank 80 and the outside air temperature. However, in the latent heat storage tank 80, the evaporation of the warm water in the latent heat storage tank 80 can be suppressed by the liquid paraffin floating on the surface of the warm water, so the influence of the warm water evaporation was ignored.
In item 3, the amount of sensible heat stored in the latent heat storage tank 80 and the stainless steel baskets 71 and 71A, or the amount of sensible heat released was calculated.
-Then, the heat storage density of PCM or the heat dissipation density of PCM was derived by subtracting the calculation result of the second term and the calculation result of the third term from the calculation result of the first term.

<実験結果>
図12は、実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法で収容された潜熱蓄熱材組成物に対し、その潜熱蓄熱材組成物1L当たりの蓄熱量と時間との関係を調査した検証実験1で、試料の蓄熱量の測定結果を示したグラフである。図13は、図12に続き、同じ試料による放熱量の測定結果を示すグラフである。図14は、潜熱蓄熱材組成物1L当たりの蓄熱量と時間との関係を調査した検証実験1で、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法で収容された潜熱蓄熱材組成物に対し、その蓄熱量の測定結果を示したグラフである。図15は、図14に続き、同じ試料による放熱量の測定結果を示すグラフである。図16は、検証実験1及び検証実験2に関し、実施例1に係る試料と、比較例1に係る試料との対比による蓄熱速度・放熱速度の結果をまとめた表である。なお、図12〜図16では、潜熱蓄熱材組成物3(潜熱蓄熱材10)を、「PCM」と略記している。
<Experimental result>
FIG. 12 shows the verification of the relationship between the amount of heat stored per 1 L of the latent heat storage material composition and time for the latent heat storage material composition housed in the method for arranging the latent heat storage material in the heat storage tank according to Example 1. In Experiment 1, it is the graph which showed the measurement result of the heat storage amount of a sample. FIG. 13 is a graph showing the measurement result of the heat radiation amount by the same sample, following FIG. FIG. 14 is a verification experiment 1 in which the relationship between the heat storage amount per 1 L of the latent heat storage material composition and time is examined, and the latent heat storage material composition accommodated by the method for arranging the latent heat storage material in the heat storage tank according to Comparative Example 1 On the other hand, it is the graph which showed the measurement result of the thermal storage amount. FIG. 15 is a graph showing the measurement result of the heat radiation amount by the same sample following FIG. FIG. 16 is a table that summarizes the results of the heat storage rate and the heat release rate by comparing the sample according to Example 1 and the sample according to Comparative Example 1 with respect to Verification Experiment 1 and Verification Experiment 2. 12 to 16, the latent heat storage material composition 3 (latent heat storage material 10) is abbreviated as “PCM”.

図12〜図16に示すように、蓄熱速度は、実施例1と比較例1とも、15.0[W/L]で同じで、実施例1と比較例1では、蓄熱速度に差異はなかった。また、実施例1の放熱速度は、21.4[W/L]であり、比較例1の放熱速度8.6[W/L]の約2.5倍も早かった。   As shown in FIGS. 12 to 16, the heat storage speed is the same at 15.0 [W / L] in both Example 1 and Comparative Example 1, and there is no difference in the heat storage speed between Example 1 and Comparative Example 1. It was. The heat release rate of Example 1 was 21.4 [W / L], which was about 2.5 times faster than the heat release rate of Comparative Example 1 8.6 [W / L].

<考察>
比較例1では、図10に示すように、潜熱蓄熱材組成物3が、鉛直側断面積Svが水平側断面積Shより大きくなる縦向きの姿勢で潜熱蓄熱槽80内に収容されているため、蓄熱完了時に潜熱蓄熱材組成物3の融液の一部が、封入袋50の下方に偏り、潜熱蓄熱材組成物3の上部には、封入袋50内に混入していた空気により、幅広な空隙部4が形成されてしまう。この幅広な空隙部4は、蓄熱材封入パック1(封入袋50)の伝熱面5の一面側全域に接触して、温水(熱媒体83)への放熱時に、伝熱が著しく悪化したため、実施例1に比べ、放熱速度は低下したものと考えられる。
<Discussion>
In Comparative Example 1, as shown in FIG. 10, the latent heat storage material composition 3 is accommodated in the latent heat storage tank 80 in a vertical orientation in which the vertical sectional area Sv is larger than the horizontal sectional area Sh. When the heat storage is completed, a part of the melt of the latent heat storage material composition 3 is biased to the lower side of the enclosing bag 50, and the upper portion of the latent heat storage material composition 3 is widened by the air mixed in the enclosing bag 50. A void portion 4 is formed. The wide gap 4 is in contact with the entire area of one surface of the heat transfer surface 5 of the heat storage material encapsulating pack 1 (encapsulating bag 50), and heat transfer is significantly deteriorated during heat dissipation to the hot water (heat medium 83). Compared with Example 1, it is considered that the heat dissipation rate was lowered.

これに対し、実施例1では、図6に示すように、潜熱蓄熱材組成物3が、鉛直側断面積Svが水平側断面積Shより小さくなる縦向きの姿勢で潜熱蓄熱槽80内に収容されているため、空隙部4と蓄熱材封入パック1(封入袋50)の側面(伝熱面5)との接触面積は、蓄熱材封入パック1の側面全体の面積の一部に過ぎない。また、潜熱蓄熱材組成物3の融液が、蓄熱完了時に封入袋50の下方に移動し、封入袋50(蓄熱材封入パック1)の厚みが均一でなくなったことで、隣り合う蓄熱材封入パック1の間を、温水が流通できるようになり、放熱速度が向上したものと考えられる。   On the other hand, in Example 1, as shown in FIG. 6, the latent heat storage material composition 3 is accommodated in the latent heat storage tank 80 in a vertical orientation in which the vertical cross-sectional area Sv is smaller than the horizontal cross-sectional area Sh. Therefore, the contact area between the gap 4 and the side surface (heat transfer surface 5) of the heat storage material enclosure pack 1 (encapsulation bag 50) is only a part of the entire area of the side surface of the heat storage material enclosure pack 1. Further, the melt of the latent heat storage material composition 3 moves to the lower side of the enclosing bag 50 when the heat storage is completed, and the thickness of the enclosing bag 50 (the heat storage material enclosing pack 1) is not uniform. It is considered that warm water can be circulated between the packs 1 and the heat dissipation rate is improved.

この検証実験1では、潜熱蓄熱材組成物3に対し、1Lあたりの蓄熱速度と、放熱速度を算出して比較したが、潜熱蓄熱槽80に収容した潜熱蓄熱材組成物3は、封入袋50に封入された蓄熱材封入パック1の状態となっている。実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法の効果と、比較例1に係る潜熱蓄熱材の蓄熱槽内配置方法の効果の差異について、さらに正確な観点で比較を行うため、次の検証実験2を行った。   In this verification experiment 1, the latent heat storage material composition 3 was calculated by comparing the heat storage rate per liter and the heat release rate, but the latent heat storage material composition 3 housed in the latent heat storage tank 80 was sealed in a sealed bag 50. It is in the state of the heat storage material enclosure pack 1 enclosed in. In order to compare the effect of the latent heat storage material in the heat storage tank according to Example 1 and the effect of the latent heat storage material in the heat storage tank according to Comparative Example 1 from a more accurate viewpoint, the following is performed. Verification experiment 2 was performed.

<検証実験2の条件>
検証実験2は、100gの潜熱蓄熱材組成物3を封入袋50に封入した蓄熱材封入パック1に対し、その1Lあたりの部分において、蓄熱速度や放熱速度と共に、空気混入率を算出して比較するものである。そして、蓄熱速度(または放熱速度)と、空気混入率について、実施例1の場合と比較例1の場合とを、対比した。なお、蓄熱材封入パック1に対し1Lあたりの蓄熱速度(または放熱速度)の算出と、空気混入率は、次述する演算式により基づいて行った。
・蓄熱材封入パック1に対し1Lあたりの蓄熱速度(または放熱速度)=潜熱蓄熱材組成物3に対し1Lあたりの蓄熱速度(または放熱速度)/潜熱蓄熱材組成物3を100g封入した蓄熱材封入パック1の体積/100gの潜熱蓄熱材組成物3の体積
・空気混入率[%]=100×(封入袋50の容積−潜熱蓄熱材組成物3)/封入袋50の容積
<Conditions for Verification Experiment 2>
In the verification experiment 2, for the heat storage material encapsulated pack 1 in which 100 g of the latent heat storage material composition 3 is enclosed in the encapsulating bag 50, the air mixing rate is calculated and compared with the heat accumulation speed and the heat dissipation speed in the portion per 1L. To do. And the case of Example 1 and the case of the comparative example 1 were contrasted about the heat storage speed (or heat radiation speed) and the air mixing rate. The calculation of the heat storage rate (or heat release rate) per liter and the air mixing rate for the heat storage material-enclosed pack 1 were performed based on the arithmetic expression described below.
Heat storage speed (or heat release speed) per liter for the heat storage material enclosure pack 1 = heat storage speed (or heat release speed) per liter for the latent heat storage material composition 3/100 g of the latent heat storage material composition 3 enclosed Volume of encapsulated pack 1 / volume of latent heat storage material composition 3 of 100 g / air mixing ratio [%] = 100 × (volume of encapsulated bag 50−latent heat storage material composition 3) / volume of encapsulated bag 50

封入袋50の容積を求めるのにあたり、潜熱蓄熱材組成物3を封入袋50に封入した蓄熱材封入パック1を水槽内に浸漬し、水位上昇量に基づいて、全体の体積を算出した。そして、封入袋50を構成する樹脂などの材料で占める体積を、その算出結果から減算処理して封入袋50の容積を求めた。   In determining the volume of the encapsulating bag 50, the heat storage material encapsulating pack 1 in which the latent heat storage material composition 3 was encapsulated in the encapsulating bag 50 was immersed in the water tank, and the entire volume was calculated based on the amount of increase in the water level. Then, the volume occupied by a material such as resin constituting the encapsulating bag 50 was subtracted from the calculation result to obtain the volume of the enclosing bag 50.

<検証実験2の結果>
図16に示すように、蓄熱速度では、実施例1の蓄熱速度は、9.1[W/L]であり、比較例1の放熱速度7.9[W/L]の約1.2倍も早かった。また、実施例1の放熱速度は、13.0[W/L]であり、比較例1の放熱速度4.5[W/L]の約2.9倍も早かった。また、100gの潜熱蓄熱材組成物3を封入袋50に封入した場合には、比較例1では、空気混入率が40.3%であった。実施例1では、空気混入率が25.9%であった。なお、200gの潜熱蓄熱材組成物3を封入袋50に封入した場合では、実施例1による空気混入率は1.8%であった。
<Result of verification experiment 2>
As shown in FIG. 16, in the heat storage speed, the heat storage speed of Example 1 is 9.1 [W / L], which is about 1.2 times the heat release speed of Comparative Example 1 7.9 [W / L]. It was too early. The heat release rate of Example 1 was 13.0 [W / L], which was about 2.9 times faster than the heat release rate of Comparative Example 1 of 4.5 [W / L]. Further, when 100 g of the latent heat storage material composition 3 was sealed in the sealing bag 50, the air mixing rate in Comparative Example 1 was 40.3%. In Example 1, the air mixing rate was 25.9%. When 200 g of the latent heat storage material composition 3 was sealed in the sealing bag 50, the air mixing rate according to Example 1 was 1.8%.

<検証実験2の考察>
実施例1では、潜熱蓄熱材10の作製時に、焼アンモニウムミョウバン(AlNH(SO)粒子の間に、マンニトール水溶液30が侵入することで、粒子間にあった空気を外部に出すことができるため、実施例1の場合の空気混入率が、比較例1の場合に比して、低くなるものと考えられる。
<Consideration of Verification Experiment 2>
In Example 1, when the latent heat storage material 10 is manufactured, the aqueous mannitol solution 30 enters between the calcined ammonium alum (AlNH 4 (SO 4 ) 2 ) particles, so that the air between the particles can be discharged to the outside. Therefore, it is considered that the air mixing rate in Example 1 is lower than that in Comparative Example 1.

さらに本出願人は、上述した検証実験2の結果とは別に、潜熱蓄熱材組成物3における過冷却現象についても、調査を行った。その調査によると、検証実験2で、空気混入率25.9%だった実施例1では、過冷却現象は生じていなかった。本出願人はこれまで、検証実験2と同じ方法で算出した空気混入率に対し、25%程度(封入袋内の潜熱蓄熱材組成物3の充填率75%程度)より少なければ、過冷却現象の発生を抑えることができるとの知見を持っていたが、この検証実験2を通じて、その知見を立証することができた。   Furthermore, apart from the results of the verification experiment 2 described above, the present applicant also investigated the supercooling phenomenon in the latent heat storage material composition 3. According to the investigation, in the verification experiment 2, the supercooling phenomenon did not occur in Example 1 in which the air mixing rate was 25.9%. The applicant has so far compared to the air mixing rate calculated by the same method as in the verification experiment 2 with less than about 25% (the filling rate of the latent heat storage material composition 3 in the encapsulating bag is about 75%). However, this verification experiment 2 proved that knowledge.

<蓄熱材封入パックの厚みの確認調査>
次に、潜熱蓄熱槽80で使用した蓄熱材収容ユニット70内の蓄熱材封入パック1(縦22cm×横16cmで、縦22cmの辺を上下方向に配置)を、潜熱蓄熱槽80から取り出し、80個の蓄熱材封入パック1の中から、任意に10個の蓄熱材封入パック1を抽出して、これらの厚みを実測する確認調査を行った。図17は、実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法により配設された蓄熱材封入パックを対象とした確認調査で、蓄熱材封入パックの厚みを測定する部位を模式的に示した説明図である。
<Confirmation survey of thickness of heat storage material encapsulated pack>
Next, the heat storage material enclosing pack 1 (22 cm long × 16 cm wide and 22 cm long vertically arranged) in the heat storage material accommodation unit 70 used in the latent heat storage tank 80 is taken out from the latent heat storage tank 80, 80 From the individual heat storage material-enclosed packs 1, 10 heat storage material-enclosed packs 1 were arbitrarily extracted, and a confirmation survey was performed to actually measure the thicknesses. FIG. 17 schematically shows a part for measuring the thickness of the heat storage material encapsulated pack in the confirmation survey for the heat storage material encapsulated pack arranged by the method for arranging the latent heat storage material in the heat storage tank according to the first embodiment. FIG.

<測定方法>
・抽出した10個の蓄熱材封入パック1(サンプル)について、図17に示すように、上端から3cmの位置にある位置P、下端から3cmの位置にある位置R、及び位置Pと位置Rの中央部の位置にある位置Qで、蓄熱材封入パック1の厚みtをノギスで測定した。
<Measurement method>
For the extracted 10 heat storage material encapsulated packs 1 (samples), as shown in FIG. 17, the position P at a position 3 cm from the upper end, the position R at a position 3 cm from the lower end, and the positions P and R The thickness t of the heat storage material-enclosed pack 1 was measured with a caliper at the position Q in the center position.

<測定結果>
図18は、確認調査で蓄熱材封入パックの厚みの測定結果をまとめた表である。図18に示すように、各サンプルとも、蓄熱材封入パック1の中央部の厚みや、下方部の厚みが、上方部の厚みより厚くなっていた。
<Measurement results>
FIG. 18 is a table summarizing the measurement results of the thickness of the heat storage material enclosure pack in the confirmation survey. As shown in FIG. 18, the thickness of the center part of the heat storage material enclosure pack 1 and the thickness of the lower part were thicker than the thickness of the upper part in each sample.

<考察>
測定結果より、変化した厚みの程度の差は、サンプル毎にあるが、何れのサンプルでも、潜熱蓄熱材組成物3が加熱され、液相状態になったとき、潜熱蓄熱材組成物3の融液の一部が、封入袋50の下方に移動したことにより、蓄熱材封入パック1の中央部や下方部で、厚みが増加したものと、推察される。このように、蓄熱材封入パック1のそれぞれで、厚みが不均一になったことで、図7に示すように、隣り合う蓄熱材封入パック1の伝熱面5に、間隙Kが形成され易く、熱媒体83がこの間隙Kを流通し易くなる。そのため、間隙Kを流通する熱媒体83が、隣り合う蓄熱材封入パック1の伝熱面5に接触して、熱伝導を行う伝熱性能が、より一層向上する要因の一つになっているものと考えられる。
<Discussion>
From the measurement results, there is a difference in the degree of the changed thickness for each sample, but in any sample, when the latent heat storage material composition 3 is heated to be in a liquid phase state, the latent heat storage material composition 3 is melted. It is presumed that the thickness has increased at the central portion or the lower portion of the heat storage material encapsulating pack 1 because a part of the liquid has moved below the enclosing bag 50. As described above, since the thickness of each heat storage material-enclosed pack 1 is not uniform, a gap K is easily formed on the heat transfer surface 5 of the adjacent heat storage material-enclosed pack 1 as shown in FIG. The heat medium 83 can easily flow through the gap K. Therefore, the heat transfer performance that conducts heat by the heat medium 83 flowing through the gap K coming into contact with the heat transfer surface 5 of the adjacent heat storage material-enclosed pack 1 is one of the factors for further improvement. It is considered a thing.

次に、本実施形態の潜熱蓄熱材の蓄熱槽内配置方法、及び潜熱蓄熱槽80の作用・効果について説明する。本実施形態の潜熱蓄熱材の蓄熱槽内配置方法は、相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材10を、封入袋50の内部に密閉し、潜熱蓄熱材10により、潜熱蓄熱槽80内の熱媒体83との間で封入袋50を介して熱の移動を行うのにあたり、潜熱蓄熱材10が封入袋50内に収容された状態にあるときの潜熱蓄熱材10の配置態様である潜熱蓄熱材の蓄熱槽内配置方法において、液相状態にある潜熱蓄熱材10の融液の粘度を高める増粘剤22が配合され、封入袋50内には、潜熱蓄熱材10と増粘剤22とを含む潜熱蓄熱材組成物3が収容されている。封入袋50内の潜熱蓄熱材組成物3を、熱媒体83の上方位置から鉛直方向V下方に向けて投影したときの潜熱蓄熱材組成物3の断面積を、鉛直側断面積Svとし、熱媒体83を通じて水平方向Hに向けて投影したときの潜熱蓄熱材組成物3の断面積を、水平側断面積Shとすると、封入袋50内に収容された状態にある潜熱蓄熱材組成物3では、Sv<Sh・・・式(1) 式(1)の条件を満たしていること、潜熱蓄熱材組成物3を収容した状態にある封入袋50(蓄熱材封入パック1)は、水平方向Hに沿う厚みtの変化を許容範囲内に制限するバスケット71により、拘束された状態で、かつ配置姿勢を維持した状態で、熱媒体83の中に収容されていること、を特徴とする。この特徴により、潜熱蓄熱材組成物3が融液の状態になったときに、図6及び図7に示すように、潜熱蓄熱材組成物3の融液が、蓄熱完了時に封入袋50の下方に移動し、封入袋50(蓄熱材封入パック1)の厚みtが、その上側でt0、下側でt1(t0<t1)と、上下で均一ではないため、熱媒体83は、隣り合う蓄熱材封入パック1の間を流通し易くなる。   Next, the arrangement | positioning method in the thermal storage tank of the latent heat storage material of this embodiment, and the effect | action and effect of the latent heat storage tank 80 are demonstrated. The method for arranging the latent heat storage material in the heat storage tank according to the present embodiment is to seal the latent heat storage material 10 that performs heat storage or heat dissipation by using the input and output of latent heat accompanying the phase change inside the encapsulating bag 50, and to store the latent heat storage material. 10, the latent heat storage material 10 is in a state where the latent heat storage material 10 is housed in the encapsulating bag 50 when transferring heat to and from the heat medium 83 in the latent heat storage tank 80 via the enclosing bag 50. In the arrangement method of the latent heat storage material in the heat storage tank, which is an arrangement mode of the material 10, the thickener 22 for increasing the viscosity of the melt of the latent heat storage material 10 in a liquid phase is blended, and the encapsulating bag 50 has latent heat. The latent heat storage material composition 3 including the heat storage material 10 and the thickener 22 is accommodated. The cross-sectional area of the latent heat storage material composition 3 when the latent heat storage material composition 3 in the encapsulating bag 50 is projected downward from the upper position of the heat medium 83 in the vertical direction V is defined as a vertical cross-sectional area Sv. Assuming that the cross-sectional area of the latent heat storage material composition 3 when projected in the horizontal direction H through the medium 83 is a horizontal cross-sectional area Sh, the latent heat storage material composition 3 in a state of being accommodated in the enclosing bag 50 is Sv <Sh ... Formula (1) The filling bag 50 (heat storage material-enclosed pack 1) in the state in which the latent heat storage material composition 3 is accommodated satisfies the condition of Formula (1) in the horizontal direction H. The basket 71 that limits the change in the thickness t along the permissible range is accommodated in the heat medium 83 in a restrained state and in a state in which the arrangement posture is maintained. Due to this feature, when the latent heat storage material composition 3 is in a melt state, as shown in FIGS. 6 and 7, the melt of the latent heat storage material composition 3 is below the sealed bag 50 when the heat storage is completed. Since the thickness t of the encapsulating bag 50 (heat storage material-enclosed pack 1) is not uniform in the vertical direction, t0 on the upper side and t1 (t0 <t1) on the lower side, the heat medium 83 is adjacent to the heat storage. It becomes easy to distribute | circulate between the material enclosure packs 1. FIG.

しかも、図18に示すように、膨張した蓄熱材封入パック1の態様は、各蓄熱材封入パック1毎に異なっているため、たとえ膨張部分で局部的に接触したとしても、その接触面積は、比較的小さく抑えることができる。また、潜熱蓄熱材組成物3を封入袋50内に収容した蓄熱材封入パック1が、図3に示すように、縦置き姿勢で潜熱蓄熱槽80に配されても、潜熱蓄熱材組成物3の融液では、増粘剤22により、構成成分を均一に分散した状態が維持できている。そのため、潜熱蓄熱材組成物3が、液相と固相との間で相変化を繰り返し行っても、構成成分の分布を均一に保つことができている。ひいては、潜熱蓄熱材組成物3の融点・凝固点等の物性が変動するのを抑制することができる。   Moreover, as shown in FIG. 18, since the aspect of the expanded heat storage material encapsulated pack 1 is different for each heat storage material encapsulated pack 1, even if it is locally in contact with the expanded portion, the contact area is It can be kept relatively small. Moreover, even if the heat storage material enclosure pack 1 in which the latent heat storage material composition 3 is accommodated in the encapsulating bag 50 is arranged in the latent heat storage tank 80 in the vertical orientation as shown in FIG. 3, the latent heat storage material composition 3 In this melt, the thickener 22 can maintain a state in which the constituent components are uniformly dispersed. Therefore, even if the latent heat storage material composition 3 repeatedly performs a phase change between the liquid phase and the solid phase, the distribution of the constituent components can be kept uniform. As a result, it can suppress that physical properties, such as melting | fusing point and a freezing point, of the latent heat storage material composition 3 fluctuate.

勿論、蓄熱材封入パック1が、潜熱蓄熱槽80内に縦向きの姿勢で配置されていれば、蓄熱材封入パック1の側面が熱媒体83との伝熱面5になり、蓄熱材封入パック1の上部側に、図6に示すような幅狭な空隙部4は形成される。しかしながら、同じ蓄熱材封入パック1の対比(図10参照)で、その空隙部4の容積は変化しないものの、空隙部4と蓄熱材封入パック1の側面との接触面積は、蓄熱材封入パック1の側面全体の面積の一部に過ぎない。そのため、図3及び図6に示すような縦向きの姿勢は、図8及び図10に示すように、複数の蓄熱材封入パック1を積み重ねた横向きの姿勢の場合に比べ、自重により蓄熱材封入パック1の伝熱面5同士の接触を緩和でき、熱伝導の低下を抑制することができている。   Of course, if the heat storage material-enclosed pack 1 is arranged in a vertical orientation in the latent heat storage tank 80, the side surface of the heat storage material-enclosed pack 1 becomes the heat transfer surface 5 with the heat medium 83, and the heat storage material-enclosed pack A narrow gap 4 as shown in FIG. However, in comparison with the same heat storage material-enclosed pack 1 (see FIG. 10), the volume of the space 4 does not change, but the contact area between the space 4 and the side surface of the heat-storage material-enclosed pack 1 is the heat storage material-enclosed pack 1. It is only a part of the entire area of the side. Therefore, as shown in FIGS. 8 and 10, the vertical orientation as shown in FIG. 3 and FIG. 6 encloses the heat storage material by its own weight as compared to the horizontal orientation in which a plurality of heat storage material enclosure packs 1 are stacked. The contact between the heat transfer surfaces 5 of the pack 1 can be relaxed, and a decrease in heat conduction can be suppressed.

従って、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法によれば、蓄熱またはその放熱を行う潜熱蓄熱材10が封入袋50の内部に収容され、封入袋50を介して、潜熱蓄熱槽80内の熱媒体83と潜熱蓄熱材10との間で熱伝導を行うのにあたり、潜熱蓄熱材10の蓄放熱性能を維持しながら、熱伝導を効率良く行うことができる、という優れた効果を奏する。   Therefore, according to the arrangement method of the latent heat storage material in the heat storage tank according to the present embodiment, the latent heat storage material 10 that stores heat or releases the heat is accommodated in the enclosed bag 50, and the latent heat storage tank is interposed via the enclosed bag 50. In conducting heat between the heat medium 83 in 80 and the latent heat storage material 10, the excellent effect that heat conduction can be performed efficiently while maintaining the heat storage / dissipation performance of the latent heat storage material 10 is achieved. Play.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、封入袋50は、樹脂と金属とを積層した複層構造で、融着可能な材質からなる袋であり、当該封入袋50の外形輪郭をなす外周縁の全てに、融着により封止された融着部54を有していること、を特徴とする。この特徴により、蓄熱材封入パック1全体の剛性が、4辺の融着部54(そのうちの一辺は封止部52)によって増強される。また、融着部54より内側にある蓄熱材封入パック1の伝熱面5は、封入袋50の四方の融着部54で包囲されているため、潜熱蓄熱材組成物3の融液が、蓄熱完了時に封入袋50の下方に移動しても、封入袋50(蓄熱材封入パック1)の厚みtは、封入袋50の上方と下方で、極端に大きく変化しない。これにより、隣り合う蓄熱材封入パック1同士で、たとえ膨張部分で接触したとしても、その接触面積は、比較的小さく抑えることができる。また、潜熱蓄熱材組成物3の融液が封入袋50の下方に移動する量を、潜熱蓄熱材組成物3そのものによる伝熱阻害が顕著に発現しない範囲内に、抑制することができる。さらに、また、蓄熱材封入パック1をバスケット71の内部空間72に収容するにあたり、熱伝導に寄与しない融着部54を、多少変形させ、バスケット71の側部73に当接して係留させた状態で、蓄熱材封入パック1を収容すると、蓄熱材封入パック1は、融着部54でバスケット71の側部73にしっかりと保持でき、熱媒体83との接触も確保し易くなる。   Moreover, in the arrangement method of the latent heat storage material in the heat storage tank according to the present embodiment, the enclosing bag 50 is a bag made of a material that can be fused with a multilayer structure in which a resin and a metal are laminated, and the enclosing bag 50. It has the feature that it has the fusion | melting part 54 sealed by fusion | fusion at all the outer periphery which makes the external shape outline of this. Due to this feature, the rigidity of the entire heat storage material encapsulating pack 1 is enhanced by the four-side fused portion 54 (one side of which is the sealing portion 52). Moreover, since the heat transfer surface 5 of the heat storage material encapsulating pack 1 inside the fusion part 54 is surrounded by the four fusion parts 54 of the encapsulating bag 50, the melt of the latent heat storage material composition 3 is Even when the heat storage is completed, the thickness t of the encapsulating bag 50 (the heat storage material enclosing pack 1) does not change extremely between the upper and lower portions of the enclosing bag 50 even if the storage bag 50 moves downward. Thereby, even if it contacts in the expansion | swelling part between adjacent heat storage material enclosure packs 1, the contact area can be restrained comparatively small. Moreover, the amount by which the melt of the latent heat storage material composition 3 moves to the lower side of the enclosing bag 50 can be suppressed within a range in which the heat transfer inhibition by the latent heat storage material composition 3 itself does not appear remarkably. Further, when the heat storage material encapsulating pack 1 is accommodated in the internal space 72 of the basket 71, the fused portion 54 that does not contribute to heat conduction is slightly deformed and is in contact with the side portion 73 of the basket 71 and moored. Thus, when the heat storage material-enclosed pack 1 is accommodated, the heat storage material-enclosed pack 1 can be firmly held on the side portion 73 of the basket 71 by the fused portion 54, and contact with the heat medium 83 can be easily ensured.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、封入袋50は、ポリエチレン(PE)、ポリプロピレン (PP)、またはポリエチレンテレフタラート(PET)の少なくともいずれかの材質を含むフィルム状樹脂層に、アルミニウムを蒸着したラミネート構造の袋であること、を特徴とする。この特徴により、蓄熱材封入パック1において、全封入袋50の厚みが、例えば、100μm程度であれば、封入袋50での熱伝導の低下がほとんどなく、潜熱蓄熱材組成物3の潜熱蓄熱材10と熱媒体83との間で、潜熱蓄熱材10への蓄熱と、潜熱蓄熱材10からの放熱が十分にできる。また、熱媒体83の温度が100℃近くても、蓄熱材封入パック1の耐熱性は確保できている。また、アルミニウムがフィルム状樹脂層に蒸着された構造になっているため、潜熱蓄熱槽80内の熱媒体83(温水)や、酸素等の気体が、フィルム状樹脂層を通じて潜熱蓄熱材組成物3に接触するのを、アルミニウムの被覆層によって遮断できる。   Further, in the method for arranging the latent heat storage material in the heat storage tank according to the present embodiment, the encapsulating bag 50 is a film containing at least one of polyethylene (PE), polypropylene (PP), or polyethylene terephthalate (PET). It is a bag having a laminate structure in which aluminum is deposited on the resin layer. With this feature, in the heat storage material encapsulated pack 1, if the thickness of the entire encapsulating bag 50 is, for example, about 100 μm, there is almost no decrease in heat conduction in the enclosing bag 50, and the latent heat storage material of the latent heat storage material composition 3 10 and the heat medium 83 can sufficiently store heat to the latent heat storage material 10 and release heat from the latent heat storage material 10. Moreover, even if the temperature of the heat medium 83 is close to 100 ° C., the heat resistance of the heat storage material-enclosed pack 1 can be secured. In addition, since aluminum is deposited on the film-like resin layer, the heat medium 83 (warm water) in the latent heat storage tank 80 and a gas such as oxygen are passed through the film-like resin layer to the latent heat storage material composition 3. Can be blocked by an aluminum coating layer.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、1つの蓄熱材封入パック1につき、潜熱蓄熱材組成物3は、漏洩防止用内袋40とは別に、2枚の封入袋50とにより、入れ子のように、二重に重ね合わせた状態の下で、収容されていること、を特徴とする。この特徴により、万一、蓄熱材封入パック1を潜熱蓄熱槽80の内外で移動させるときや、封入袋50本体の経年劣化等に起因して、潜熱蓄熱材組成物3を覆う封入袋50が損傷した場合でも、封入袋50が二重構造(第1封入袋50A、第2封入袋50B)になっているため、潜熱蓄熱材組成物3の外部への漏洩を防止することができる。   Moreover, in the arrangement method of the latent heat storage material in the heat storage tank according to the present embodiment, the latent heat storage material composition 3 is separated from the leakage prevention inner bag 40 for one heat storage material encapsulated pack 1 in two encapsulated bags. 50. It is characterized in that it is housed in a state of being overlapped double like a nesting. Due to this feature, when the heat storage material enclosure pack 1 is moved inside or outside the latent heat storage tank 80, or due to aging deterioration of the main body of the enclosure bag 50, the encapsulating bag 50 covering the latent heat storage material composition 3 is provided. Even when damaged, since the enclosing bag 50 has a double structure (first enclosing bag 50A and second enclosing bag 50B), leakage of the latent heat storage material composition 3 to the outside can be prevented.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、バスケット71は、潜熱蓄熱材組成物3を収容した状態にある封入袋50(蓄熱材封入パック1)を複数(実施例1では80個)、蓄熱材封入パック1の伝熱面5で熱媒体83と接触可能な状態で収容可能な内部空間72を有し、内部空間72を包囲する4つの側部73と底部74を、目開きを有するステンレス鋼製の金網状に形成されたものであること、を特徴とする。この特徴により、蓄熱材封入パック1の伝熱面5と熱媒体83との接触を確保した上で、蓄熱材封入パック1内の潜熱蓄熱材組成物3の相変化により、蓄熱材封入パック1に多少の変形が生じても、内部空間72に収容した蓄熱材封入パック1の配置状態が、潜熱蓄熱槽80内でほぼ一定に保持できる。   In the method for arranging the latent heat storage material in the heat storage tank according to the present embodiment, the basket 71 includes a plurality of encapsulated bags 50 (heat storage material-enclosed pack 1) in a state in which the latent heat storage material composition 3 is accommodated (Example 1). 80), the heat transfer surface 5 of the heat storage material encapsulating pack 1 has an internal space 72 that can be accommodated in contact with the heat medium 83, and includes four side portions 73 and a bottom portion 74 that surround the internal space 72. It is characterized by being formed in a stainless steel wire mesh with openings. With this feature, the heat storage material-enclosed pack 1 is obtained by the phase change of the latent heat storage material composition 3 in the heat storage material-enclosed pack 1 after ensuring the contact between the heat transfer surface 5 of the heat storage material-enclosed pack 1 and the heat medium 83. Even if some deformation occurs, the arrangement state of the heat storage material-enclosed pack 1 accommodated in the internal space 72 can be kept substantially constant in the latent heat storage tank 80.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、潜熱蓄熱材10は、無機塩水和物(アンモニウムミョウバン12水和物)10からなること、無機塩水和物10に含む水和水を脱離した無水和物11(焼アンモニウムミョウバン11)と、加えた水12とを、漏洩防止用内袋40内で水和反応させることにより、無機塩水和物10を生成し、封入袋50内に封入すること、を特徴とする。この特徴により、無水和物11の漏洩防止用内袋40への充填前、隣接する粉末同士の間にあった間隙は水和反応時に、漏洩防止用内袋40に加えた水12で満たされる。そのため、漏洩防止用内袋40の内容積に対し、潜熱蓄熱材10が実質的に占める体積充填率は、粉末状の無機塩水和物10(アンモニウムミョウバン12水和物)を漏洩防止用内袋40内に直に充填する場合に比べて、大幅に向上する。さらに、間隙の発生を抑えているため、このような場合との対比で、潜熱蓄熱材10と潜熱蓄熱槽80内の熱媒体83との間で、熱伝導に要する時間も短くなり、伝熱性能は高くなる。   Moreover, in the arrangement method of the latent heat storage material in the heat storage tank according to the present embodiment, the latent heat storage material 10 is composed of an inorganic salt hydrate (ammonium alum 12 hydrate) 10 and hydrated in the inorganic salt hydrate 10. An inorganic salt hydrate 10 is produced by hydrating the anhydrous 11 (baked ammonium alum 11) from which water has been removed and the added water 12 in the inner bag 40 for preventing leakage, and encapsulating the bag. 50 is enclosed. Due to this feature, the gap between the adjacent powders before the anhydrous 11 is filled into the leakage preventing inner bag 40 is filled with water 12 added to the leakage preventing inner bag 40 during the hydration reaction. Therefore, the volume filling rate that the latent heat storage material 10 substantially occupies with respect to the internal volume of the leakage preventing inner bag 40 is the powdered inorganic salt hydrate 10 (ammonium alum 12 hydrate). Compared with the case of directly filling the inside 40, it is greatly improved. Furthermore, since the generation of gaps is suppressed, the time required for heat conduction between the latent heat storage material 10 and the heat medium 83 in the latent heat storage tank 80 is shortened in comparison with such a case. Performance is high.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、潜熱蓄熱材10の主成分は、ミョウバン水和物10であること、を特徴とする。この特徴により、例えば、アンモニウムミョウバン12水和物等のようなミョウバン水和物を用いた潜熱蓄熱材10は、相変化に伴う潜熱が比較的大きい物性を有する。そのため、このような物性の潜熱蓄熱材10では、蓄熱できる蓄熱量も比較的大きい。また、ミョウバン水和物である潜熱蓄熱材10を含む潜熱蓄熱材組成物3は、大容量の熱を蓄熱し、それを放熱する蓄放熱性能を具備できている点で、優れている。   Moreover, in the arrangement method of the latent heat storage material in the heat storage tank according to the present embodiment, the main component of the latent heat storage material 10 is alum hydrate 10. Due to this feature, for example, the latent heat storage material 10 using alum hydrate such as ammonium alum 12 hydrate has a relatively large physical property of latent heat accompanying phase change. Therefore, in the latent heat storage material 10 having such physical properties, the heat storage amount that can store heat is relatively large. In addition, the latent heat storage material composition 3 including the latent heat storage material 10 that is alum hydrate is excellent in that it has a heat storage and heat dissipation performance of storing a large amount of heat and radiating it.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、ミョウバン水和物10は、アンモニウムミョウバン12水和物(AlNH(SO・12HO)、または、カリウムミョウバン12水和物(AlK(SO・12HO)であること、を特徴とする。この特徴により、アンモニウムミョウバン12水和物やカリウムミョウバン12水和物は、市場で幅広く流通して入手し易く、安価である。 Moreover, in the arrangement method of the latent heat storage material in the heat storage tank according to this embodiment, alum hydrate 10 is ammonium alum 12 hydrate (AlNH 4 (SO 4 ) 2 · 12H 2 O) or potassium alum 12. It is characterized by being a hydrate (AlK (SO 4 ) 2 · 12H 2 O). Due to this feature, ammonium alum 12 hydrate and potassium alum 12 hydrate are easily distributed in the market and are inexpensive.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、増粘剤22は、糖アルコールに属する物質であること、を特徴とする。この特徴により、無機塩水和物10が、アンモニウムミョウバン12水和物等のミョウバン水和物であるため、増粘剤22は無機塩水和物10の構成成分である水に溶解し易く、組成した潜熱蓄熱材組成物3は、化学的に安定している。また、潜熱蓄熱材10の成分を均一な状態に保持することができるほか、潜熱蓄熱材10と同様、増粘剤22にも、潜熱の蓄熱または放熱を可能とする蓄放熱性能を具備することができる。   Moreover, in the thermal storage tank arrangement | positioning method of the latent heat storage material which concerns on this embodiment, the thickener 22 is a substance which belongs to sugar alcohol, It is characterized by the above-mentioned. Due to this feature, since the inorganic salt hydrate 10 is alum hydrate such as ammonium alum 12 hydrate, the thickener 22 is easily dissolved in water that is a constituent of the inorganic salt hydrate 10 and is composed. The latent heat storage material composition 3 is chemically stable. In addition to being able to keep the components of the latent heat storage material 10 in a uniform state, the thickener 22 also has a heat storage and heat dissipation performance that enables the latent heat to be stored or released, as with the latent heat storage material 10. Can do.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、増粘剤22は、マンニトールであること、を特徴とする。この特徴により、マンニトールは、液相状態にある潜熱蓄熱材10の融液の粘度を高めると共に、当該潜熱蓄熱材組成物3を構成する成分同士の相分離現象や、この潜熱蓄熱材組成物3を構成する成分で、密度が互いに異なる成分同士に対し、密度差による成分同士の不均一化を、効果的に防止することができる。また、マンニトールは、無毒で非危険物であるため、取扱いが容易である上に、安価でもある。   In the method for arranging a latent heat storage material in a heat storage tank according to the present embodiment, the thickener 22 is mannitol. Due to this feature, mannitol increases the viscosity of the melt of the latent heat storage material 10 in a liquid phase, and also causes a phase separation phenomenon between components constituting the latent heat storage material composition 3 and the latent heat storage material composition 3. It is possible to effectively prevent non-uniformity of components due to a density difference with respect to components having different densities. Moreover, since mannitol is nontoxic and non-dangerous, it is easy to handle and inexpensive.

また、本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法では、増粘剤22は、ヘテロ多糖(hetero polysaccharide)に属する水溶性の多糖類で、潜熱蓄熱材組成物3に含まれる水とカチオンとの相互作用に基づいて、液相状態にある潜熱蓄熱材組成物3の融液の粘度を高める物性を有するゲランガム相当物質の一種であること、を特徴とする。また、増粘剤22は、LAゲランガムであること、を特徴とする。このような特徴により、LAゲランガム22自体は、蓄熱特性を具備していないが、潜熱蓄熱材10(アンモニウムミョウバン12水和物)にLAゲランガム22を、例えば、僅か1.0wt%等のという少量添加するだけで、LAゲランガム22のゲル化が促進され、潜熱蓄熱材組成物3における構成成分の分離を、より効果的に抑制することができる。また、LAゲランガム22は、アンモニウムミョウバン(潜熱蓄熱材10)等のミョウバン水和物と混合し、密閉条件下で融点以上に加熱されても、ミョウバン水和物との間で化学反応を起こさず、増粘剤22としての機能を維持することができる。   Moreover, in the arrangement method in the heat storage tank of the latent heat storage material which concerns on this embodiment, the thickener 22 is the water-soluble polysaccharide which belongs to heteropolysaccharide (hetero polysaccharide), and the water contained in the latent heat storage material composition 3 and It is a kind of gellan gum-equivalent substance having physical properties that increase the viscosity of the melt of the latent heat storage material composition 3 in a liquid phase based on the interaction with cations. Further, the thickener 22 is characterized by being LA gellan gum. Due to such characteristics, the LA gellan gum 22 itself does not have heat storage characteristics, but the LA gellan gum 22 is added to the latent heat storage material 10 (ammonium alum 12 hydrate), for example, as small as 1.0 wt%. The gelation of LA gellan gum 22 is promoted only by adding, and the separation of the constituent components in the latent heat storage material composition 3 can be more effectively suppressed. In addition, LA gellan gum 22 does not cause a chemical reaction with alum hydrate even when mixed with alum hydrate such as ammonium alum (latent heat storage material 10) and heated above the melting point under sealed conditions. The function as the thickener 22 can be maintained.

また、例えば、アンモニウムミョウバンやカリウムミョウバン12水和物等のミョウバン水和物の融液が、酸性を呈する物性であっても、LAゲランガム22は、耐酸性の物性を有しているため、LAゲランガム22の添加に起因して、潜熱蓄熱材組成物3が、経時的に変性、変質してしまうこともない。また、LAゲランガム22は、市場で幅広く流通して入手し易く、安価である。しかも、LAゲランガム22は、無毒で非危険物であるため、取扱いが容易である。1wt%以下という少量のLAゲランガム22が、潜熱蓄熱材組成物3に含まれているだけで、潜熱蓄熱材組成物3の融液は、密度差に起因した構成成分の分散を抑制するのに足りる十分な粘度になる。また、LAゲランガム22の添加量が1wt%以下と僅かであるため、LAゲランガム22を添加した潜熱蓄熱材組成物3は、同体積で比べても、潜熱蓄熱材10だけの蓄熱量より大幅に低下するのを抑制できている。   Further, for example, even if the melt of alum hydrate such as ammonium alum or potassium alum 12 hydrate has an acidic property, LA gellan gum 22 has an acid-resistant physical property. Due to the addition of gellan gum 22, the latent heat storage material composition 3 is not denatured or altered over time. Also, LA gellan gum 22 is easily distributed and widely available in the market and is inexpensive. Moreover, since LA gellan gum 22 is non-toxic and non-dangerous, it is easy to handle. Only a small amount of LA gellan gum 22 of 1 wt% or less is contained in the latent heat storage material composition 3, and the melt of the latent heat storage material composition 3 suppresses dispersion of constituent components due to density differences. The viscosity is sufficient. Moreover, since the addition amount of LA gellan gum 22 is as small as 1 wt% or less, the latent heat storage material composition 3 to which LA gellan gum 22 is added is much larger than the heat storage amount of only the latent heat storage material 10 even when compared with the same volume. It is possible to suppress the decrease.

また、上記構成を有する本実施形態に係る潜熱蓄熱槽80の作用・効果について説明する。本実施形態に係る潜熱蓄熱槽80では、相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材10に、潜熱蓄熱材10の物性を調整する添加剤20を配合してなる潜熱蓄熱材組成物3と、潜熱蓄熱材組成物3との間で熱を移動させるための媒体である熱媒体83と、潜熱蓄熱材組成物3を内部に収容し密閉する封入袋50とを、備えた潜熱蓄熱槽80において、潜熱蓄熱材組成物3は、前述した本実施形態に係る潜熱蓄熱材の蓄熱槽内配置方法で、配設されていること、を特徴とする。この特徴により、潜熱蓄熱材組成物3が、蓄熱とその放熱のサイクルを複数回繰り返しても、潜熱蓄熱材組成物3の構成成分で密度差に起因した分離が抑制されている。そのため、潜熱蓄熱槽80のように、潜熱蓄熱材組成物3を充填した縦長形状の封入袋50を、縦置き配置で潜熱蓄熱槽80内に収容する場合のほか、潜熱蓄熱材組成物3を充填した袋状の蓄熱材収容具を、潜熱蓄熱槽80内に縦方向(図9中、上下方向)に並べて収容する場合等でも、潜熱蓄熱材組成物3は、その初期状態の蓄熱性能を、長期間、安定した状態で維持することができる。特に、1つの封入袋50が、例えば、数〜十数cm等の縦寸法であっても、本出願人は、この封入袋50の上部と下部で、潜熱蓄熱材組成物3の蓄熱量に差異がないことを、実験で確認できている。   Moreover, the effect | action and effect of the latent heat storage tank 80 which concerns on this embodiment which has the said structure are demonstrated. In the latent heat storage tank 80 according to the present embodiment, an additive 20 that adjusts the physical properties of the latent heat storage material 10 is blended with the latent heat storage material 10 that stores or radiates heat using the input and output of latent heat associated with phase change. A latent heat storage material composition 3, a heat medium 83 that is a medium for transferring heat between the latent heat storage material composition 3, and an encapsulating bag 50 that houses and seals the latent heat storage material composition 3 therein. In the latent heat storage tank 80, the latent heat storage material composition 3 is arranged by the above-described arrangement method of the latent heat storage material in the heat storage tank according to the present embodiment. Due to this feature, even if the latent heat storage material composition 3 repeats a cycle of heat storage and its heat release a plurality of times, separation due to the density difference is suppressed among the constituent components of the latent heat storage material composition 3. Therefore, as in the case of the latent heat storage tank 80, in addition to the case where the vertically long encapsulated bag 50 filled with the latent heat storage material composition 3 is accommodated in the latent heat storage tank 80 in a vertical arrangement, the latent heat storage material composition 3 is also stored. Even when the filled bag-shaped heat storage material container is stored in the latent heat storage tank 80 in the vertical direction (vertical direction in FIG. 9), the latent heat storage material composition 3 has its initial heat storage performance. Can be maintained in a stable state for a long time. In particular, even if one encapsulating bag 50 has a vertical dimension of, for example, several to several tens of centimeters, the applicant assigns the heat storage amount of the latent heat storage material composition 3 at the upper and lower portions of the enclosing bag 50. Experiments have confirmed that there is no difference.

また、本実施形態に係る潜熱蓄熱槽80では、潜熱蓄熱材組成物3の過冷却現象を防止し、潜熱蓄熱材組成物3の相変化に伴う状態変化(蓄熱材としての機能)が安定し、このような潜熱蓄熱材組成物3を用いた潜熱蓄熱槽80は、熱供給源と熱提供先との間で行う熱エネルギの授受について、高い信頼性で実現することができる。   Moreover, in the latent heat storage tank 80 which concerns on this embodiment, the supercooling phenomenon of the latent heat storage material composition 3 is prevented, and the state change (function as a heat storage material) accompanying the phase change of the latent heat storage material composition 3 is stabilized. And the latent heat storage tank 80 using such a latent heat storage material composition 3 can implement | achieve the thermal energy exchange between a heat supply source and a heat | fever supply destination with high reliability.

すなわち、検証実験1,2でも述べたように、本実施形態の実施例1に係る潜熱蓄熱材の蓄熱槽内配置方法では、潜熱蓄熱材組成物3に対し、放熱速度が、比較例1の場合に比して、速くなる。出願人の知見では、放熱速度が比較的速くなると、潜熱蓄熱材組成物3に過冷却現象が生じ難い傾向にあり、その反対に、放熱速度がより遅いと、潜熱蓄熱材組成物3に過冷却現象が生じ易い傾向にある。放熱速度が比較的速いと、潜熱蓄熱材組成物3(潜熱蓄熱材10)の放熱により供給できる供給熱量は、給湯設備や冷暖房を行う空気調和設備等、熱提供先側の熱源で必要としている需要熱量に、より短い時間で達することができ、潜熱蓄熱材10の放熱が、熱提供先の熱の需要に追従することが可能になるからである。   That is, as described in the verification experiments 1 and 2, in the method for arranging the latent heat storage material in the heat storage tank according to Example 1 of the present embodiment, the heat release rate of the latent heat storage material composition 3 is the same as that of Comparative Example 1. It is faster than the case. According to the applicant's knowledge, if the heat release rate is relatively high, the latent heat storage material composition 3 tends to be less likely to cause a supercooling phenomenon. Conversely, if the heat release rate is slower, the latent heat storage material composition 3 is overheated. Cooling phenomenon tends to occur easily. If the heat release rate is relatively fast, the amount of heat that can be supplied by the heat release of the latent heat storage material composition 3 (latent heat storage material 10) is required by the heat source on the heat supply side, such as hot water supply equipment or air conditioning equipment that performs air conditioning. This is because the amount of heat required can be reached in a shorter time, and the heat release from the latent heat storage material 10 can follow the heat demand of the heat supply destination.

以上において、本発明を実施形態の実施例1、及びその比較例1に即して説明したが、本発明は上記実施形態の実施例1、及びその比較例1に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できる。   In the above, the present invention has been described based on Example 1 of the embodiment and Comparative Example 1, but the present invention is not limited to Example 1 of the above embodiment and Comparative Example 1. The present invention can be changed and applied as appropriate without departing from the scope of the invention.

(1)例えば、実施形態の実施例1では、増粘剤22をLAゲランガムとしたが、増粘剤は、実施形態に挙げた増粘剤以外にも、例えば、前述したようなヘテロ多糖に属するゲランガム相当物質等、多糖類に属する水溶性の物質であり、潜熱蓄熱材組成物に含まれる水、及びカチオンの働きに基づいて、液相状態にある潜熱蓄熱材組成物の融液の粘度を高める物質に該当するものであれば、何でも良い。但し、潜熱蓄熱材組成物の使用上、支障が生じないことが前提である。
(2)また、実施形態の実施例1では、増粘剤と融点調整剤を兼ねたマンニトールにより潜熱蓄熱材組成物3の融点を約90℃に調整したが、融点調整剤は、比較例1のように、増粘剤と別々に用いても良い。また、融点調整剤により調整される蓄熱材組成物の融点温度は、約90℃に限定されるものではなく、蓄熱材組成物から放熱される熱を利用する熱供給先で、必要する熱源の温度に対応した温度に調整されたものであれば良い。
(1) For example, in Example 1 of the embodiment, the thickener 22 is LA gellan gum. However, the thickener is, for example, a heteropolysaccharide as described above, in addition to the thickener listed in the embodiment. The viscosity of the melt of the latent heat storage material composition in a liquid phase based on the action of water and cations, which are water-soluble substances belonging to polysaccharides, such as the gellan gum equivalent material belonging to Any substance may be used as long as it falls under the substance that enhances the pH. However, it is a premise that there will be no trouble in using the latent heat storage material composition.
(2) Moreover, in Example 1 of the embodiment, the melting point of the latent heat storage material composition 3 was adjusted to about 90 ° C. with mannitol which served as a thickener and a melting point adjuster. Like, you may use separately from a thickener. In addition, the melting point temperature of the heat storage material composition adjusted by the melting point adjusting agent is not limited to about 90 ° C., but is a heat supply destination that uses heat radiated from the heat storage material composition, and a necessary heat source. Any device adjusted to a temperature corresponding to the temperature may be used.

(3)また、実施形態では、潜熱蓄熱材組成物3を利用した潜熱蓄熱槽80を、図1に例示したが、本発明に係る潜熱蓄熱槽について、当該潜熱蓄熱槽内で潜熱蓄熱材組成物等と熱媒体とを区画し、潜熱蓄熱材組成物等と熱媒体との間で、熱が伝導できる構造であれば、潜熱蓄熱槽の構成・形状・仕様は、何でも良い。
(4)また、実施形態では、ガイド手段の一例であるバスケット71を、ステンレス鋼製の網かごとしたが、ガイド手段は、例えば、ステンレス鋼製の棚等のように、潜熱蓄熱材組成物を収容した状態にある蓄熱材収容具を、拘束された状態で、かつ配置姿勢を維持した状態で、熱媒体の中に収容し、水平方向に沿う厚みの変化を許容範囲内に制限するものであれば、何でも良い。
(5)また、実施形態では、蓄熱材として、相変化に伴う潜熱の移動により蓄熱または放熱を行う潜熱蓄熱材を挙げたが、蓄熱材は、水との化学反応に伴う反応熱の出入りを利用して蓄熱または放熱を行う化学蓄熱材にも適用できる場合があるものと考えられる。
(3) Moreover, in embodiment, although the latent heat storage tank 80 using the latent heat storage material composition 3 was illustrated in FIG. 1, about a latent heat storage tank concerning this invention, a latent heat storage material composition is concerned in the said latent heat storage tank. Any structure, shape, and specification of the latent heat storage tank may be used as long as the structure can partition the object and the heat medium and conduct heat between the latent heat storage material composition and the heat medium.
(4) Further, in the embodiment, the basket 71 which is an example of the guide means is made of a stainless steel net, but the guide means is a latent heat storage material composition such as a stainless steel shelf. A heat storage material container that is in a state in which it is housed is housed in a heat medium in a restrained state and in a state where the arrangement posture is maintained, and the change in thickness along the horizontal direction is limited to an allowable range Anything is fine.
(5) In the embodiment, as the heat storage material, the latent heat storage material that stores or releases heat by moving the latent heat accompanying the phase change is described. However, the heat storage material allows the reaction heat to enter and exit from the chemical reaction with water. It may be applicable to chemical heat storage materials that use heat storage or heat dissipation.

3 潜熱蓄熱材組成物
10 潜熱蓄熱材(無機塩水和物)
11 無水和物
12 水
20 添加剤
22 増粘剤
40 漏洩防止用内袋(蓄熱材収容具)
50 封入袋(蓄熱材収容具)
54 融着部
71 バスケット(ガイド手段)
72 内部空間
73 側部
80 潜熱蓄熱槽
83 熱媒体
H 水平方向
V 鉛直方向
Sh 水平側断面積
Sv 鉛直側断面積
t 厚み
3 Latent heat storage material composition 10 Latent heat storage material (inorganic salt hydrate)
11 Nonhydrate 12 Water 20 Additive 22 Thickener 40 Leakage prevention inner bag (heat storage material container)
50 Enclosed bag (heat storage material container)
54 Fusion part 71 Basket (guide means)
72 Internal space 73 Side 80 Latent heat storage tank 83 Heat medium H Horizontal direction V Vertical direction Sh Horizontal side sectional area Sv Vertical side sectional area t Thickness

Claims (13)

相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材を、蓄熱材収容具の内部に密閉し、該潜熱蓄熱材により、潜熱蓄熱槽内の熱媒体との間で該蓄熱材収容具を介して熱の移動を行うのにあたり、該潜熱蓄熱材が該蓄熱材収容具内に収容された状態にあるときの該潜熱蓄熱材の配置態様である潜熱蓄熱材の蓄熱槽内配置方法において、
液相状態にある前記潜熱蓄熱材の融液の粘度を高める増粘剤が配合され、
前記蓄熱材収容具内には、前記潜熱蓄熱材と前記増粘剤とを含む潜熱蓄熱材組成物が収容されていること、
前記蓄熱材収容具内の前記潜熱蓄熱材組成物を、
前記熱媒体の上方位置から鉛直方向下方に向けて投影したときの前記潜熱蓄熱材組成物の断面積を、鉛直側断面積Svとし、前記熱媒体を通じて水平方向に向けて投影したときの前記潜熱蓄熱材組成物の断面積を、水平側断面積Shとすると、
前記蓄熱材収容具内に収容された状態にある前記潜熱蓄熱材組成物では、
Sv<Sh ・・・式(1)
前記式(1)の条件を満たしていること、
前記潜熱蓄熱材組成物を収容した状態にある前記蓄熱材収容具は、水平方向に沿う厚みの変化を許容範囲内に制限するガイド手段により、拘束された状態で、一段につき、前記水平方向に複数並べて配置された蓄熱材収容具集合物を、前記鉛直方向に複数段に亘って積み重ねられ、かつ上下に隣接する段の前記蓄熱材収容具集合物同士を、互いに直交した向きに配置することにより、配置姿勢を維持した状態で、前記熱媒体の中に収容されていること、
前記潜熱蓄熱材組成物は、液体を透過しないフィルム状の樹脂製袋内に充填されていること
特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
A latent heat storage material that stores or radiates heat using the input and output of latent heat that accompanies a phase change is sealed inside the heat storage material container, and the latent heat storage material allows the latent heat storage material to move between the heat medium in the latent heat storage tank. The heat storage tank of the latent heat storage material, which is an arrangement mode of the latent heat storage material when the latent heat storage material is in the state of being stored in the heat storage material storage tool in transferring heat through the heat storage material storage device In the internal arrangement method,
A thickener that increases the viscosity of the melt of the latent heat storage material in a liquid phase state is blended,
In the heat storage material container, a latent heat storage material composition containing the latent heat storage material and the thickener is stored,
The latent heat storage material composition in the heat storage material container,
The cross-sectional area of the latent heat storage material composition when projected downward in the vertical direction from the upper position of the heat medium is defined as a vertical cross-sectional area Sv, and the latent heat when projected in the horizontal direction through the heat medium When the cross-sectional area of the heat storage material composition is the horizontal cross-sectional area Sh,
In the latent heat storage material composition in a state accommodated in the heat storage material container,
Sv <Sh (1)
Satisfying the condition of the formula (1),
In the state where the latent heat storage material composition is stored, the heat storage material container is constrained by guide means that limits the change in thickness along the horizontal direction to within an allowable range, and in the horizontal direction for each step. A plurality of heat storage material container assemblies arranged side by side are stacked in a plurality of stages in the vertical direction, and the heat storage material container assemblies of the adjacent upper and lower stages are arranged in directions orthogonal to each other. Is stored in the heat medium in a state in which the arrangement posture is maintained,
The latent heat storage material composition is filled in a film-like resin bag that does not transmit liquid ,
A method for arranging a latent heat storage material in a heat storage tank.
請求項1に記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記潜熱蓄熱材組成物を充填した状態にある前記樹脂製袋は、複数の前記蓄熱材収容具により、入れ子のように、多重に重ね合わせた状態の下で、収容されており、前記複数の蓄熱材収容具の内部は、何れも密封されていること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to claim 1,
The resin bag in a state filled with the latent heat storage material composition is accommodated in a plurality of the heat storage material containers in a nested manner, such as nested, The inside of the heat storage material container must be sealed,
A method for arranging a latent heat storage material in a heat storage tank.
請求項1または請求項2に記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記蓄熱材収容具は、樹脂と金属とを積層した複層構造で、融着可能な材質からなる袋または容器であり、当該蓄熱材収容具の外形輪郭をなす外周縁の少なくとも一部に、融着により封止された融着部を有していること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the method for arranging the latent heat storage material in the heat storage tank according to claim 1 or 2,
The heat storage material container is a bag or container made of a material that can be fused in a multilayer structure in which a resin and a metal are laminated, and at least a part of the outer periphery that forms the outer contour of the heat storage material container, Having a fusion part sealed by fusion;
A method for arranging a latent heat storage material in a heat storage tank.
請求項3に記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記蓄熱材収容具は、ポリエチレン(PE:polyethylene)、ポリプロピレン (PP:polypropylene)、またはポリエチレンテレフタラート(PET:polyethylene terephthalate)の少なくともいずれかの材質を含むフィルム状樹脂層に、アルミニウムを蒸着したラミネート構造の袋であること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to claim 3,
The heat storage material container is a laminate in which aluminum is deposited on a film-like resin layer containing at least one of polyethylene (PE), polypropylene (PP), or polyethylene terephthalate (PET). Being a bag of makeup,
A method for arranging a latent heat storage material in a heat storage tank.
請求項1乃至請求項4のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記ガイド手段は、前記潜熱蓄熱材組成物を収容した状態にある前記蓄熱材収容具を複数、前記蓄熱材収容具の伝熱面で前記熱媒体と接触可能な状態で収容可能な内部空間を有し、前記内部空間を包囲する少なくとも側部を、目開きを有する網状に形成されたものであること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the thermal storage tank arrangement method of the latent heat storage material according to any one of claims 1 to 4,
It said guide means, a plurality of the heat storage material container of a state that houses the latent heat storage material composition, can accommodate internal space capable contact with the heating medium in the heat transfer surface of the heat storage material containing assembly Having at least a side part surrounding the internal space, and having a mesh shape with openings
A method for arranging a latent heat storage material in a heat storage tank.
請求項1乃至請求項5のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記潜熱蓄熱材は、無機塩水和物からなること、
前記無機塩水和物に含む水和水を脱離した無水和物と、加えた水とを、前記蓄熱材収容具内で水和反応させることにより、前記無機塩水和物を生成し、前記蓄熱材収容具内に封入すること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to any one of claims 1 to 5,
The latent heat storage material comprises an inorganic salt hydrate;
The inorganic salt hydrate is generated by dehydrating the anhydrous hydrated water contained in the inorganic salt hydrate and the added water in the heat storage material container to produce the inorganic salt hydrate. Enclosing in a material container,
A method for arranging a latent heat storage material in a heat storage tank.
請求項1乃至請求項6のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記潜熱蓄熱材の主成分は、ミョウバン水和物であること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to any one of claims 1 to 6,
The main component of the latent heat storage material is alum hydrate,
A method for arranging a latent heat storage material in a heat storage tank.
請求項7に記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記ミョウバン水和物は、アンモニウムミョウバン12水和物(AlNH(SO・12HO)、または、カリウムミョウバン12水和物(AlK(SO・12HO)であること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to claim 7,
The alum hydrate is ammonium alum 12 hydrate (AlNH 4 (SO 4 ) 2 · 12H 2 O) or potassium alum 12 hydrate (AlK (SO 4 ) 2 · 12H 2 O). ,
A method for arranging a latent heat storage material in a heat storage tank.
請求項1乃至請求項8のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、
前記増粘剤は、糖アルコールに属する物質であること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to any one of claims 1 to 8,
The thickener is a substance belonging to sugar alcohol;
A method for arranging a latent heat storage material in a heat storage tank.
請求項9に記載する潜熱蓄熱材の蓄熱槽内配置方法において、
増粘剤は、マンニトール(C14)であること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to claim 9,
The thickener is mannitol (C 6 H 14 O 6 ),
A method for arranging a latent heat storage material in a heat storage tank.
請求項1乃至請求項8のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法において、
増粘剤は、ヘテロ多糖(hetero polysaccharide)に属する水溶性の多糖類で、前記潜熱蓄熱材組成物に含まれる水とカチオンとの相互作用に基づいて、液相状態にある前記潜熱蓄熱材組成物の融液の粘度を高める物性を有するゲランガム相当物質であること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to any one of claims 1 to 8,
The thickener is a water-soluble polysaccharide belonging to a heteropolysaccharide, and the latent heat storage material composition in a liquid phase state based on the interaction between water and cations contained in the latent heat storage material composition A gellan gum equivalent material having physical properties that increase the viscosity of the melt of the product,
A method for arranging a latent heat storage material in a heat storage tank.
請求項11に記載する潜熱蓄熱材の蓄熱槽内配置方法において、
増粘剤は、ゲランガム(gellan gum)であること、
を特徴とする潜熱蓄熱材の蓄熱槽内配置方法。
In the heat storage tank arrangement method of the latent heat storage material according to claim 11,
The thickener is gellan gum,
A method for arranging a latent heat storage material in a heat storage tank.
相変化に伴う潜熱の出入りを利用して蓄熱またはその放熱を行う潜熱蓄熱材に、該潜熱蓄熱材の物性を調整する添加剤を配合してなる潜熱蓄熱材組成物と、前記潜熱蓄熱材組成物との間で熱を移動させるための媒体である熱媒体と、前記潜熱蓄熱材組成物を内部に収容する蓄熱材収容具とを、備えた潜熱蓄熱槽において、
前記潜熱蓄熱材組成物は、請求項1乃至請求項12のいずれか1つに記載する潜熱蓄熱材の蓄熱槽内配置方法で、配設されていること、
を特徴とする潜熱蓄熱槽。
A latent heat storage material composition obtained by blending an additive that adjusts the physical properties of the latent heat storage material into a latent heat storage material that stores or radiates heat using the input and output of latent heat accompanying phase change, and the latent heat storage material composition In a latent heat storage tank comprising a heat medium that is a medium for transferring heat between objects and a heat storage material container that stores the latent heat storage material composition therein,
The latent heat storage material composition is provided by the method for disposing a latent heat storage material in a heat storage tank according to any one of claims 1 to 12,
A latent heat storage tank characterized by
JP2017061715A 2017-03-27 2017-03-27 Method for disposing latent heat storage material in heat storage tank and latent heat storage tank Active JP6588491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061715A JP6588491B2 (en) 2017-03-27 2017-03-27 Method for disposing latent heat storage material in heat storage tank and latent heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061715A JP6588491B2 (en) 2017-03-27 2017-03-27 Method for disposing latent heat storage material in heat storage tank and latent heat storage tank

Publications (2)

Publication Number Publication Date
JP2018162957A JP2018162957A (en) 2018-10-18
JP6588491B2 true JP6588491B2 (en) 2019-10-09

Family

ID=63861008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061715A Active JP6588491B2 (en) 2017-03-27 2017-03-27 Method for disposing latent heat storage material in heat storage tank and latent heat storage tank

Country Status (1)

Country Link
JP (1) JP6588491B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052713A (en) * 2019-10-02 2021-04-08 東邦瓦斯株式会社 Thermal insulation method for container content and thermal insulation tool for container content
JP6765573B1 (en) * 2019-10-04 2020-10-07 三菱電機株式会社 Hot water heater
KR102598432B1 (en) * 2021-06-02 2023-11-07 한국과학기술원 Low temperature thermal energy storage apparatus
KR102347363B1 (en) * 2021-08-26 2022-01-04 최승길 Latent heat storage apparatus for geothermal system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103288A (en) * 1976-02-23 1977-08-30 Toyo Aluminium Kk Vacuum packaging goods of powder and vacuum gas fill packaging goods
JPS59191079U (en) * 1983-06-03 1984-12-18 三菱電機株式会社 heat storage device
JPS60253780A (en) * 1984-05-29 1985-12-14 三菱製紙株式会社 Packing paper for heat-insulating material
JPH04236095A (en) * 1991-01-16 1992-08-25 Toshiba Corp Heat accumulating device
JPH09196581A (en) * 1996-01-16 1997-07-31 Mayekawa Mfg Co Ltd Structure of heat storage tank
JPH1192757A (en) * 1997-09-17 1999-04-06 Asahi Denka Kogyo Kk Latent heat storage material composition for ice heat storage system
GB9819530D0 (en) * 1998-09-09 1998-10-28 Smithkline Beecham Plc Novel compositions and use
JP2005502581A (en) * 2000-12-20 2005-01-27 アルコン、インコーポレイテッド Intraocular perfusion solution with improved flow characteristics
JP2008133804A (en) * 2006-11-29 2008-06-12 Toyota Motor Corp Method for manufacturing engine
JP6295615B2 (en) * 2013-11-12 2018-03-20 いすゞ自動車株式会社 Latent heat storage tank and latent heat storage bag using latent heat storage agent
JP6261124B2 (en) * 2014-01-27 2018-01-17 大阪瓦斯株式会社 Thermal storage material composition, thermal storage body, and thermal storage device
JP6371744B2 (en) * 2015-09-09 2018-08-08 東邦瓦斯株式会社 Latent heat storage material composition and latent heat storage tank

Also Published As

Publication number Publication date
JP2018162957A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6588491B2 (en) Method for disposing latent heat storage material in heat storage tank and latent heat storage tank
Douvi et al. Phase change materials in solar domestic hot water systems: A review
Keshteli et al. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review
Mohamed et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems
ES2800501T3 (en) Container for phase change material
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
JP2012048905A (en) Battery including coolant, and battery pack including coolant
JP2006329604A (en) Dry type heat-exchanging thermal accumulator
Han et al. Preparation and application of composite EG/Ba (OH) 2· 8 H2O form‐stable phase change material for solar thermal storage
WO2018147199A1 (en) Latent heat storage material composition
JP6134273B2 (en) Latent heat storage material and latent heat storage tank
JP2008020177A (en) Heat storage system
Algarni Evaluation and optimization of the performance and efficiency of a hybrid flat plate solar collector integrated with phase change material and heat sink
JP6279778B1 (en) Latent heat storage material composition
JP2013087276A (en) Form of latent heat storage body
JP6674495B2 (en) Thermal storage system
Hong et al. Experimental study on a new thermal storage tank with an embedded bionic skeleton based on inorganic hydrated salt phase change material
JP6434867B2 (en) Heat storage material filling container and heat storage tank
JP3873229B2 (en) Thermal storage device
JP6754275B2 (en) Manufacturing method of heat storage device
Murali et al. A review of latent heat thermal energy storage systems
Kanimozhi et al. Enhancement of solar thermal storage system using PCM
JP2014058681A (en) Form of latent heat storage body
WO2001006195A1 (en) Heat storage pellets of phase change material and method of manufacturing same
JP6588492B2 (en) Method for preventing overcooling of latent heat storage material and latent heat storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190912

R150 Certificate of patent or registration of utility model

Ref document number: 6588491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250