JP6754275B2 - Manufacturing method of heat storage device - Google Patents

Manufacturing method of heat storage device Download PDF

Info

Publication number
JP6754275B2
JP6754275B2 JP2016221036A JP2016221036A JP6754275B2 JP 6754275 B2 JP6754275 B2 JP 6754275B2 JP 2016221036 A JP2016221036 A JP 2016221036A JP 2016221036 A JP2016221036 A JP 2016221036A JP 6754275 B2 JP6754275 B2 JP 6754275B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
container
manufacturing
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016221036A
Other languages
Japanese (ja)
Other versions
JP2018077035A (en
Inventor
洸平 中村
洸平 中村
伊奈 孝
孝 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2016221036A priority Critical patent/JP6754275B2/en
Publication of JP2018077035A publication Critical patent/JP2018077035A/en
Application granted granted Critical
Publication of JP6754275B2 publication Critical patent/JP6754275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Packages (AREA)

Description

本発明は、蓄熱または放熱を行う蓄熱材や、この蓄熱材に添加剤を配合した蓄熱材組成物を、容器に封入するための蓄熱材の容器内封入方法に関する。 The present invention relates to a heat storage material that stores heat or dissipates heat, and a method for encapsulating a heat storage material in a container for enclosing a heat storage material composition in which an additive is added to the heat storage material.

潜熱蓄熱材(PCM:Phase Change Material)は、相変化に伴う潜熱の出入りを利用して蓄熱または放熱を行う物性を有しており、本来廃棄される排熱を蓄熱し、蓄えた熱を必要に応じて取り出すことで、エネルギが無駄なく有効に活用できる。潜熱蓄熱材は、水等の熱媒体を溜めた蓄熱槽内に、容器内に封入した状態で収容され、容器を介して潜熱蓄熱材と熱媒体との間で熱が移動することにより、潜熱蓄熱材への蓄熱や、潜熱蓄熱材から熱媒体への放熱が行われる。このような潜熱蓄熱材を添加剤と混ぜ合わせた蓄熱材組成物を容器内に充填するにあたり、例えば、調整された潜熱蓄熱材組成物を溶解し液化した状態で容器内に充填することが、特許文献1に開示されている。 Latent heat storage material (PCM: Phase Change Material) has the property of storing heat or dissipating heat by utilizing the inflow and outflow of latent heat that accompanies a phase change, and stores the waste heat that is originally discarded and requires the stored heat. Energy can be effectively utilized without waste by taking out according to the above. The latent heat storage material is housed in a heat storage tank in which a heat medium such as water is stored in a state of being sealed in a container, and heat is transferred between the latent heat storage material and the heat medium through the container, so that the latent heat is latent heat. Heat is stored in the heat storage material and heat is dissipated from the latent heat storage material to the heat medium. When filling a container with a heat storage material composition obtained by mixing such a latent heat storage material with an additive, for example, it is possible to fill the container in a state in which the adjusted latent heat storage material composition is melted and liquefied. It is disclosed in Patent Document 1.

潜熱蓄熱材が、例えば、アンモニウムミョウバン12水和物(AlNH(SO・12HO)[物性:融点93.5℃、常温で固体]等の無機塩水和物である場合、潜熱蓄熱材に添加剤を配合して混ぜ合せた蓄熱材組成物を容器内に封入するには、2通りの充填方法がある。第1の充填方法は、潜熱蓄熱材と添加剤とをそれぞれ粉砕し、潜熱蓄熱材の粉末と添加剤の粉末とを混ぜ合わせた粉末状の混合物を、蓄熱材組成物の融点を超える温度まで加熱して液相状態に相変化させ、特許文献1と同様、液化した蓄熱材組成物を容器に注入して封入する方法である。第2の充填方法は、潜熱蓄熱材の粉末と添加剤の粉末とを混ぜ合わせた混合物を、粉末状態のまま直接容器に充填して封入する方法である。封入された粉末状の混合物は、蓄熱槽内の熱媒体からの熱伝導により、容器を介して、蓄熱材組成物の融点を超える温度まで加熱されると、容器内で液相状態に相変化して蓄熱材組成物になる。 Latent heat storage material, for example, ammonium alum dodecahydrate (AlNH 4 (SO 4) 2 · 12H 2 O): If [Physical Properties mp 93.5 ° C., solid at room temperature is a mineral salt hydrates such as, latent heat There are two filling methods for enclosing the heat storage material composition, which is a mixture of the heat storage material and the additive, in the container. The first filling method is to crush the latent heat storage material and the additive, respectively, and bring the powdered mixture of the latent heat storage material powder and the additive powder to a temperature exceeding the melting point of the heat storage material composition. Similar to Patent Document 1, this is a method in which a liquefied heat storage material composition is injected into a container and sealed by heating to change the phase to a liquid phase state. The second filling method is a method in which a mixture of a latent heat storage material powder and an additive powder is directly filled in a container in a powder state and sealed. When the enclosed powdery mixture is heated to a temperature exceeding the melting point of the heat storage material composition through the container by heat conduction from the heat medium in the heat storage tank, the phase changes to a liquid phase state in the container. Then, it becomes a heat storage material composition.

一般的に、潜熱蓄熱材等を封入した容器は複数、蓄熱槽内に収容されるため、作業者は、第1の充填方法では蓄熱材組成物を、第2の充填方法では粉末状の混合物を、何れも全容器分まとめて調合しておき、容器毎に小分けにして容器内に充填し、この容器を封止する。 In general, a plurality of containers containing a latent heat storage material or the like are housed in a heat storage tank, so that the operator can use the heat storage material composition in the first filling method and the powdery mixture in the second filling method. All of these are prepared together for all the containers, divided into small portions for each container, filled in the container, and the container is sealed.

特開2014−58681号公報Japanese Unexamined Patent Publication No. 2014-58681

特許文献1を含む第1の充填方法は、潜熱蓄熱材の粉末と添加剤の粉末とが溶解した液相状態の蓄熱材組成物を、小分けして各容器に充填するため、容器内に収められた蓄熱材組成物では、潜熱蓄熱材と添加剤との混合比率は、各容器とも均一化する。この点で、第1の充填方法は、品質管理上、利点となる。しかしながら、第1の充填方法は、完全な液相状態の蓄熱材組成物を生成するのに、潜熱蓄熱材の粉末と添加剤の粉末とを混ぜ合わせた粉末状の混合物を、蓄熱材組成物の融点温度を超えた温度(例えば、約100℃)まで加熱しなければならず、その加熱を行う加熱設備が、蓄熱材組成物を容器に充填するためだけに必要となる。加えて、粉末状の混合物を約100℃に加熱して融解すると、加熱時に多大な熱エネルギが必要になるほか、作業者への安全策も必要となり、加熱に伴った作業時間も余分に掛かってしまうため、蓄熱材組成物を容器に効率良く封入することができない問題があった。 In the first filling method including Patent Document 1, the heat storage material composition in a liquid phase state in which the latent heat storage material powder and the additive powder are dissolved is divided into small portions and filled in each container. In the heat storage material composition obtained, the mixing ratio of the latent heat storage material and the additive is made uniform in each container. In this respect, the first filling method is advantageous in terms of quality control. However, in the first filling method, in order to produce a heat storage material composition in a completely liquid phase state, a powdery mixture of a latent heat storage material powder and an additive powder is used as a heat storage material composition. It must be heated to a temperature exceeding the melting point temperature of the above (for example, about 100 ° C.), and a heating facility for heating is required only for filling the container with the heat storage material composition. In addition, when the powdery mixture is heated to about 100 ° C. and melted, a large amount of heat energy is required at the time of heating, safety measures for the operator are also required, and the work time associated with the heating is extra. Therefore, there is a problem that the heat storage material composition cannot be efficiently sealed in the container.

他方、第2の充填方法では、細かく粉砕された粉末状の潜熱蓄熱材を万遍に撹拌しても、あるいは、潜熱蓄熱材の粉末と添加剤の粉末とが、万遍に混ぜ合わされた粉末状の混合物であっても、隣接する粉末同士の間に、物理的な隙間(間隙)が必然的に生じてしまう。間隙が容器内に存在すると、潜熱蓄熱材と熱媒体との間で熱伝導する熱は、容器以外に、間隙を介して伝導するため、熱伝導に要する時間がより長くなる。特に、給湯設備、空気調和設備等の熱源(エネルギ源)に、潜熱蓄熱材による蓄熱と放熱を利用した場合、給湯設備等の使い勝手に影響が生じる。 On the other hand, in the second filling method, even if the latent heat storage material in the form of finely crushed powder is uniformly agitated, or the powder of the latent heat storage material and the powder of the additive are uniformly mixed. Even in the form of a mixture, a physical gap (gap) is inevitably generated between adjacent powders. When the gap is present in the container, the heat that is electrically conducted between the latent heat storage material and the heat medium is conducted through the gap in addition to the container, so that the time required for heat conduction becomes longer. In particular, when heat storage and heat dissipation by a latent heat storage material are used as a heat source (energy source) for hot water supply equipment, air conditioning equipment, etc., the usability of the hot water supply equipment, etc. is affected.

本発明は、上記問題点を解決するためになされたものであり、蓄熱材を、または蓄熱材に添加剤を混合した蓄熱材組成物を、容器内に封入した状態にするのにあたり、蓄熱材等を容器内に封入するまでの工程を効率良く行うと共に、蓄熱材等を用いた蓄熱槽で、槽内の熱媒体と蓄熱材等との間で熱伝導を効率良く行うことができる蓄熱材の容器内封入方法を提供することを目的とする。 The present invention has been made to solve the above problems, and when the heat storage material or the heat storage material composition in which the additive is mixed with the heat storage material is sealed in the container, the heat storage material is used. A heat storage material that can efficiently conduct the process until the heat storage material is sealed in the container, and can efficiently conduct heat between the heat medium in the tank and the heat storage material, etc. in the heat storage tank using the heat storage material, etc. It is an object of the present invention to provide a method for encapsulating the inside of a container.

上記目的を達成するために、本発明に係る蓄熱材の容器内封入方法は、以下の構成を有する。
(1)蓄熱または放熱を行う蓄熱材を、容器内に封入する蓄熱材の容器内封入方法において、前記蓄熱材は、無機塩水和物からなること、前記無機塩水和物に含む水和水を脱離した無水和物と、加えた水とを、前記容器内で水和反応させることにより、前記無機塩水和物を生成し、前記容器内に封入すること、を特徴とする。
(2)(1)に記載する蓄熱材の容器内封入方法において、前記無水和物を前記容器内に充填した後、前記無水和物に対し水和物を生成するのに必要な加水量と同量、または前記加水量を超える量の前記水を、前記容器内に充填すること、を特徴とする。
(3)(1)に記載する蓄熱材の容器内封入方法において、前記無水和物は粉末状であり、前記無水和物と、前記無水和物に対し水和物を生成するのに必要な加水量と同量、または前記加水量を超える量の前記水とを、少なくとも含んでスラリー状態に混合したスラリー状混合物を調製すること、前記スラリー状混合物の調製後、前記スラリー状混合物を前記容器内に充填すること、を特徴とする蓄熱材の容器内封入方法。
(4)(1)乃至(3)のいずれか1つに記載する蓄熱材の容器内封入方法において、前記容器は、柔軟性を有した袋状に形成されていること、前記容器内に、前記無水和物と前記水とを充填して前記容器を閉塞後、または、前記スラリー状混合物を充填して前記容器を閉塞後、前記容器内を吸引しながら、前記容器の開口が封止されること、を特徴とする。
(5)(1)乃至(3)のいずれか1つに記載する蓄熱材の容器内封入方法において、前記無機塩水和物は、前記容器として、第1の前記容器内で生成され、前記第1の容器とは別に、前記第1の容器より大きく、柔軟性を有した袋状に形成された第2の容器を用い、生成される前記無機塩水和物を内包する前記第1の容器は、単数の前記第2の容器による単層の状態で、または、複数の前記第2の容器により、入れ子のように、多重に重ね合わせた複層の状態で、前記第2の容器によって覆い包まれ、前記第2の容器の封止により、前記第2の容器内に封入されていること、を特徴とする。
(6)(5)に記載する蓄熱材の容器内封入方法において、前記第1の容器内に、前記無水和物と前記水とを充填して前記第1の容器を閉塞後、または、前記スラリー状混合物を充填して前記第1の容器を閉塞後、この状態で前記第1の容器を前記第2の容器内に収容し、少なくとも最も外側の前記第2の容器内を吸引しながら、この外側の前記第2の容器の開口を封止すること、を特徴とする。
(7)(2)乃至(6)のいずれか1つに記載する蓄熱材の容器内封入方法において、前記蓄熱材の物性を調整する水溶性の添加剤が配合され、前記添加剤は、前記蓄熱材の融点を、必要に応じて設定した温度に調整する融点調整剤、液相状態にある前記蓄熱材の融液の粘度を高める増粘剤、または、前記蓄熱材の過冷却現象を防ぐのに、融液状態にある前記蓄熱材の結晶化の誘起を促す過冷却防止剤の少なくとも何れかであること、を特徴とする。
(8)(7)に記載する蓄熱材の容器内封入方法において、前記水に前記添加剤が溶解した添加剤水溶液を調製した後、前記水に代えて前記添加剤水溶液が、前記容器内に充填されること、または、前記スラリー状混合物を生成するのに、前記無水和物と混合されること、を特徴とする。
(9)(7)または(8)に記載する蓄熱材の容器内封入方法において、前記添加剤として配合する前記融点調整剤は、無水硫酸ナトリウム(NaSO)であること、を特徴とする。
(10)(9)に記載する蓄熱材の容器内封入方法において、前記蓄熱材に前記添加剤を配合した蓄熱材組成物では、前記蓄熱材組成物全体の重量に占める前記無水硫酸ナトリウム(NaSO)の配合比率は、10wt%以下の範囲内であること、を特徴とする。
(11)(7)乃至(10)のいずれか1つに記載する蓄熱材の容器内封入方法において、前記添加剤として配合する前記増粘剤は、糖アルコールに属する物質であること、を特徴とする。
(12)(11)に記載する蓄熱材の容器内封入方法において、前記増粘剤は、マンニトール(C14)であること、を特徴とする。
(13)(11)または(12)に記載する蓄熱材の容器内封入方法において、前記蓄熱材に前記添加剤を配合した蓄熱材組成物では、前記蓄熱材組成物全体の重量に占める前記増粘剤の配合比率は、20wt%以下の範囲内であること、を特徴とする。
(14)(1)乃至(13)のいずれか1つに記載する蓄熱材の容器内封入方法において、前記無機塩水和物は、ミョウバン水和物であること、を特徴とする。
(15)(14)に記載する蓄熱材の容器内封入方法において、前記ミョウバン水和物は、アンモニウムミョウバン12水和物(AlNH(SO・12HO)、または、カリウムミョウバン12水和物(AlK(SO・12HO)であること、を特徴とする。
In order to achieve the above object, the method for encapsulating the heat storage material in a container according to the present invention has the following configuration.
(1) In a method of encapsulating a heat storage material for heat storage or heat dissipation in a container, the heat storage material is made of an inorganic salt hydrate, and hydrated water contained in the inorganic salt hydrate is used. The inorganic salt hydrate is produced by hydrating the desorbed anhydride and the added water in the container, and the mixture is sealed in the container.
(2) In the method for encapsulating a heat storage material in a container according to (1), the amount of water required to form a hydrate with respect to the anhydrate after filling the anhydrate in the container. The container is filled with the same amount of water or an amount exceeding the amount of water added.
(3) In the method for encapsulating the heat storage material in a container according to (1), the anhydride is in the form of a powder, which is necessary for producing the anhydride and a hydrate with respect to the anhydride. To prepare a slurry-like mixture containing at least the same amount of water or an amount exceeding the amount of water added in a slurry state, and after preparing the slurry-like mixture, put the slurry-like mixture in the container. A method of encapsulating a heat storage material in a container, which comprises filling the inside.
(4) In the method for encapsulating a heat storage material in a container according to any one of (1) to (3), the container is formed in a flexible bag shape. After filling the anhydrous product with the water to close the container, or filling the slurry-like mixture to close the container, the opening of the container is closed while sucking the inside of the container. It is characterized by that.
(5) In the method for encapsulating a heat storage material in a container according to any one of (1) to (3), the inorganic salt hydrate is produced in the first container as the container, and the first. Apart from the first container, a second container larger than the first container and formed in a flexible bag shape is used, and the first container containing the produced inorganic salt hydrate is used. Covered by the second container, in a single-layered state with a single second container, or in a multi-layered state with multiple layers, like a nest, with a plurality of the second containers. Rarely, it is characterized in that it is sealed in the second container by sealing the second container.
(6) In the method for filling a heat storage material in a container according to (5), the first container is filled with the anhydrous product and the water to close the first container, or the first container is described. After filling the slurry-like mixture to close the first container, the first container is housed in the second container in this state, and at least the outermost second container is sucked while sucking. It is characterized in that the opening of the second container on the outside is sealed.
(7) In the method for encapsulating the heat storage material in a container according to any one of (2) to (6), a water-soluble additive for adjusting the physical properties of the heat storage material is blended, and the additive is the above-mentioned. A melting point adjuster that adjusts the melting point of the heat storage material to a set temperature as necessary, a thickener that increases the viscosity of the melt of the heat storage material in a liquid phase state, or a supercooling phenomenon of the heat storage material is prevented. However, it is characterized in that it is at least one of the supercooling inhibitor that promotes the induction of crystallization of the heat storage material in the melted state.
(8) In the method for filling a heat storage material in a container according to (7), after preparing an aqueous additive solution in which the additive is dissolved in water, the aqueous additive solution is placed in the container instead of the water. It is characterized by being filled or mixed with the anhydride to produce the slurry mixture.
(9) In the method for sealing a heat storage material in a container according to (7) or (8), the melting point adjusting agent to be blended as the additive is anhydrous sodium sulfate (Na 2 SO 4 ). To do.
(10) In the method for encapsulating the heat storage material in a container according to (9), in the heat storage material composition in which the additive is mixed with the heat storage material, the anhydrous sodium sulfate (Na) accounts for the total weight of the heat storage material composition. 2 SO 4 ) is characterized in that the blending ratio is within the range of 10 wt% or less.
(11) In the method for encapsulating a heat storage material in a container according to any one of (7) to (10), the thickener to be blended as the additive is a substance belonging to a sugar alcohol. And.
(12) In the method for encapsulating the heat storage material in a container according to (11), the thickener is mannitol (C 6 H 14 O 6 ).
(13) In the method for encapsulating the heat storage material in a container according to (11) or (12), in the heat storage material composition in which the additive is blended with the heat storage material, the increase in the total weight of the heat storage material composition. The blending ratio of the thickener is within the range of 20 wt% or less.
(14) In the method for encapsulating a heat storage material in a container according to any one of (1) to (13), the inorganic salt hydrate is alum hydrate.
(15) In the vessel enclosing a method of the heat storage material as described in (14), the alum hydrate, ammonium alum dodecahydrate (AlNH 4 (SO 4) 2 · 12H 2 O), or potassium alum 12 it hydrates (AlK (SO 4) 2 · 12H 2 O), and wherein.

上記構成を有する本発明の蓄熱材の容器内封入方法の作用・効果について説明する。
(1)蓄熱または放熱を行う蓄熱材を、容器内に封入する蓄熱材の容器内封入方法において、蓄熱材は、無機塩水和物からなること、無機塩水和物に含む水和水を脱離した無水和物と、加えた水とを、容器内で水和反応させることにより、無機塩水和物を生成し、容器に封入すること、を特徴とする。この特徴により、無水和物の容器への充填前、隣接する粉末同士の間にあった間隙は水和反応時に、容器に加えた水で満たされるため、容器の内容積に対し、蓄熱材が占める体積充填率は、粉末状の無機塩水和物を容器内に直に充填した従来の実施形態に係る蓄熱材の容器内封入方法に比べて、大幅に向上する。また、間隙の発生を抑えているため、従来比で、蓄熱材と蓄熱槽内の熱媒体との間の熱伝導に要する時間も短くなるため、このような伝熱性能は高くなる。また、蓄熱材や、これに添加剤を配合した蓄熱材組成物を生成するのに、加熱設備を一切必要とせず、このような蓄熱材組成物等を、容器内で常温のまま簡単に生成することができる。しかも、融点が、例えば、約90℃のような比較的高い蓄熱材組成物等でも、液相状態の蓄熱材組成物等を直接取り扱うことがなく、蓄熱材組成物等の充填・封入作業は、従来の実施形態に係る蓄熱材の容器内封入方法に比して、安全である。
The operation and effect of the method for encapsulating the heat storage material of the present invention having the above structure in a container will be described.
(1) Encapsulating a heat storage material that stores or dissipates heat in a container In a method of encapsulating a heat storage material in a container, the heat storage material is composed of an inorganic salt hydrate and desorbs hydrated water contained in the inorganic salt hydrate. It is characterized in that an inorganic salt hydrate is produced by hydrating the anhydrate and the added water in a container and sealed in the container. Due to this feature, the gap between adjacent powders before filling the container of anhydrous is filled with water added to the container during the hydration reaction, so the volume occupied by the heat storage material with respect to the internal volume of the container. The filling rate is significantly improved as compared with the method of filling the heat storage material in the container according to the conventional embodiment in which the powdered inorganic salt hydrate is directly filled in the container. Further, since the generation of gaps is suppressed, the time required for heat conduction between the heat storage material and the heat medium in the heat storage tank is shortened as compared with the conventional case, so that such heat transfer performance is improved. Further, in order to generate a heat storage material or a heat storage material composition containing an additive, no heating equipment is required, and such a heat storage material composition or the like can be easily generated in a container at room temperature. can do. Moreover, even if the heat storage material composition has a relatively high melting point of, for example, about 90 ° C., the heat storage material composition in a liquid phase state is not directly handled, and the filling / encapsulation work of the heat storage material composition or the like can be performed. , It is safer than the method of enclosing the heat storage material in the container according to the conventional embodiment.

従って、本発明に係る蓄熱材の容器内封入方法によれば、蓄熱材を、または蓄熱材に添加剤を混合した蓄熱材組成物を、容器内に封入した状態にするのにあたり、蓄熱材等を容器内に封入するまでの工程を効率良く行うと共に、蓄熱材等を用いた蓄熱槽で、槽内の熱媒体と蓄熱材等との間で熱伝導を効率良く行うことができる、という優れた効果を奏する。 Therefore, according to the method for encapsulating the heat storage material in the container according to the present invention, the heat storage material or the like is used to enclose the heat storage material or the heat storage material composition in which the additive is mixed with the heat storage material in the container. In addition to efficiently performing the process of encapsulating the heat in the container, heat conduction between the heat medium in the tank and the heat storage material can be efficiently performed in the heat storage tank using the heat storage material or the like. Has an effect.

(2)に記載する蓄熱材の容器内封入方法において、無水和物を容器内に充填した後、無水和物に対し水和物を生成するのに必要な加水量と同量、または加水量を超える量の水を、容器内に充填すること、を特徴とする。また、(3)に記載する蓄熱材の容器内封入方法において、無水和物は粉末状であり、無水和物と、無水和物に対し水和物を生成するのに必要な加水量と同量、または加水量を超える量の水とを、少なくとも含んでスラリー状態に混合したスラリー状混合物を調製すること、スラリー状混合物の調製後、スラリー状混合物を容器内に充填すること、を特徴とする。 In the method for encapsulating a heat storage material in a container according to (2), the amount of water added to the anhydrate is the same as or the amount of water required to form a hydrate for the anhydrate after the anhydrate is filled in the container. It is characterized in that the container is filled with an amount of water exceeding the above amount. Further, in the method for encapsulating the heat storage material in the container described in (3), the anhydride is in the form of powder, which is the same as the amount of water required to form the hydrate with respect to the anhydride. It is characterized in that a slurry-like mixture containing at least an amount or an amount of water exceeding the amount of hydration is mixed in a slurry state, and after the preparation of the slurry-like mixture, the slurry-like mixture is filled in a container. To do.

(2)の特徴や(3)の特徴により、蓄熱材に、例えば、添加剤を添加した蓄熱材組成物を容器内で生成して充填した状態の蓄熱材封入物を作製し、この蓄熱材封入物を別の容器に収容した蓄熱材封入パック等では、蓄熱材封入パック内の空隙部の大きさを、従来の実施形態に係る蓄熱材の容器内封入方法に比べ、少なくとも30%以上低減することができる。 Based on the characteristics of (2) and (3), for example, a heat storage material enclosure in which an additive-added heat storage material composition is generated in a container and filled is produced, and this heat storage material is prepared. In a heat storage material encapsulation pack or the like in which the encapsulation is housed in another container, the size of the gap in the heat storage material encapsulation pack is reduced by at least 30% or more as compared with the method of encapsulating the heat storage material in the container according to the conventional embodiment. can do.

(4)に記載する蓄熱材の容器内封入方法において、容器は、柔軟性を有した袋状に形成されていること、容器内に、無水和物と水とを充填して容器を閉塞後、または、スラリー状混合物を充填して容器を閉塞後、容器内を吸引しながら、容器の開口が封止されること、を特徴とする。無水和物と水とを充填して容器を閉塞した場合、または、スラリー状混合物を充填して容器を閉塞した場合、粉末同士の間にあった間隙は水によって満たされ、内部に空隙を持たない固体状の無機塩水和物を容器内に生成することができるが、容器を閉塞する際に外部から空気が浸入する。それ故に、無機塩水和物である蓄熱材等と容器の間に、空隙部が必然的に生じる。しかしながら、上述の特徴により、容器内を吸引しながら、容器の開口を封止することで、容器内に侵入した空気を除外し、容器内に生成される蓄熱材や蓄熱材組成物を、容器と密着した状態で容器内に封入することができる。そのため、蓄熱材等と容器との間に生じる空隙部に起因した熱伝導への悪影響を、より確実に抑制することができる。 In the method for filling a heat storage material in a container according to (4), the container is formed in a flexible bag shape, and the container is filled with an anhydride and water to close the container. Alternatively, the container is filled with a slurry-like mixture to close the container, and then the opening of the container is sealed while sucking the inside of the container. When the container is closed by filling with unhydrated water and water, or when the container is closed by filling with a slurry mixture, the gap between the powders is filled with water and a solid with no internal voids. A form of inorganic salt hydrate can be produced in the container, but air enters from the outside when the container is closed. Therefore, a void is inevitably generated between the heat storage material or the like which is an inorganic salt hydrate and the container. However, due to the above-mentioned characteristics, by sealing the opening of the container while sucking the inside of the container, the air that has entered the container is excluded, and the heat storage material or the heat storage material composition generated in the container is transferred to the container. It can be sealed in a container in close contact with. Therefore, the adverse effect on heat conduction caused by the gap between the heat storage material or the like and the container can be more reliably suppressed.

(5)に記載する蓄熱材の容器内封入方法において、無機塩水和物は、容器として、第1の容器内で生成され、第1の容器とは別に、第1の容器より大きく、柔軟性を有した袋状に形成された第2の容器を用い、生成される無機塩水和物を内包する第1の容器は、単数の第2の容器による単層の状態で、または、複数の第2の容器により、入れ子のように、多重に重ね合わせた複層の状態で、第2の容器によって覆い包まれ、第2の容器の封止により、第2の容器内に封入されていること、を特徴とする。この特徴により、無水和物と水、またはスラリー状混合物を第2の容器内に封入するにあたり、第1の容器が無水和物と水、またはスラリー状混合物の漏洩・飛散を防止し、例えば、融着等で第2の容器を封止する開口部分に、無水和物、スラリー状混合物等による異物が付着するのを抑止することができる。ひいては、第2の容器は、このような異物による阻害を受けることなく、しっかりと封止でき、第1の容器内で生成された蓄熱材組成物は、第2の容器の外部に漏れ出ることなく、より確実に第2の容器内に収容できている。 In the method for encapsulating the heat storage material in a container according to (5), the inorganic salt hydrate is produced in the first container as a container, and is larger and more flexible than the first container separately from the first container. The first container containing the produced inorganic salt hydrate is a single-layered state of a single second container, or a plurality of second containers. It is covered by the second container in a multi-layered state like a nest by the second container, and is sealed in the second container by sealing the second container. It is characterized by. Due to this feature, when encapsulating the anhydride and water or the slurry-like mixture in the second container, the first container prevents leakage and scattering of the anhydride and water or the slurry-like mixture, for example. It is possible to prevent foreign matter due to the anhydride, the slurry-like mixture, or the like from adhering to the opening portion that seals the second container by fusion or the like. As a result, the second container can be tightly sealed without being hindered by such foreign matter, and the heat storage material composition produced in the first container leaks to the outside of the second container. It can be more reliably contained in the second container.

(6)に記載する蓄熱材の容器内封入方法において、第1の容器内に、無水和物と水とを充填して第1の容器を閉塞後、または、スラリー状混合物を充填して第1の容器を閉塞後、この状態で第1の容器を第2の容器内に収容し、少なくとも最も外側の第2の容器内を吸引しながら、この外側の第2の容器の開口を封止すること、を特徴とする。無水和物と水とを充填して第1の容器を閉塞した場合、または、スラリー状混合物を充填して第1の容器を閉塞した場合、粉末同士の間にあった間隙は水によって満たされ、内部に空隙を持たない固体状の無機塩水和物を容器内に生成することができるが、第1の容器を閉塞する際に外部から空気が浸入する。それ故に、無機塩水和物である蓄熱材等と第1の容器の間に、空隙部が必然的に生じる。しかしながら、上述の特徴により、少なくとも最も外側の第2の容器内を吸引しながら、第2の容器の開口を封止することで、第1の容器内に侵入した空気を除外し、第1の容器内に生成される蓄熱材や蓄熱材組成物を、第1の容器を介して第2の容器に密着した状態で、第1の容器及び第2の容器内に封入することができる。そのため、蓄熱材等と第1の容器との間に生じる空隙部に起因した熱伝導への悪影響を、より確実に抑制することができる。なお、生成される無機塩水和物を内包する第1の容器を、複数の第2の容器により複層の状態で覆い包む場合には、第2の容器毎にそれぞれ、容器内を吸引しながら、容器の開口を封止すると、空隙部に起因した熱伝導への悪影響が、より効果的に抑制できる。 In the method for filling a heat storage material in a container according to (6), the first container is filled with an anhydride and water to close the first container, or the first container is filled with a slurry-like mixture. After closing the container 1, the first container is housed in the second container in this state, and the opening of the outer second container is sealed while sucking at least the outermost second container. It is characterized by doing. When the first container is closed by filling with unhydrated water and water, or when the first container is closed by filling with a slurry mixture, the gap between the powders is filled with water and the inside is filled. A solid inorganic salt hydrate having no voids can be produced in the container, but air enters from the outside when the first container is closed. Therefore, a gap is inevitably generated between the heat storage material or the like which is an inorganic salt hydrate and the first container. However, due to the above-mentioned characteristics, the air that has entered the first container is excluded by sealing the opening of the second container while sucking at least the outermost second container, and the first container is used. The heat storage material or the heat storage material composition generated in the container can be sealed in the first container and the second container in a state of being in close contact with the second container via the first container. Therefore, the adverse effect on heat conduction caused by the gap between the heat storage material or the like and the first container can be more reliably suppressed. When the first container containing the produced inorganic salt hydrate is covered with a plurality of second containers in a multi-layered state, the inside of the container is sucked into each of the second containers. By sealing the opening of the container, the adverse effect on heat conduction caused by the gap can be suppressed more effectively.

(7)に記載する蓄熱材の容器内封入方法において、蓄熱材の物性を調整する水溶性の添加剤が配合され、添加剤は、蓄熱材の融点を、必要に応じて設定した温度に調整する融点調整剤、液相状態にある蓄熱材の融液の粘度を高める増粘剤、または、蓄熱材の過冷却現象を防ぐのに、融液状態にある蓄熱材の結晶化の誘起を促す過冷却防止剤の少なくとも何れかであること、を特徴とする。また、(9)に記載する蓄熱材の容器内封入方法において、添加剤として配合する融点調整剤は、無水硫酸ナトリウム(NaSO)であること、を特徴とする。この特徴により、無水硫酸ナトリウムは、融点884℃の物性で、常温では固体の物質であるものの、蓄熱材組成物全体の重量に対し、例えば、5wt%の配合比率で、蓄熱材であるアンモニウムミョウバン(融点93.5℃)等に添加されれば、所望とする融点約90℃の蓄熱材組成物等、融点を所望の温度に調整した蓄熱材組成物を生成することができる。 In the method for encapsulating the heat storage material in the container described in (7), a water-soluble additive for adjusting the physical properties of the heat storage material is blended, and the additive adjusts the melting point of the heat storage material to a set temperature as necessary. Melting point adjuster, thickener that increases the viscosity of the melt of the heat storage material in the liquid phase state, or promotes the induction of crystallization of the heat storage material in the melt state to prevent the supercooling phenomenon of the heat storage material. It is characterized by being at least one of the anticooling agents. Further, in the method for encapsulating the heat storage material in a container according to (9), the melting point adjusting agent to be blended as an additive is anhydrous sodium sulfate (Na 2 SO 4 ). Due to this feature, anhydrous sodium sulfate has a melting point of 884 ° C. and is a solid substance at room temperature, but is a heat storage material, ammonium myoban, at a blending ratio of, for example, 5 wt% with respect to the total weight of the heat storage material composition. When added to (melting point 93.5 ° C.) or the like, it is possible to produce a heat storage material composition having a desired melting point adjusted to a desired temperature, such as a heat storage material composition having a desired melting point of about 90 ° C.

(8)に記載する蓄熱材の容器内封入方法において、水に添加剤が溶解した添加剤水溶液を調製した後、水に代えて添加剤水溶液が、容器内に充填されること、または、スラリー状混合物を生成するのに、無水和物と混合されること、を特徴とする。この特徴により、例えば、蓄熱材が、アンモニウムミョウバン12水和物による潜熱蓄熱材等であるとき、スラリー状混合物を容器に充填した上記蓄熱材封入物では、粉末状のアンモニウムミョウバン12水和物と、粉末状の添加剤とを混ぜ合わせた粉末状の混合物(生成後に蓄熱材組成物)を容器に充填する場合に比べ、蓄熱材封入物内で生成した蓄熱材組成物は、その構成成分の濃度や分布を均一化した状態で、調製することができる。特に、生成した蓄熱材組成物を複数の容器に小分けする場合、容器に充填された蓄熱材組成物の組成が、全容器とも均一に保たれるため、蓄熱材組成物を容器に充填した蓄熱材封入パックを複数作製する場合に、品質の高い蓄熱材封入パックが提供できる。 In the method for filling a heat storage material in a container according to (8), after preparing an aqueous additive solution in which an additive is dissolved in water, the aqueous additive solution is filled in the container instead of water, or a slurry. It is characterized in that it is mixed with an anhydride to produce a state mixture. Due to this feature, for example, when the heat storage material is a latent heat storage material made of ammonium myoban dodecahydrate, the heat storage material inclusion material in which the slurry-like mixture is filled in a container has a powdery ammonium myoban dodecahydrate. Compared to the case where a container is filled with a powdery mixture (heat storage material composition after formation) mixed with powdery additives, the heat storage material composition produced in the heat storage material enclosure is a component of the heat storage material composition. It can be prepared with a uniform concentration and distribution. In particular, when the generated heat storage material composition is subdivided into a plurality of containers, the composition of the heat storage material composition filled in the containers is kept uniform in all the containers, so that the heat storage material composition is filled in the containers. When a plurality of material-encapsulated packs are produced, a high-quality heat storage material-encapsulated pack can be provided.

(10)に記載する蓄熱材の容器内封入方法において、蓄熱材に添加剤を配合した蓄熱材組成物では、蓄熱材組成物全体の重量に占める無水硫酸ナトリウム(NaSO)の配合比率は、10wt%以下の範囲内であること、を特徴とする。この特徴により、蓄熱材が、例示したアンモニウムミョウバンである場合、例えば、融点が80〜90℃の温度帯域になるよう、調整された蓄熱材組成物が生成でき、この蓄熱材組成物により80〜90℃等の温度帯域で蓄熱やその放熱を行うことができる。そのため、給湯設備や、冷暖房を行う空気調和設備の熱源(エネルギ源)等に蓄熱材組成物の放熱を利用する場合に、約90℃の熱源は、このような給湯設備等にとって、使い勝手が良く、産業界において幅広い分野で多様的に活用することができる。 In the method for encapsulating the heat storage material in a container according to (10), in the heat storage material composition in which an additive is added to the heat storage material, the mixing ratio of anhydrous sodium sulfate (Na 2 SO 4 ) to the total weight of the heat storage material composition. Is within the range of 10 wt% or less. Due to this feature, when the heat storage material is the exemplified ammonium alum, for example, a heat storage material composition adjusted so that the melting point is in the temperature range of 80 to 90 ° C. can be produced, and the heat storage material composition can produce 80 to 80 to 90 ° C. It is possible to store heat and dissipate it in a temperature range such as 90 ° C. Therefore, when the heat radiation of the heat storage material composition is used as the heat source (energy source) of the hot water supply equipment or the air conditioning equipment for heating and cooling, the heat source of about 90 ° C. is convenient for such the hot water supply equipment. , Can be used in a wide variety of fields in the industrial world.

(11)に記載する蓄熱材の容器内封入方法において、添加剤として配合する増粘剤は、糖アルコールに属する物質であること、を特徴とする。この特徴により、無機塩水和物が、例えば、アンモニウムミョウバン12水和物等のミョウバン水和物である場合に、増粘剤は、無機塩水和物の構成成分である水に溶解し易く、組成した蓄熱材組成物は、化学的に安定している。 In the method for encapsulating a heat storage material in a container according to (11), the thickener to be blended as an additive is a substance belonging to sugar alcohol. Due to this feature, when the inorganic salt hydrate is, for example, alum hydrate such as ammonium alum dodecahydrate, the thickener is easily dissolved in water, which is a component of the inorganic salt hydrate, and has a composition. The heat storage material composition is chemically stable.

(12)に記載する蓄熱材の容器内封入方法において、増粘剤は、マンニトール(C14)であること、を特徴とする。この特徴により、マンニトールは、液相状態にある蓄熱材の融液の粘度を高めると共に、蓄熱材組成物を構成する成分同士の相分離現象や、この蓄熱材組成物を構成する成分で、密度が互いに異なる成分同士に対し、密度差による成分同士の不均一化を防止することができる。また、マンニトールは、無毒で非危険物であるため、取扱いが容易である上に、安価でもある。 In the method for encapsulating the heat storage material in a container according to (12), the thickener is mannitol (C 6 H 14 O 6 ). Due to this feature, mannitol increases the viscosity of the melt of the heat storage material in the liquid phase state, the phase separation phenomenon between the components constituting the heat storage material composition, and the density of the components constituting the heat storage material composition. It is possible to prevent non-uniformity of the components due to the difference in density with respect to the components different from each other. In addition, mannitol is non-toxic and non-dangerous, so it is easy to handle and inexpensive.

(13)に記載する蓄熱材の容器内封入方法において、蓄熱材に添加剤を配合した蓄熱材組成物では、蓄熱材組成物全体の重量に占める増粘剤の配合比率は、20wt%以下の範囲内であること、を特徴とする。この特徴により、蓄熱材組成物に、例えば、融点調整剤や過冷却防止剤等の添加剤が配合されている場合に、蓄熱材の成分と融点調整剤等の成分とが、不均一化せずバランス良く拡散した状態を、増粘剤により、安定的に維持することができる。 In the method for encapsulating the heat storage material in the container according to (13), in the heat storage material composition in which the additive is mixed with the heat storage material, the mixing ratio of the thickener to the total weight of the heat storage material composition is 20 wt% or less. It is characterized by being within the range. Due to this feature, when an additive such as a melting point adjusting agent or a supercooling inhibitor is blended in the heat storage material composition, the component of the heat storage material and the component of the melting point adjusting agent are made non-uniform. A well-balanced diffused state can be stably maintained by the thickener.

(14)に記載する蓄熱材の容器内封入方法において、無機塩水和物は、ミョウバン水和物であること、を特徴とする。この特徴により、様々な種類の無機塩水和物の中でも、例えば、アンモニウムミョウバン12水和物等のようなミョウバン水和物を用いた潜熱蓄熱材は、相変化に伴う潜熱が比較的大きい物性を有する。そのため、このような物性の潜熱蓄熱材では、蓄熱できる蓄熱量も比較的大きい。また、ミョウバン水和物である潜熱蓄熱材を含む蓄熱材組成物は、大容量の熱を蓄熱し、それを放熱する蓄放熱性能を具備できている点で、優れている。 In the method for encapsulating the heat storage material in a container according to (14), the inorganic salt hydrate is alum hydrate. Due to this feature, among various types of inorganic salt hydrates, latent heat storage materials using alum hydrate such as ammonium alum dodecahydrate have relatively large latent heat due to phase change. Have. Therefore, the latent heat storage material having such physical properties has a relatively large amount of heat storage that can be stored. Further, the heat storage material composition containing the latent heat storage material which is alum hydrate is excellent in that it can have a heat storage and heat dissipation performance of storing a large amount of heat and dissipating it.

(15)に記載する蓄熱材の容器内封入方法において、ミョウバン水和物は、アンモニウムミョウバン12水和物(AlNH(SO・12HO)、または、カリウムミョウバン12水和物(AlK(SO・12HO)であること、を特徴とする。この特徴により、アンモニウムミョウバン12水和物やカリウムミョウバン12水和物は、市場で幅広く流通して入手し易く、安価である。 In container enclosing method of the heat storage material described in (15), alum hydrate are ammonium alum dodecahydrate (AlNH 4 (SO 4) 2 · 12H 2 O), or potassium alum dodecahydrate ( AlK (SO 4) 2 · 12H 2 O) and it is characterized by. Due to this feature, ammonium alum dodecahydrate and potassium alum dodecahydrate are widely distributed in the market, easily available, and inexpensive.

実施形態の実施例1に係る蓄熱材の容器内封入方法の工程を示すフロー図である。It is a flow chart which shows the process of the method of filling the heat storage material in a container which concerns on Example 1 of Embodiment. 実施形態の実施例2に係る蓄熱材の容器内封入方法の工程を示すフロー図である。It is a flow chart which shows the process of the method of sealing the heat storage material in a container which concerns on Example 2 of Embodiment 2. 実施形態に係る蓄熱材の容器内封入方法で作製した蓄熱材封入物を、封入袋に封入する工程を示すフロー図である。It is a flow chart which shows the process of sealing the heat storage material inclusion material produced by the method of sealing the heat storage material in a container which concerns on embodiment in a sealing bag. 本実施形態に係る蓄熱槽を例示した模式図である。It is a schematic diagram which illustrated the heat storage tank which concerns on this embodiment. 本実施形態に係る蓄熱材を模式的に示す説明図である。It is explanatory drawing which shows typically the heat storage material which concerns on this embodiment. 本実施形態に係る蓄熱材の容器内封入方法の有意性を確認した調査実験の結果を示す表である。It is a table which shows the result of the investigation experiment which confirmed the significance of the method of encapsulating the heat storage material in a container which concerns on this embodiment. 空隙部を含む蓄熱材封入パックの断面を示す模式図である。It is a schematic diagram which shows the cross section of the heat storage material filling pack including the void part. 本実施形態に係る蓄熱材組成物に含有するマンニトールについて、その有意性を示すグラフである。It is a graph which shows the significance of mannitol contained in the heat storage material composition which concerns on this embodiment. 従来の実施形態に係る蓄熱材の容器内封入方法の工程を示すフロー図である。It is a flow chart which shows the process of the method of sealing the heat storage material in a container which concerns on a conventional embodiment.

(実施形態)
以下、本発明に係る蓄熱材の容器内封入方法について、実施形態を図面に基づいて詳細に説明する。本発明に係る蓄熱材は、無機塩水和物からなり、本実施形態では、相変化に伴う潜熱の移動により蓄熱または放熱を行う潜熱蓄熱材である場合を挙げて説明する。また、潜熱蓄熱材は、添加剤と混合した蓄熱材組成物の態様で容器(第1の容器)内に充填され、さらにこの第1の容器を二重の第2の容器(容器)に封入された状態で、蓄熱槽内に収容されている。
(Embodiment)
Hereinafter, the method for encapsulating the heat storage material in the container according to the present invention will be described in detail with reference to the drawings. The heat storage material according to the present invention is made of an inorganic salt hydrate, and in the present embodiment, a case where the heat storage material is a latent heat storage material that stores heat or dissipates heat by moving latent heat due to a phase change will be described. Further, the latent heat storage material is filled in a container (first container) in the form of a heat storage material composition mixed with an additive, and the first container is further enclosed in a double second container (container). It is housed in the heat storage tank in the stored state.

はじめに、蓄熱槽について、図4を用いて簡単に説明する。図4は、本実施形態に係る蓄熱槽を例示した模式図である。蓄熱槽60では、例えば、病院やビル等の非常用電源に設置されているコジェネレーション(CogenerationまたはCombined Heat and Power)のガスエンジンシステムの排熱や、工場や事業所、家庭等から生じる排熱を利用して、槽内に貯めた水等の熱媒体61が約90℃に加熱され、熱媒体61を介して、潜熱蓄熱材10が80〜90℃の温度帯域で蓄熱する。潜熱蓄熱材10に蓄熱した熱は、この温度帯域で放熱され、図示しない給湯設備や、冷暖房を行う空気調和設備等の熱源(エネルギ源)に活用される。潜熱蓄熱材10は、後述する蓄熱材封入パック1内に収容され、図4に示すように、複数の蓄熱材封入パック1が、蓄熱槽60に収容されている。 First, the heat storage tank will be briefly described with reference to FIG. FIG. 4 is a schematic view illustrating the heat storage tank according to the present embodiment. In the heat storage tank 60, for example, the exhaust heat of a cogeneration or combined heat and power gas engine system installed in an emergency power source of a hospital, a building, or the like, or the exhaust heat generated from a factory, business establishment, home, or the like. The heat medium 61 such as water stored in the tank is heated to about 90 ° C., and the latent heat storage material 10 stores heat in the temperature range of 80 to 90 ° C. via the heat medium 61. The heat stored in the latent heat storage material 10 is dissipated in this temperature range and is utilized as a heat source (energy source) for hot water supply equipment (not shown), air conditioning equipment for heating and cooling, and the like. The latent heat storage material 10 is housed in the heat storage material encapsulation pack 1 described later, and as shown in FIG. 4, a plurality of heat storage material encapsulation packs 1 are housed in the heat storage tank 60.

次に、潜熱蓄熱材10について、図5を用いて説明する。図5は、本実施形態に係る蓄熱材を示す模式図である。潜熱蓄熱材10は、ミョウバン水和物であり、本実施形態では、アンモニウムミョウバン12水和物(硫酸アンモニウムアルミニウム・12水:AlNH(SO・12HO)である。図1に示すように、主成分である潜熱蓄熱材10は、配合した2種の添加剤20と共に、蓄熱材組成物3をなしている。アンモニウムミョウバン12水和物は、融点93.5℃の物性で、常温では固体の物質である。そのため、アンモニウムミョウバン12水和物が、単体で融点未満の90℃程度に加熱されたとしても、アンモニウムミョウバン12水和物は、ほとんど溶融することなく、潜熱を蓄熱することもできない。 Next, the latent heat storage material 10 will be described with reference to FIG. FIG. 5 is a schematic view showing a heat storage material according to the present embodiment. The latent heat storage material 10 is alum hydrate, and in this embodiment, it is ammonium alum dodecahydrate (ammonium aluminum sulfate, 12 water: AlNH 4 (SO 4 ) 2・ 12H 2 O). As shown in FIG. 1, the latent heat storage material 10 as the main component forms the heat storage material composition 3 together with the two kinds of additives 20 blended. Ammonium alum dodecahydrate has physical properties of a melting point of 93.5 ° C. and is a solid substance at room temperature. Therefore, even if ammonium alum dodecahydrate is heated to about 90 ° C., which is lower than the melting point by itself, ammonium alum dodecahydrate hardly melts and cannot store latent heat.

添加剤20は2種とも、潜熱蓄熱材10の物性を調整する役割を担う水溶性の添加剤である。第1の添加剤20は、潜熱蓄熱材10の融点を、必要に応じて任意の温度に調整する融点調整剤21である。融点調整剤21は、本実施形態では、無水硫酸ナトリウム(NaSO)であり、無水硫酸ナトリウムは、融点884℃の物性で、常温では固体の物質である。蓄熱材組成物3全体の重量に占める無水硫酸ナトリウムの配合比率は、10wt%以下の範囲内であり、融点調整剤21が、例えば、2〜5wt%の配合比率で、潜熱蓄熱材10(アンモニウムミョウバン)に添加されていると、蓄熱材組成物3の融点は、約90℃になる。 Both of the additives 20 are water-soluble additives that play a role in adjusting the physical properties of the latent heat storage material 10. The first additive 20 is a melting point adjusting agent 21 that adjusts the melting point of the latent heat storage material 10 to an arbitrary temperature as needed. In the present embodiment, the melting point adjusting agent 21 is anhydrous sodium sulfate (Na 2 SO 4 ), and anhydrous sodium sulfate has physical properties of a melting point of 884 ° C. and is a solid substance at room temperature. The blending ratio of anhydrous sodium sulfate to the total weight of the heat storage material composition 3 is within the range of 10 wt% or less, and the melting point adjusting agent 21 has a blending ratio of, for example, 2 to 5 wt%, and the latent heat storage material 10 (ammonium). When added to myoban), the melting point of the heat storage material composition 3 becomes about 90 ° C.

第2の添加剤20は、液相状態にある潜熱蓄熱材10の融液の粘度を高める増粘剤22である。増粘剤22は、糖アルコールに属する物質であり、本実施形態では、増粘剤22は、マンニトール(C14)である。蓄熱材組成物3全体の重量に占めるマンニトールの配合比率は、20wt%以下の範囲内である。 The second additive 20 is a thickener 22 that increases the viscosity of the melt of the latent heat storage material 10 in the liquid phase state. The thickener 22 is a substance belonging to a sugar alcohol, and in the present embodiment, the thickener 22 is mannitol (C 6 H 14 O 6 ). The blending ratio of mannitol in the total weight of the heat storage material composition 3 is within the range of 20 wt% or less.

なお、本実施形態では、主成分である潜熱蓄熱材10を、アンモニウムミョウバン12水和物(硫酸アンモニウムアルミニウム・12水:AlNH(SO・12HO)とした。しかしながら、潜熱蓄熱材の主成分で、アンモニウムミョウバン12水和物に含まれる金属イオンは、アルミニウムイオン以外にも、例えば、クロムイオン、鉄イオン、コバルトイオン、マンガンイオン等、3価の金属イオンであっても良く、アンモニウムミョウバン12水和物は、このような3価の金属イオンを含む複硫酸塩となっていれば良い。また、潜熱蓄熱材10は、アンモニウムミョウバン12水和物に限らず、カリウムミョウバン12水和物(AlK(SO・12HO)等のほか、ミョウバン水和物であれば、特に限定されるものではない。 In the present embodiment, the latent heat storage material 10 as the main component is ammonium alum dodecahydrate (ammonium aluminum sulfate, 12 water: AlNH 4 (SO 4 ) 2・ 12H 2 O). However, the metal ion contained in ammonium myoban dodecahydrate, which is the main component of the latent heat storage material, is not only aluminum ion but also trivalent metal ion such as chromium ion, iron ion, cobalt ion and manganese ion. It may be present, and the ammonium myoban dodecahydrate may be a double sulfate containing such a trivalent metal ion. Moreover, the latent heat storage material 10 is not limited to ammonium alum dodecahydrate, potassium alum dodecahydrate (AlK (SO 4) 2 · 12H 2 O) In addition to such, if alum hydrate, particularly limited It is not something that is done.

また、本実施形態では、増粘剤22にマンニトールを用いたが、増粘剤は、マンニトールのほか、例えば、エリトリトールや、加熱しても褐色化やキャラメル化を起こさず、酸に強い物性等を有する糖アルコールに属する物質であれば、特に限定されるものではない。また、増粘剤は、糖アルコールに属する物質の他、例えば、ジェランガム(gellan gum)(別名:ゲラン、ポリサッカライドS-60〔略称:PS-60〕等)のように、繰り返し単位を持ったポリマーの一種で、複合多糖類(ヘテロ多糖)に分類される多糖類(ポリサッカライド)に属する物質であっても良い。その理由として、例えば、ジェランガムが増粘剤とした場合、ジェランガム自身は、蓄熱特性を具備していないが、アンモニウムミョウバン12水和物にジェランガムを少量添加するだけで、ジェランガムのゲル化が促進され、蓄熱材組成物における構成成分の分離を、より効果的に抑制することができるからである。 Further, in the present embodiment, mannitol was used as the thickener 22, but the thickener is not only mannitol, but also erythritol, for example, which does not cause browning or caramelization even when heated, and has physical properties resistant to acid. The substance is not particularly limited as long as it belongs to the sugar alcohol having. In addition to substances belonging to sugar alcohols, thickeners have repeating units such as gellan gum (also known as gellan, polysaccharide S-60 [abbreviation: PS-60], etc.). It may be a kind of polymer and may be a substance belonging to a polysaccharide (polysaccharide) classified as a complex polysaccharide (heteropolysaccharide). The reason is that, for example, when gellan gum is used as a thickener, gellan gum itself does not have a heat storage property, but gelation of gellan gum is promoted only by adding a small amount of gellan gum to ammonium alum dodecahydrate. This is because the separation of the constituent components in the heat storage material composition can be suppressed more effectively.

また、本実施形態では、添加剤に、融点調整剤21と増粘剤22とを配合した蓄熱材組成物3を挙げたが、蓄熱材組成物に配合する増粘剤は、融点調整剤や増粘剤に限らず、蓄熱材組成物に配合する増粘剤は、融点調整剤、増粘剤、または融液状態にある蓄熱材の結晶化の誘起を促す過冷却防止剤のうち、少なくとも何れかであれば良い。 Further, in the present embodiment, the heat storage material composition 3 in which the melting point adjusting agent 21 and the thickener 22 are mixed as the additive is mentioned, but the thickener to be mixed in the heat storage material composition is a melting point adjusting agent or a thickener. Not limited to the thickener, the thickener to be blended in the heat storage material composition is at least among the melting point adjusting agent, the thickener, and the supercooling inhibitor that promotes the induction of crystallization of the heat storage material in the melted state. Any one may be used.

次に、蓄熱材組成物3を漏洩防止用内袋40(本発明の第1の容器に対応)に充填し、蓄熱材封入物2を構成するまでの工程について、実施例1,2を挙げて説明する。図1は、実施形態の実施例1に係る蓄熱材の容器内封入方法の工程を説明したフロー図である。図2は、実施例2に係る蓄熱材の容器内封入方法の工程を説明したフロー図である。 Next, Examples 1 and 2 are given with respect to the process of filling the heat storage material composition 3 into the leakage prevention inner bag 40 (corresponding to the first container of the present invention) to form the heat storage material enclosure 2. I will explain. FIG. 1 is a flow chart illustrating a process of a method of encapsulating a heat storage material in a container according to the first embodiment of the embodiment. FIG. 2 is a flow chart illustrating the process of the method of encapsulating the heat storage material in the container according to the second embodiment.

前述したように、蓄熱槽60内には、蓄熱材封入パック1が収容されている。図1及び図2に示すように、蓄熱材封入物2として、蓄熱材組成物3は、漏洩防止用内袋40内に充填されている。蓄熱材封入物2は、2枚重ね合わせた封入袋50(第1封入袋50A、第2封入袋50B)(本発明の第2の容器に対応)のうち、内側の第1封入袋50A内に、蓄熱材封入プレパック1Aとして収容されている。そして、さらにこの蓄熱材封入プレパック1Aは、蓄熱槽60内に蓄熱材封入パック1を収容する態様として、外側の第1封入袋50B内に収容されている。漏洩防止用内袋40は、本実施形態では、例えば、縦23cm×横12cmの長方形で、厚さ0.02mm程度の薄いポリエチレン(PE:polyethylene)製の包装用袋等である。 As described above, the heat storage material encapsulation pack 1 is housed in the heat storage tank 60. As shown in FIGS. 1 and 2, the heat storage material composition 3 is filled in the leakage prevention inner bag 40 as the heat storage material enclosure 2. The heat storage material enclosure 2 is inside the inner first enclosure 50A of the two overlapping enclosure bags 50 (first enclosure 50A, second enclosure 50B) (corresponding to the second container of the present invention). It is housed as a prepack 1A filled with a heat storage material. Further, the heat storage material-filled prepack 1A is housed in the outer first sealing bag 50B as a mode in which the heat storage material-filled pack 1 is housed in the heat storage tank 60. In the present embodiment, the leakage prevention inner bag 40 is, for example, a packaging bag made of thin polyethylene (PE: polyethylene) having a length of 23 cm and a width of 12 cm and a thickness of about 0.02 mm.

蓄熱材封入物2は、本発明に係る蓄熱材の容器内封入方法により構成される。本発明に係る蓄熱材の容器内封入方法は、無機塩水和物に含む水和水を脱離した無水和物と、加えた水とを、第1の容器(漏洩防止用内袋40)内で水和反応させることにより、無機塩水和物を生成し、容器を封入する方法である。 The heat storage material enclosure 2 is configured by the method for enclosing the heat storage material in a container according to the present invention. In the method for encapsulating the heat storage material in a container according to the present invention, the anhydrous product obtained by removing the hydrated water contained in the inorganic salt hydrate and the added water are placed in the first container (leakage prevention inner bag 40). This is a method of producing an inorganic salt hydrate by hydrating with water and enclosing a container.

無機塩水和物は、本実施形態では、アンモニウムミョウバン12水和物(硫酸アンモニウムアルミニウム・12水:AlNH(SO・12HO)であり、その無水和物は、アンモニウムミョウバン12水和物に含む水和水(12HO)を脱離した焼アンモニウムミョウバン(AlNH(SO)である。水は、例えば、純水、イオン交換水、水道水等である。 Inorganic salt hydrates, in the present embodiment, ammonium alum dodecahydrate: a (ammonium aluminum sulfate, 12 water AlNH 4 (SO 4) 2 · 12H 2 O), the anhydrate, ammonium alum 12 hydrated It is a burned ammonium alum (AlNH 4 (SO 4 ) 2 ) from which the hydrated water (12H 2 O) contained in the substance has been desorbed. The water is, for example, pure water, ion-exchanged water, tap water, or the like.

(実施例1)
本実施形態の実施例1に係る蓄熱材の容器内封入方法は、生成しようとする蓄熱材組成物3に対し、90wt%の配合比率となる量の焼アンモニウムミョウバン11を、平均1mm程度の大きさに粒子を粉砕して粉末状態(図1中、(a))にした後、開口41を通じて漏洩防止用内袋40内に充填する(図1中、(b))。なお、焼アンモニウムミョウバン11の粒子の大きさが、平均1mm程度よりも細かくなると、粒子間の間隙がより少なくなるため、好ましい。
(Example 1)
In the method of encapsulating the heat storage material in the container according to the first embodiment of the present embodiment, the amount of the baked ammonium alum 11 having a blending ratio of 90 wt% with respect to the heat storage material composition 3 to be produced is about 1 mm on average. After the particles are crushed into a powder state ((a) in FIG. 1), the particles are filled into the leakage prevention inner bag 40 through the opening 41 ((b) in FIG. 1). It is preferable that the size of the particles of the baked ammonium alum 11 is smaller than about 1 mm on average because the gaps between the particles are smaller.

他方で、融点調整剤21と増粘剤22を、常温の水12と共に、ポリプロピレン (PP:polypropylene)製の第1瓶71に投入して、常温のまま撹拌することにより、融点調整剤21と増粘剤22とが水12に溶解した添加剤水溶液30を調製する(図1中、(c))。このとき、融点調整剤21の投入量は、生成しようとする蓄熱材組成物3に対し2wt%であり、増粘剤22の投入量は、同じく8wt%である。融点調整剤21と増粘剤22は何れも、平均数百μm程度の大きさに粒子を粉砕した粉末状である。水12の投入量は、無水和物である焼アンモニウムミョウバン11に対し、その水和物であるアンモニウムミョウバン水和物10(潜熱蓄熱材10)を生成するのに必要な加水量と同量、または加水量を超える量の水である。この加水量は、すなわちアンモニウムミョウバン水和物10に含む水和水(12HO)に相当する量である。 On the other hand, the melting point adjusting agent 21 and the thickener 22 are put into the first bottle 71 made of polypropylene (PP) together with water 12 at room temperature, and stirred at room temperature to obtain the melting point adjusting agent 21. An aqueous additive solution 30 in which the thickener 22 and the thickener 22 are dissolved in water 12 is prepared ((c) in FIG. 1). At this time, the amount of the melting point adjusting agent 21 added is 2 wt% with respect to the heat storage material composition 3 to be produced, and the amount of the thickener 22 added is also 8 wt%. Both the melting point adjusting agent 21 and the thickener 22 are in the form of powder obtained by crushing particles to an average size of about several hundred μm. The amount of water 12 added is the same as the amount of water required to produce ammonium myoban hydrate 10 (latent heat storage material 10), which is the hydrate of the anhydrous ammonium myoban 11. Or the amount of water that exceeds the amount of water added. This amount of water is the amount corresponding to the hydrated water (12H 2 O) contained in the ammonium alum hydrate 10.

次に、焼アンモニウムミョウバン11を漏洩防止用内袋40内に充填後、開口41を通じて添加剤水溶液30を漏洩防止用内袋40内に注ぎ(図1中、(d))、漏洩防止用内袋40内で焼アンモニウムミョウバン11と水12との水和反応が終了するまで、この漏洩防止用内袋40を水平に静置する。これにより、漏洩防止用内袋40には、配合比率90wt%の焼アンモニウムミョウバン11と、水和水(12HO)に相当する加水量の水12と、配合比率2wt%の融点調整剤21と、配合比率8wt%の増粘剤22とが、互いに混ざり合う。常温下にある焼アンモニウムミョウバン11と添加剤水溶液30との混合物は、図1中、(e)に示すように、スラリー状混合物15を経て、次第に凝固する。これにより、焼アンモニウムミョウバン11と水12により生成されたアンモニウムミョウバン水和物10に、融点調整剤21と増粘剤22とを配合した蓄熱材組成物3が、漏洩防止用内袋40内で生成される。 Next, after filling the baked ammonium alum 11 into the leakage prevention inner bag 40, the additive aqueous solution 30 is poured into the leakage prevention inner bag 40 through the opening 41 (in FIG. 1, (d)) to prevent leakage. The leak-preventing inner bag 40 is allowed to stand horizontally until the hydration reaction between the baked ammonium alum 11 and the water 12 is completed in the bag 40. As a result, the leak-preventing inner bag 40 contains the baked ammonium alum 11 having a blending ratio of 90 wt%, the water 12 having a water content corresponding to the hydrated water (12H 2 O), and the melting point adjusting agent 21 having a blending ratio of 2 wt%. And the thickener 22 having a blending ratio of 8 wt% are mixed with each other. As shown in FIG. 1 (e), the mixture of the baked ammonium alum 11 and the additive aqueous solution 30 at room temperature gradually solidifies through the slurry-like mixture 15. As a result, the heat storage material composition 3 in which the melting point adjusting agent 21 and the thickener 22 are mixed with the ammonium alum hydrate 10 produced by the baked ammonium alum 11 and the water 12 is contained in the leakage prevention inner bag 40. Will be generated.

次に、漏洩防止用内袋40の開口41側の折返し部42を折り返して、漏洩防止用内袋40を閉塞する。折返し部42で折り返した漏洩防止用内袋40は、本実施形態では、例えば、縦18cm×横12cmの長方形である。かくして、蓄熱材組成物3を漏洩防止用内袋40内に収容した蓄熱材封入物2を作製する(図1中、(f))。 Next, the folded-back portion 42 on the opening 41 side of the leak-preventing inner bag 40 is folded back to close the leak-preventing inner bag 40. In the present embodiment, the leakage prevention inner bag 40 folded back at the folded-back portion 42 is, for example, a rectangle having a length of 18 cm and a width of 12 cm. In this way, the heat storage material enclosure 2 in which the heat storage material composition 3 is housed in the leakage prevention inner bag 40 is produced ((f) in FIG. 1).

(実施例2)
本実施形態の実施例2に係る蓄熱材の容器内封入方法は、生成しようとする蓄熱材組成物3に対し、90wt%の配合比率となる量の焼アンモニウムミョウバン11を、平均1mm程度の大きさに粒子を粉砕した粉末状態にしておく(図2中、(a))。他方で、何れも、粒子が平均数百μm程度の大きさに粉砕された粉末状の融点調整剤21と増粘剤22とを、常温の水12と共に、ポリプロピレン製の第1瓶71に投入して、常温のまま撹拌することにより、融点調整剤21と増粘剤22とが水12に溶解した添加剤水溶液30を調製する(図2中、(b))。
(Example 2)
In the method of encapsulating the heat storage material in the container according to the second embodiment of the present embodiment, the amount of the baked ammonium alum 11 having a blending ratio of 90 wt% with respect to the heat storage material composition 3 to be produced is about 1 mm on average. The particles are made into a crushed powder ((a) in FIG. 2). On the other hand, in each case, the powdery melting point adjusting agent 21 and the thickener 22 in which the particles are crushed to an average size of about several hundred μm are put into the first polypropylene bottle 71 together with water 12 at room temperature. Then, by stirring at room temperature, the additive aqueous solution 30 in which the melting point adjusting agent 21 and the thickener 22 are dissolved in water 12 is prepared ((b) in FIG. 2).

次に、粉末状の焼アンモニウムミョウバン11を投入した第2瓶72に、添加剤水溶液30を注ぎ、第2瓶72内で、焼アンモニウムミョウバン11と添加剤水溶液30とを混合し、常温のまま撹拌する(図2中、(c))。これにより、焼アンモニウムミョウバン11と添加剤水溶液30とがスラリー状に混合した状態のスラリー状混合物15が、生成される(図2中、(d))。 Next, the additive aqueous solution 30 is poured into the second bottle 72 containing the powdered baked ammonium alum 11, and the baked ammonium alum 11 and the additive aqueous solution 30 are mixed in the second bottle 72 and kept at room temperature. Stir ((c) in FIG. 2). As a result, a slurry-like mixture 15 in which the baked ammonium alum 11 and the additive aqueous solution 30 are mixed in a slurry form is produced ((d) in FIG. 2).

次に、このスラリー状混合物15を、開口41を通じて漏洩防止用内袋40内に注ぎ、(図2中、(e))、漏洩防止用内袋40内で焼アンモニウムミョウバン11と水12との水和反応が終了するまで、この漏洩防止用内袋40を水平に静置する。漏洩防止用内袋40内のスラリー状混合物15は、経時的に凝固する。これにより、焼アンモニウムミョウバン11と水12により生成されたアンモニウムミョウバン水和物10に、融点調整剤21と増粘剤22とを配合した蓄熱材組成物3が、漏洩防止用内袋40内で生成される。 Next, the slurry-like mixture 15 is poured into the leak-preventing inner bag 40 through the opening 41 ((e) in FIG. 2), and the baked ammonium alum 11 and the water 12 are mixed in the leak-preventing inner bag 40. The leakage prevention inner bag 40 is allowed to stand horizontally until the hydration reaction is completed. The slurry-like mixture 15 in the leak-preventing inner bag 40 solidifies over time. As a result, the heat storage material composition 3 in which the melting point adjusting agent 21 and the thickener 22 are mixed with the ammonium alum hydrate 10 produced by the baked ammonium alum 11 and the water 12 is contained in the leakage prevention inner bag 40. Will be generated.

そして、実施例1と同様、漏洩防止用内袋40の開口41側の折返し部42を折り返して、漏洩防止用内袋40を閉塞する。かくして、蓄熱材組成物3を漏洩防止用内袋40内に収容した蓄熱材封入物2を作製する(図2中、(f))。 Then, as in the first embodiment, the folded-back portion 42 on the opening 41 side of the leak-preventing inner bag 40 is folded back to close the leak-preventing inner bag 40. In this way, the heat storage material enclosure 2 in which the heat storage material composition 3 is housed in the leakage prevention inner bag 40 is produced (in FIG. 2, (f)).

次に、本実施形態に係る蓄熱材の容器内封入方法のうち、蓄熱材封入物2を封入袋50内に収容する工程について、図3を用いて説明する。図3は、実施形態に係る蓄熱材の容器内封入方法で形成した蓄熱材封入物を、封入袋に封入する工程を説明したフロー図である。 Next, among the methods for encapsulating the heat storage material in the container according to the present embodiment, a step of accommodating the heat storage material encapsulation 2 in the encapsulation bag 50 will be described with reference to FIG. FIG. 3 is a flow chart illustrating a step of enclosing the heat storage material enclosure formed by the method of encapsulating the heat storage material in the container according to the embodiment in the encapsulation bag.

封入袋50は、開口51から蓄熱材封入物2を収容可能な大きさに形成され、柔軟性を有した袋である。具体的には、封入袋50は、本実施形態では、例えば、ポリエチレン(PE:polyethylene)、ポリプロピレン (PP:polypropylene)、ポリエチレンテレフタラート(PET:polyethylene terephthalate)等のフィルム状の樹脂の外側に、アルミ箔を蒸着した二層以上の構造を持つラミネート袋であり、厚さ約0.05〜0.15mmで長方形に形成された包装用袋等である。この封入袋50は、大きさの異なる袋を2枚1組として、入れ子のように、二重(第1封入袋50A、第2封入袋50B)に包み込んだ二重袋構造で用いられる。内側となる第1封入袋50Aは、縦さ21.5cm×横14.8cmの長方形の袋であり、外側の第2封入袋50Bは、縦さ25.0cm×横17.3cmの長方形の袋である。 The encapsulation bag 50 is a flexible bag formed in a size capable of accommodating the heat storage material encapsulation 2 from the opening 51. Specifically, in the present embodiment, the encapsulation bag 50 is formed on the outside of a film-like resin such as polyethylene (PE: polypropylene), polypropylene (PP: polypropylene), or polyethylene terephthalate (PET). It is a laminated bag having a structure of two or more layers in which aluminum foil is vapor-deposited, and is a packaging bag or the like formed in a rectangular shape with a thickness of about 0.05 to 0.15 mm. The sealed bag 50 is used in a double bag structure in which bags of different sizes are wrapped in a double bag (first sealed bag 50A, second sealed bag 50B) like a nest. The inner first encapsulation bag 50A is a rectangular bag with a length of 21.5 cm and a width of 14.8 cm, and the outer second encapsulation bag 50B is a rectangular bag with a length of 25.0 cm and a width of 17.3 cm. Is.

図3中、(a)に示すように、実施例1,2に係る蓄熱材の容器内封入方法で構成された蓄熱材封入物2は、開口51を通じて第1封入袋50A(封入袋50)内に収容される(図3中、(b))。その後、図3中、(c)に示すように、周知の真空脱気シーラにより、第1封入袋50A内を吸引しながら脱気すると同時に、第1封入袋50Aの開口51を融着した封止部52で、第1封入袋50Aを完全に封止する(図3中、(d))。このとき、蓄熱材封入物2の漏洩防止用内袋40が、収縮した第1封入袋50Aに密着した状態になるまで、吸引を行って第1封入袋50Aの開口51を封止する。これにより、蓄熱材封入物2を第1封入袋50Aに内包した蓄熱材封入プレパック1Aが作製される。 In FIG. 3, as shown in (a), the heat storage material enclosure 2 configured by the method for enclosing the heat storage material in the container according to Examples 1 and 2 has a first encapsulation bag 50A (encapsulation bag 50) through the opening 51. It is housed inside ((b) in FIG. 3). After that, as shown in (c) in FIG. 3, a well-known vacuum degassing sealer was used to degas while sucking the inside of the first encapsulation bag 50A, and at the same time, the opening 51 of the first encapsulation bag 50A was fused. The first sealing bag 50A is completely sealed by the stopper 52 ((d) in FIG. 3). At this time, suction is performed to seal the opening 51 of the first sealing bag 50A until the leakage prevention inner bag 40 of the heat storage material inclusion 2 comes into close contact with the contracted first sealing bag 50A. As a result, the heat storage material-encapsulated prepack 1A in which the heat storage material-encapsulated material 2 is contained in the first encapsulation bag 50A is produced.

次に、作製した蓄熱材封入プレパック1Aは、開口51を通じて、第1封入袋50Aとは別の第2封入袋50B(封入袋50)内に収容される。この後、図3中、(e)に示すように、再び真空脱気シーラにより、第2封入袋50B内を吸引しながら脱気すると同時に、第2封入袋50Bの開口51(図3中、(b)参照)を融着した封止部52で、第2封入袋50Bを完全に封止する(図3中、(f))。このとき、蓄熱材封入プレパック1Aが、収縮した第2封入袋50Bに密着した状態になるまで、吸引を行って第2封入袋50Bの開口51を封止する。かくして、蓄熱槽60内に収容する態様として、蓄熱材封入物2を内包した漏洩防止用内袋40を、二重袋構造の封入袋50(第1封入袋50A、第2封入袋50B)で覆った蓄熱材封入パック1が、作製される。 Next, the produced heat storage material-encapsulated prepack 1A is housed in a second encapsulation bag 50B (encapsulation bag 50) different from the first encapsulation bag 50A through the opening 51. After that, as shown in (e) in FIG. 3, the inside of the second sealed bag 50B is sucked and degassed again by the vacuum degassing sealer, and at the same time, the opening 51 of the second sealed bag 50B (in FIG. 3). The second sealing bag 50B is completely sealed with the sealing portion 52 fused (see (b)) ((f) in FIG. 3). At this time, suction is performed to seal the opening 51 of the second sealed bag 50B until the heat storage material-filled prepack 1A is in close contact with the shrunk second sealed bag 50B. Thus, as a mode of accommodating in the heat storage tank 60, the leakage prevention inner bag 40 containing the heat storage material inclusion 2 is placed in the double bag structure encapsulation bag 50 (first encapsulation bag 50A, second encapsulation bag 50B). The covered heat storage material encapsulation pack 1 is produced.

なお、実施形態では、蓄熱材封入物2を内包した漏洩防止用内袋40を、二重袋構造の封入袋50で包み込んだが、漏洩防止用内袋40を包む封入袋50は、二重袋構造以外にも、1枚だけの封入袋50による一重袋構造のほか、三重袋構造、それ以上に封入袋50を多重に重ね合わせても良い。すなわち、蓄熱材や蓄熱材組成物を内包した第1の容器を、さらに包み込む第2の容器は、単数の第2の容器による単層の状態、または、複数の第2の容器により、入れ子のように、多重に重ね合わせた複層の状態になっていれば良い。 In the embodiment, the leakage prevention inner bag 40 containing the heat storage material enclosure 2 is wrapped in the double bag structure sealing bag 50, but the sealing bag 50 wrapping the leakage prevention inner bag 40 is a double bag. In addition to the structure, a single bag structure consisting of only one sealed bag 50, a triple bag structure, or more, the sealed bags 50 may be stacked in multiple layers. That is, the second container that further encloses the first container containing the heat storage material or the heat storage material composition is in a single layer state by a single second container, or is nested by a plurality of second containers. As described above, it suffices to be in a state of multiple layers in which multiple layers are stacked.

次に、本実施形態に係る容器内封入方法の有意性を確認する目的で、本実施形態の実施例2に係る蓄熱材の容器内封入方法と、従来の実施形態に係る蓄熱材の容器内封入方法とを対比した調査実験を行った。図9は、従来の実施形態に係る蓄熱材の容器内封入方法の工程を説明したフロー図である。 Next, for the purpose of confirming the significance of the in-container encapsulation method according to the present embodiment, the in-container encapsulation method of the heat storage material according to the second embodiment of the present embodiment and the in-container of the heat storage material according to the conventional embodiment. A survey experiment was conducted in comparison with the encapsulation method. FIG. 9 is a flow chart illustrating the process of the method of encapsulating the heat storage material in the container according to the conventional embodiment.

はじめに、従来の実施形態に係る蓄熱材の容器内封入方法の概要について、図9を用いて簡単に説明する。説明は、実施例2に係る蓄熱材の容器内封入方法により封入した蓄熱材組成物3と同じ組成の蓄熱材組成物を、従来の実施形態に係る蓄熱材の容器内封入方法で封入する場合を挙げて行う。なお、その説明の中で、本実施形態の実施例2に係る蓄熱材の容器内封入方法の内容と重複する部分は、省略または簡潔化する。 First, the outline of the method of encapsulating the heat storage material in the container according to the conventional embodiment will be briefly described with reference to FIG. The description describes the case where the heat storage material composition having the same composition as that of the heat storage material composition 3 sealed by the method of sealing the heat storage material in the container according to the second embodiment is sealed by the method of sealing the heat storage material in the container according to the conventional embodiment. To do it. In the description, the part that overlaps with the content of the method for encapsulating the heat storage material in the container according to the second embodiment of the present embodiment will be omitted or simplified.

アンモニウムミョウバン水和物10は、粒子を平均1mm程度の大きさに粉砕した粉末状である。融点調整剤21と増粘剤22とは何れも、粒子を平均数百μm程度の大きさに粉砕した粉末状である(図9中、(a))。生成しようとする蓄熱材組成物3に対し、アンモニウムミョウバン水和物10の配合比率は90wt%、融点調整剤21の配合比率は2wt%、増粘剤22の配合比率は8wt%である。従来の実施形態に係る蓄熱材の容器内封入方法では、これらのアンモニウムミョウバン水和物10と、融点調整剤21と、増粘剤22とが、万遍に撹拌され、これらの混合物が、複数の漏洩防止用内袋40内にそれぞれ、開口41を通じて投入され、小分けされていた(図9中、(b))。これにより、蓄熱材組成物3が各漏洩防止用内袋40内で生成されていた。そして、漏洩防止用内袋40の開口41は、開口41側の折返し部42を折り畳むことにより閉塞され、この状態の漏洩防止用内袋40を、封入袋50内に収容し、封入袋50の開口を融着することにより、封入袋50が封止されていた。 Ammonium alum hydrate 10 is in the form of a powder obtained by pulverizing particles to an average size of about 1 mm. Both the melting point adjusting agent 21 and the thickener 22 are in the form of powder in which particles are pulverized to an average size of about several hundred μm ((a) in FIG. 9). The blending ratio of the ammonium alum hydrate 10 is 90 wt%, the blending ratio of the melting point adjusting agent 21 is 2 wt%, and the blending ratio of the thickener 22 is 8 wt% with respect to the heat storage material composition 3 to be produced. In the method for encapsulating the heat storage material in a container according to the conventional embodiment, the ammonium alum hydrate 10, the melting point adjusting agent 21, and the thickener 22 are uniformly agitated, and a plurality of mixtures thereof are produced. Each of the leak-preventing inner bags 40 was put into the inner bag 40 through the opening 41 and subdivided (in FIG. 9, (b)). As a result, the heat storage material composition 3 was generated in each leakage prevention inner bag 40. Then, the opening 41 of the leakage prevention inner bag 40 is closed by folding the folded-back portion 42 on the opening 41 side, and the leakage prevention inner bag 40 in this state is housed in the sealing bag 50, and the sealing bag 50 The sealing bag 50 was sealed by fusing the openings.

次に、調査実験について、説明する。
<実験方法>
・調査実験では、100gの蓄熱材組成物3を、A5サイズの漏洩防止用内袋40内に封入した蓄熱材封入物2を作製するのに、実施例2に係る蓄熱材の容器内封入方法で作製した実験1を、その比較例として、従来の実施形態に係る蓄熱材の容器内封入方法で作製した実験2を、それぞれ実施。
・実験1,2とも、前述したように、作製した蓄熱材封入物2を、まず第1封入袋50Aに収容し、この第1封入袋50A内を吸引しながら開口を融着し、第1封入袋50A内を封止して蓄熱材封入プレパック1A(実験1)(実験2では、蓄熱材封入プレパック1Aに相当する蓄熱材封入プレパック)を5つ作製。さらに、実験1ではこの蓄熱材封入プレパック1A(実験2では、蓄熱材封入プレパック)を個々に第2封入袋50Bに収容し、この第2封入袋50B内を吸引しながら開口を融着し、第2封入袋50B内を封止した蓄熱材封入パック1(蓄熱材封入プレパック)を、それぞれ5パックずつ作製。
・実験1,2ともそれぞれ、5パック全ての蓄熱材封入パック1(蓄熱材封入プレパック)を水槽内の水に浸し、上昇した水位分の水の体積を求めた上で、1パック当たりの蓄熱材封入パック1(蓄熱材封入プレパック)の平均体積を測定。
Next, the survey experiment will be described.
<Experimental method>
-In the investigation experiment, in order to prepare the heat storage material enclosure 2 in which 100 g of the heat storage material composition 3 is sealed in the A5 size leakage prevention inner bag 40, the method of enclosing the heat storage material in the container according to the second embodiment. As a comparative example of the experiment 1 prepared in the above, the experiment 2 prepared by the method of encapsulating the heat storage material in the container according to the conventional embodiment was carried out.
-In both Experiments 1 and 2, as described above, the prepared heat storage material enclosure 2 was first housed in the first encapsulation bag 50A, and the openings were fused while sucking the inside of the first encapsulation bag 50A. Five heat storage material-encapsulated prepacks 1A (Experiment 1) (in Experiment 2, a heat storage material-encapsulated prepack corresponding to the heat storage material-encapsulated prepack 1A) were prepared by sealing the inside of the encapsulation bag 50A. Further, in Experiment 1, the heat storage material-encapsulated prepack 1A (in Experiment 2, the heat storage material-encapsulated prepack) was individually housed in the second encapsulation bag 50B, and the openings were fused while sucking the inside of the second encapsulation bag 50B. Five packs of heat storage material-encapsulated packs 1 (pre-packs filled with heat storage material) that sealed the inside of the second sealed bag 50B were produced.
・ In both Experiments 1 and 2, all 5 packs of heat storage material-filled pack 1 (heat storage material-filled pre-pack) were immersed in the water in the water tank, and the volume of water corresponding to the elevated water level was calculated, and then the heat storage per pack Measure the average volume of the material encapsulation pack 1 (heat storage material encapsulation prepack).

<実験1と実験2との共通条件>
・生成しようとする蓄熱材組成物3の量:100g
・蓄熱材組成物3の融点:約90℃
・融点調整剤21:粉末状の無水硫酸ナトリウム(NaSO)を2g
・増粘剤22:粉末状のマンニトール(C14)を8g
・蓄熱材封入物2の風袋:漏洩防止用内袋40
・蓄熱材封入物2の封止:漏洩防止用内袋40の折返し部42で折り返し
・蓄熱材封入パック1(蓄熱材封入プレパック)の風袋:二重化した封入袋50
・蓄熱材封入パック1(蓄熱材封入プレパック)の封止:真空脱気シーラによる融着(封止部52)
<Common conditions between Experiment 1 and Experiment 2>
-Amount of heat storage material composition 3 to be produced: 100 g
-Melting point of heat storage material composition 3: Approximately 90 ° C
Melting point adjuster 21: 2 g of powdered anhydrous sodium sulfate (Na 2 SO 4 )
Thickener 22: 8 g of powdered mannitol (C 6 H 14 O 6 )
-Tare of the heat storage material enclosure 2: Leakage prevention inner bag 40
・ Sealing of heat storage material encapsulation 2: Folded back at the folded part 42 of the inner bag 40 for leakage prevention ・ Tare of heat storage material encapsulation pack 1 (heat storage material encapsulation prepack): Duplicated encapsulation bag 50
-Encapsulation of heat storage material encapsulation pack 1 (heat storage material encapsulation prepack): fusion by vacuum degassing sealer (sealing portion 52)

<実験1の条件>
・無水和物11:粉末状の焼アンモニウムミョウバン(AlNH(SO)を47.12g (分子量237.162に対し、その0.198mol分相当)
・水12:純水を42.88g(アンモニウムミョウバン12水和物10の水和水(12HO)に相当する量)
・融点調整剤21と増粘剤22と水12の混合:常温で撹拌して添加剤水溶液30を調製
・蓄熱材組成物3を漏洩防止用内袋40内に封入する方法:前述した実施例2に係る蓄熱材の容器内封入方法
<Conditions for Experiment 1>
Anhydrous product 11: 47.12 g of powdered baked ammonium alum (AlNH 4 (SO 4 ) 2 ) (equivalent to 0.198 mol of the molecular weight of 237.162).
-Water 12: 42.88 g of pure water (amount corresponding to hydrated water (12H 2 O) of ammonium alum dodecahydrate 10)
-Mixing of melting point adjusting agent 21, thickener 22 and water 12: Stir at room temperature to prepare additive aqueous solution 30-Method of enclosing the heat storage material composition 3 in the leakage prevention inner bag 40: Examples described above. Method of enclosing the heat storage material in the container according to item 2

<実験2の条件>
・無機塩水和物10:粉末状のアンモニウムミョウバン12水和物(硫酸アンモニウムアルミニウム・12水:AlNH4(SO・12HO)を90g (分子量453.354に対し、その0.198mol分相当)
・無機塩水和物10と融点調整剤21と増粘剤22との混合:常温のまま鉢内で撹拌して混合
・蓄熱材組成物3を漏洩防止用内袋40内に封入する方法:前述した従来の実施形態に係る蓄熱材の容器内封入方法。但し、蓄熱材組成物3が漏洩防止用内袋40内に生成された後、実施例2と同様、漏洩防止用内袋40の開口41側の折返し部42を折り返すことで、漏洩防止用内袋40を閉塞し、この漏洩防止用内袋40を封入袋50内に収容しているが、封入袋50は二重袋構造とした。
<Conditions for Experiment 2>
Inorganic salt hydrate 10: powdery ammonium alum dodecahydrate: to (ammonium aluminum sulfate, 12 water AlNH4 (SO 4) 2 · 12H 2 O) and 90 g (molecular weight 453.354, equivalent thereof 0.198mol min )
-Mixing of the inorganic salt hydrate 10, the melting point adjusting agent 21 and the thickener 22: Stirring in a pot at room temperature and mixing-The method of enclosing the heat storage material composition 3 in the leakage prevention inner bag 40: described above. A method of encapsulating a heat storage material in a container according to the conventional embodiment. However, after the heat storage material composition 3 is generated in the leakage prevention inner bag 40, the leakage prevention inner bag 40 is folded back on the opening 41 side of the leakage prevention inner bag 40 as in the second embodiment. The bag 40 is closed, and the leakage prevention inner bag 40 is housed in the sealing bag 50. The sealing bag 50 has a double bag structure.

<実験結果>
図6は、本実施形態に係る蓄熱材の容器内封入方法の有意性を確認した調査実験の結果を示す表である。図6に示すように、蓄熱材封入パック1(蓄熱材封入プレパック)の平均体積について、実験2では、体積が132.0cmであったのに対し、実験1では、体積が103.2cmであった。実験1で得られた体積は、実験2で得られた体積に比べ、21.8%減少している。生成された蓄熱材組成物3の量は、実験1,2とも同じ100gであるため、その体積は、実験1,2とも同じ61.2cm(算出値)である。
<Experimental results>
FIG. 6 is a table showing the results of a survey experiment confirming the significance of the method of encapsulating the heat storage material in the container according to the present embodiment. As shown in FIG. 6, regarding the average volume of the heat storage material-encapsulated pack 1 (heat storage material-encapsulated pre-pack), the volume was 132.0 cm 3 in Experiment 2, whereas the volume was 103.2 cm 3 in Experiment 1. Met. The volume obtained in Experiment 1 is 21.8% smaller than the volume obtained in Experiment 2. Since the amount of the heat storage material composition 3 produced is 100 g, which is the same in Experiments 1 and 2, the volume is 61.2 cm 3 (calculated value), which is the same in Experiments 1 and 2.

ここで、漏洩防止用内袋40と封入袋50の体積は、その他に比べて極めて小さい上、蓄熱材封入パック1等では、漏洩防止用内袋40と封入袋50とが密着しているため、蓄熱材封入パック1(蓄熱材封入プレパック)の平均体積と蓄熱材組成物3の体積との差が、漏洩防止用内袋40内の間隙部の体積と近似できる。従って、漏洩防止用内袋40内の間隙部の体積について、実験2では、体積が70.8cmであるのに対し、実験1では、体積が42.0cmであると推定することができる。 Here, the volumes of the leakage prevention inner bag 40 and the sealing bag 50 are extremely small compared to the others, and in the heat storage material sealing pack 1 and the like, the leakage prevention inner bag 40 and the sealing bag 50 are in close contact with each other. The difference between the average volume of the heat storage material encapsulation pack 1 (heat storage material encapsulation prepack) and the volume of the heat storage material composition 3 can be approximated to the volume of the gap in the leakage prevention inner bag 40. Accordingly, the volume of the gap in the bag 40 for leakage prevention, in Experiment 2, while the volume is 70.8Cm 3, in Experiment 1, the volume can be estimated to be 42.0Cm 3 ..

<考察>
蓄熱材組成物3をなす組成は、実験1,2とも実質的に同じである。しかしながら、実験2の場合、潜熱蓄熱材10として、計量した90gの無機塩水和物10(粉末状のアンモニウムミョウバン12水和物10)が、そのままの状態で、融点調整剤21と増粘剤22と共に、鉢の中で撹拌して混合されている。粉末状の無機塩水和物10と、粉末状の融点調整剤21と、粉末状の増粘剤22とが、鉢の中で万遍なく混合されていても、隣接する粉末同士の間には、物理的な隙間(間隙)が必然的に生じてしまう。
<Discussion>
The composition of the heat storage material composition 3 is substantially the same in Experiments 1 and 2. However, in the case of Experiment 2, 90 g of the inorganic salt hydrate 10 (powdered ammonium alum 12 hydrate 10) as the latent heat storage material 10 was used as it was, and the melting point adjusting agent 21 and the thickener 22 were left as they were. At the same time, it is mixed by stirring in a pot. Even if the powdered inorganic salt hydrate 10, the powdered melting point adjusting agent 21, and the powdered thickener 22 are evenly mixed in the pot, there is a gap between the adjacent powders. , A physical gap (gap) is inevitably generated.

実験2の場合には、無機塩水和物10において、このような間隙が存在することに起因して、蓄熱材封入パックで生成された蓄熱材組成物3の平均体積が、132.0cmにも及んでいるものと考えられる。 In the case of Experiment 2, in the inorganic salt hydrate 10, the average volume of the heat storage material composition 3 produced by the heat storage material encapsulation pack was 132.0 cm 3 due to the existence of such a gap. It is thought that it also extends.

これに対し、実験1の場合、潜熱蓄熱材10の主成分である粉末状の焼アンモニウムミョウバン(AlNH(SO)(無水和物11)と、融点調整剤21と、増粘剤22とが水12に溶解した添加剤水溶液30を、予めポリプロピレン製の第1瓶71内で混合し、スラリー状混合物15とした上で、漏洩防止用内袋40内に注いでいる。そのため、漏洩防止用内袋40に投入前に、無水和物11の粉末同士の間に存在していた間隙は、添加剤水溶液30で満たされた状態となり、蓄熱材組成物3が漏洩防止用内袋40内で生成される。生成された蓄熱材組成物3は、充填密度の高い一体的な構造で形成されている。そのため、実験1の場合には、無水和物11の粉末同士の間に存在していた間隙による影響を受けず、蓄熱材封入パック1で生成された蓄熱材組成物3の平均体積は、実験2の場合の体積132.0cmよりも、21.8%も縮小した103.2cmに収まっているものと考えられる。つまり、実験1の場合に対し、蓄熱材組成物3の体積充填率は、実験2の場合に比して、132.0/103.2≒1.3(倍)に向上している。 On the other hand, in the case of Experiment 1, powdered baked ammonium alum (AlNH 4 (SO 4 ) 2 ) (anhydride 11), which is the main component of the latent heat storage material 10, a melting point adjusting agent 21, and a thickener The additive aqueous solution 30 in which 22 and 22 are dissolved in water 12 is mixed in advance in the polypropylene first bottle 71 to form a slurry-like mixture 15, and then poured into the leakage prevention inner bag 40. Therefore, the gap existing between the powders of the anhydrous sum 11 before being put into the leakage prevention inner bag 40 is filled with the additive aqueous solution 30, and the heat storage material composition 3 is used for leakage prevention. It is generated in the inner bag 40. The generated heat storage material composition 3 is formed of an integral structure having a high packing density. Therefore, in the case of Experiment 1, the average volume of the heat storage material composition 3 produced by the heat storage material encapsulation pack 1 is not affected by the gap existing between the powders of the anhydride 11 and is the experiment. than the volume 132.0Cm 3 in the case of 2, it is considered that fall 103.2Cm 3 which shrank 21.8 percent. That is, as compared with the case of Experiment 1, the volume filling rate of the heat storage material composition 3 is improved to 132.0 / 103.2 ≈1.3 (times) as compared with the case of Experiment 2.

次に、蓄熱材封入パック1に包含する間隙の影響について、熱伝導の観点で考察する。図7は、空隙部を含む蓄熱材封入パックの断面を示す模式図である。ここで、蓄熱材封入パック1は元々、蓄熱材組成物3を漏洩防止用内袋40に収容した蓄熱材封入物2を、封入袋50に封入されたものであるが、漏洩防止用内袋40は、厚さ0.02mm程度と非常に薄くなっている。また、二重化した封入袋50では、双方とも吸引しながら融着を行っているため、第1封入袋50Aと第2封入袋50Bとの間の隙間に起因した影響はかなり小さく、漏洩防止用内袋40や封入袋50による影響は無視することができる。そのため、ここでは、図7に示すように、蓄熱材組成物3を直に封入袋50内に封入したモデルの蓄熱材封入パック1を用いて、熱伝導の観点による考察を行う。 Next, the influence of the gap included in the heat storage material encapsulation pack 1 will be considered from the viewpoint of heat conduction. FIG. 7 is a schematic view showing a cross section of the heat storage material encapsulation pack including the void portion. Here, the heat storage material encapsulation pack 1 originally contains the heat storage material enclosure 2 in which the heat storage material composition 3 is contained in the leakage prevention inner bag 40, and is enclosed in the encapsulation bag 50. 40 has a very thin thickness of about 0.02 mm. Further, since both of the duplicated sealed bags 50 are fused while being sucked, the influence caused by the gap between the first sealed bag 50A and the second sealed bag 50B is considerably small, and the inside for leakage prevention is provided. The influence of the bag 40 and the enclosed bag 50 can be ignored. Therefore, here, as shown in FIG. 7, a consideration is made from the viewpoint of heat conduction by using a model heat storage material encapsulation pack 1 in which the heat storage material composition 3 is directly enclosed in the encapsulation bag 50.

蓄熱槽60内に、図7に示すように、蓄熱材封入パック1を横置きで蓄熱槽60内に配置した場合、蓄熱材封入パック1内の蓄熱材組成物3が、蓄熱槽60内の熱媒体61により、融点90℃を超える熱で温められると、蓄熱材組成物3は液相状態になる。このとき、液相状態の蓄熱材組成物3は、自重により封入袋50内の下方部に移動し、その上方部に、厚みd(0≦d)の空隙部4が生じると想定される。 As shown in FIG. 7, when the heat storage material encapsulation pack 1 is horizontally arranged in the heat storage tank 60, the heat storage material composition 3 in the heat storage material encapsulation pack 1 is placed in the heat storage tank 60. When the heat storage medium 61 is heated by heat exceeding the melting point of 90 ° C., the heat storage material composition 3 is in a liquid phase state. At this time, it is assumed that the heat storage material composition 3 in the liquid phase state moves to the lower portion in the sealing bag 50 due to its own weight, and a gap portion 4 having a thickness d (0 ≦ d) is generated in the upper portion thereof.

このような空隙部4が蓄熱材封入パック1内にあると、蓄熱材組成物3が蓄熱または放熱を行う上で、封入袋50内の蓄熱材組成物3の下面と、熱媒体61との間で行われる熱の伝導に比べ、封入袋50内の蓄熱材組成物3の上面と、熱媒体61との間で行われる熱の伝導が、空隙部4によって阻害されていると考えられる。そこで、空隙部4の熱抵抗による悪影響について、具体的に検討する。 When such a gap 4 is inside the heat storage material encapsulation pack 1, the lower surface of the heat storage material composition 3 in the encapsulation bag 50 and the heat medium 61 are used to store heat or dissipate heat when the heat storage material composition 3 stores heat or dissipates heat. It is considered that the heat conduction performed between the upper surface of the heat storage material composition 3 in the sealing bag 50 and the heat medium 61 is hindered by the void portion 4 as compared with the heat conduction performed between the two. Therefore, the adverse effect of the thermal resistance of the void portion 4 will be specifically examined.

空隙部4における熱抵抗は、式(1)により算出できる。
R=d/λA …式(1)
R:熱抵抗[K/W]、d:空隙部の厚み[m]、λ:空隙部の熱伝導率[W/m・K]、A:空隙部の表面積(空隙部4と漏洩防止用内袋40の接触面積)[m
但し、二重化した封入袋50の厚み分について、熱伝導への影響がほとんど無視できると仮定している。
The thermal resistance in the gap 4 can be calculated by the equation (1).
R = d / λA ... Equation (1)
R: Thermal resistance [K / W], d: Thickness of the gap [m], λ: Thermal conductivity of the gap [W / m · K], A: Surface area of the gap (for gap 4 and leakage prevention) Contact area of inner bag 40) [m 2 ]
However, it is assumed that the effect on heat conduction can be almost ignored for the thickness of the duplicated encapsulation bag 50.

本実施形態で使用する二重袋構造の封入袋50のうち、内側の第1封入袋50Aは、縦さ21.5cm×横14.8cmの長方形であり、その四辺に1cmのシール部を含んでいるため、この第1封入袋50A(封入袋50)と空隙部4との接触面積Aは、
(0.215−0.02)×(0.148−0.02)≒0.025(m) …解(2)
Of the double-bag-structured encapsulation bag 50 used in the present embodiment, the inner first encapsulation bag 50A is a rectangle having a length of 21.5 cm and a width of 14.8 cm, and includes a seal portion of 1 cm on all four sides thereof. Therefore, the contact area A between the first encapsulation bag 50A (encapsulation bag 50) and the gap 4 is
(0.215-0.02) × (0.148-0.02) ≈ 0.025 (m 2 )… Solution (2)

封入袋50内の空隙部4の体積は、図6に示すように、実験1の場合に42.0cm、実験2の場合に70.8cmと近似でき、接触面積Aは解(2)で得られていることから、空隙部4の厚みdは、
実験1の場合で、
42.0×10/0.025×10=1.68 ∴d≒1.7(mm) …解(3)
実験2の場合で、
70.8×10/0.025×10=2.83 ∴d≒2.8(mm) …解(4)
As shown in FIG. 6, the volume of the gap 4 in the encapsulation bag 50 can be approximated to 42.0 cm 3 in the case of Experiment 1 and 70.8 cm 3 in the case of Experiment 2, and the contact area A is the solution (2). Therefore, the thickness d of the gap portion 4 is
In the case of Experiment 1,
42.0 × 10 3 / 0.025 × 10 6 = 1.68 ∴d ≒ 1.7 (mm)… Solution (3)
In the case of Experiment 2,
70.8 × 10 3 / 0.025 × 10 6 = 2.83 ∴d ≒ 2.8 (mm)… Solution (4)

解(3),(4)により、1.7/2.8≒0.61 …解(5)
すなわち、実施例2に係る蓄熱材の容器内封入方法(実験1)で作製した蓄熱材封入パック1の空隙部4の厚みdは、従来の実施形態に係る蓄熱材の容器内封入方法(実験2)に比べ、約61%にまで抑制されている。そのため、空隙部4を挟み、蓄熱材組成物3の上面(図7中、上側の面)と、封入袋50に密着した漏洩防止用内袋40の内面(図7中、蓄熱材封入パック1の上辺の内側の面)との間における伝熱速度vは、実験1と実験2の対比で
1/0.61=1.64 ∴v≒1.6 …解(6)
解(6)より、実験1の場合は、実験2の場合の約1.6倍になると推察される。
According to the solutions (3) and (4), 1.7 / 2.8 ≈ 0.61 ... Solution (5)
That is, the thickness d of the gap 4 of the heat storage material encapsulation pack 1 produced by the heat storage material encapsulation method (experiment 1) according to the second embodiment is the heat storage material encapsulation method (experiment 1) according to the conventional embodiment. Compared with 2), it is suppressed to about 61%. Therefore, the upper surface of the heat storage material composition 3 (upper surface in FIG. 7) and the inner surface of the leakage prevention inner bag 40 (in FIG. 7, the heat storage material encapsulation pack 1) which is in close contact with the encapsulation bag 50 are sandwiched between the gaps 4. The heat transfer rate v between (the inner surface of the upper side) is 1 / 0.61 = 1.64 ∴v ≒ 1.6 ... Solution (6) in comparison with Experiment 1 and Experiment 2.
From solution (6), it is estimated that the case of Experiment 1 is about 1.6 times that of Experiment 2.

ところで、前述したように、本実施形態では、増粘剤22にマンニトール(C14)が蓄熱材組成物3に配合されている。マンニトールは、潜熱蓄熱材10をなす焼アンモニウムミョウバンの成分と、融点調整剤21として配合した無水硫酸ナトリウムの成分とのバインダーとして作用するほかに、当該マンニトール自体に、蓄熱または放熱を可能とする蓄熱特性を兼ね備えている。図8は、本実施形態に係る蓄熱材組成物に含有するマンニトールについて、その有意性を示すグラフである。 By the way, as described above, in the present embodiment, mannitol (C 6 H 14 O 6 ) is blended in the heat storage material composition 3 in the thickener 22. Mannitol acts as a binder between the component of baked ammonium alum that forms the latent heat storage material 10 and the component of anhydrous sodium sulfate compounded as the melting point adjuster 21, and also heat storage that enables heat storage or heat dissipation in the mannitol itself. It has characteristics. FIG. 8 is a graph showing the significance of mannitol contained in the heat storage material composition according to the present embodiment.

図8に示すように、潜熱蓄熱材(図8では、「PCM」と表示)以外に、何ら添加剤が配合されていないPCM単体の場合、単位体積当たりに蓄熱できる蓄熱量はPである。PCM単体に添加剤(例えば、無水硫酸ナトリウム等の融点調整剤)を加えた蓄熱材組成物では、蓄熱特性を持たない添加剤の配合により、単位体積当たりに蓄熱できる蓄熱量は、PよりP1(P1<P)だけ低減したP0(P1<P0<P)となる。この蓄熱量P0は、蓄熱材組成物に含まれるPCM単体に対応した熱量である。 As shown in FIG. 8, in the case of a PCM alone containing no additives other than the latent heat storage material (indicated as “PCM” in FIG. 8), the amount of heat storage that can be stored per unit volume is P. In a heat storage material composition in which an additive (for example, a melting point adjuster such as anhydrous sodium sulfate) is added to PCM alone, the amount of heat storage that can be stored per unit volume is P1 rather than P by blending an additive that does not have heat storage characteristics. It becomes P0 (P1 <P0 <P) reduced by (P1 <P). This heat storage amount P0 is the amount of heat corresponding to the PCM alone contained in the heat storage material composition.

ところが、蓄熱材組成物に含まれる潜熱蓄熱材と同様、増粘剤として用いるマンニトールにも、蓄熱できる蓄熱量P2(P2<P)を有しているため、PCM蓄熱分として、潜熱蓄熱材に対応した蓄熱量P0と、マンニトール蓄熱分とする蓄熱量P2との和が、蓄熱材組成物における単位体積当たりに蓄熱できる蓄熱量となる。そのため、マンニトールのこのような蓄熱特性があることによって、蓄熱材組成物3では、例えば、300〜400kJ/Lという、非常に大きな蓄熱量が、得られるものと考えられる。 However, like the latent heat storage material contained in the heat storage material composition, mannitol used as a thickener also has a heat storage amount P2 (P2 <P) that can store heat, so that it can be used as a latent heat storage material as a PCM heat storage component. The sum of the corresponding heat storage amount P0 and the heat storage amount P2 as the mannitol heat storage component is the heat storage amount that can be stored per unit volume in the heat storage material composition. Therefore, it is considered that the heat storage material composition 3 can obtain a very large amount of heat storage, for example, 300 to 400 kJ / L, due to the heat storage characteristics of mannitol.

次に、本実施形態に係る蓄熱材の容器内封入方法の作用・効果について説明する。本実施形態の蓄熱材の容器内封入方法では、蓄熱または放熱を行う潜熱蓄熱材10を、漏洩防止用内袋40に封入する蓄熱材の容器内封入方法において、潜熱蓄熱材10は、無機塩水和物からなること、無機塩水和物に含む水和水を脱離した無水和物11と、加えた水12とを、漏洩防止用内袋40内で水和反応させることにより、無機塩水和物10(潜熱蓄熱材10)を生成し、漏洩防止用内袋40に封入すること、を特徴とする。この特徴により、無水和物11の漏洩防止用内袋40への充填前、隣接する粉末同士の間にあった間隙は水和反応時に、漏洩防止用内袋40に加えた水12で満たされるため、漏洩防止用内袋40の内容積に対し、潜熱蓄熱材10が実質的に占める体積充填率は、粉末状の無機塩水和物10(アンモニウムミョウバン12水和物)を漏洩防止用内袋40内に直に充填した従来の実施形態に係る蓄熱材の容器内封入方法に比べて、大幅に向上する。また、間隙の発生を抑えているため、従来比で、潜熱蓄熱材10と蓄熱槽60内の熱媒体61との間の熱伝導に要する時間も短くなるため、このような伝熱性能は高くなる。また、アンモニウムミョウバン12水和物10と融点調整剤21と増粘剤22との混合物である蓄熱材組成物3を生成するのに、加熱設備を一切必要とせず、この蓄熱材組成物3を、漏洩防止用内袋40内で常温のまま簡単に生成することができる。そのため、蓄熱材組成物3を生成し、蓄熱材封入物2を作製する作業を、効率良く行うことができる。さらに、蓄熱材組成物3のように、融点(融点約90℃)が比較的高くても、液相状態の蓄熱材組成物3を直接取り扱うことがなく、蓄熱材封入物2の作製作業は、従来の実施形態に係る蓄熱材の容器内封入方法に比して、安全である。 Next, the action / effect of the method of encapsulating the heat storage material in the container according to the present embodiment will be described. In the method of encapsulating the heat storage material in the container of the present embodiment, in the method of enclosing the latent heat storage material 10 that stores heat or dissipates heat in the inner bag 40 for preventing leakage, the latent heat storage material 10 is an inorganic salt water. Inorganic salt hydration by hydrating the anhydrous sumata 11 from which the hydrated water contained in the inorganic salt hydrate has been removed and the added water 12 in the inner bag 40 for preventing leakage. It is characterized in that an object 10 (latent heat storage material 10) is generated and sealed in an inner bag 40 for preventing leakage. Due to this feature, the gap between adjacent powders before being filled in the leakage prevention inner bag 40 of the anhydride 11 is filled with the water 12 added to the leakage prevention inner bag 40 during the hydration reaction. The volume filling ratio that the latent heat storage material 10 substantially occupies with respect to the internal volume of the leakage prevention inner bag 40 is such that the powdered inorganic salt hydrate 10 (ammonium myoban dodecahydrate) is contained in the leakage prevention inner bag 40. This is significantly improved as compared with the method of filling the heat storage material in the container according to the conventional embodiment in which the bag is directly filled. Further, since the generation of gaps is suppressed, the time required for heat conduction between the latent heat storage material 10 and the heat medium 61 in the heat storage tank 60 is shorter than in the conventional case, so that such heat transfer performance is high. Become. Further, in order to produce the heat storage material composition 3 which is a mixture of ammonium alum dodecahydrate 10 and the melting point adjusting agent 21 and the thickener 22, no heating equipment is required, and the heat storage material composition 3 is used. , It can be easily produced in the inner bag 40 for preventing leakage at room temperature. Therefore, the work of producing the heat storage material composition 3 and producing the heat storage material enclosure 2 can be efficiently performed. Further, unlike the heat storage material composition 3, even if the melting point (melting point is about 90 ° C.) is relatively high, the heat storage material composition 3 in the liquid phase state is not directly handled, and the work of producing the heat storage material enclosure 2 can be performed. , It is safer than the method of enclosing the heat storage material in the container according to the conventional embodiment.

すなわち、従来、完全な液相状態の蓄熱材組成物3を生成するのに、粉末状のアンモニウムミョウバン12水和物10と、粉末状の融点調整剤21と、粉末状の増粘剤22とを混ぜ合わせた粉末状の混合物を、蓄熱材組成物3の融点約90℃を超えた温度(例えば、約100℃)まで加熱して融解しなければならなかった。その加熱を行う加熱設備が、蓄熱材組成物3を漏洩防止用内袋40内に充填するためだけに必要となっていた。加えて、上記粉末状の混合物を約100℃に加熱して融解すると、加熱時に多大な熱エネルギが必要になるほか、作業者への安全策も必要となり、加熱に伴った作業時間も余分に掛かってしまうため、蓄熱材組成物3を漏洩防止用内袋40に効率良く封入できなかった。これに対し、本実施形態に係る蓄熱材の容器内封入方法では、この加熱設備が不要であり、しかも漏洩防止用内袋40内では、蓄熱材組成物3を生成するのに必要な反応が、自発的に起き、蓄熱材組成物3の生成に掛かる作業も効率良く、安全に行うことができる。 That is, conventionally, in order to produce the heat storage material composition 3 in a completely liquid phase state, a powdered ammonium myoban dodecahydrate 10, a powdered melting point adjusting agent 21, and a powdered thickener 22 are used. The powdery mixture in which the above was mixed had to be heated to a temperature (for example, about 100 ° C.) exceeding the melting point of about 90 ° C. of the heat storage material composition 3 to be melted. A heating facility for heating the heat storage material composition 3 was required only for filling the inner bag 40 for preventing leakage. In addition, when the powdery mixture is heated to about 100 ° C. and melted, a large amount of heat energy is required at the time of heating, safety measures for the operator are also required, and the working time associated with the heating is extra. The heat storage material composition 3 could not be efficiently sealed in the leakage prevention inner bag 40 because it was hung. On the other hand, in the method of encapsulating the heat storage material in the container according to the present embodiment, this heating facility is unnecessary, and the reaction necessary for producing the heat storage material composition 3 occurs in the inner bag 40 for preventing leakage. The work that occurs spontaneously and involves the production of the heat storage material composition 3 can be performed efficiently and safely.

従って、本実施形態に係る蓄熱材の容器内封入方法によれば、潜熱蓄熱材10に添加剤20を混合した蓄熱材組成物3を、漏洩防止用内袋40内に封入した状態にするのにあたり、蓄熱材組成物3を漏洩防止用内袋40内に封入するまでの工程を効率良く行うと共に、蓄熱材組成物3を用いた蓄熱槽60で、槽内の熱媒体61と蓄熱材組成物3との間で熱伝導を効率良く行うことができる、という優れた効果を奏する。 Therefore, according to the method for sealing the heat storage material in the container according to the present embodiment, the heat storage material composition 3 in which the latent heat storage material 10 is mixed with the additive 20 is sealed in the leakage prevention inner bag 40. In this case, the process of efficiently enclosing the heat storage material composition 3 in the leakage prevention inner bag 40 is efficiently performed, and in the heat storage tank 60 using the heat storage material composition 3, the heat medium 61 and the heat storage material composition in the tank are used. It has an excellent effect that heat conduction with the object 3 can be efficiently performed.

また、本実施形態の実施例1に係る蓄熱材の容器内封入方法では、無水和物11(焼アンモニウムミョウバン11)を漏洩防止用内袋40内に充填した後、無水和物11に対し水和物を生成するのに必要な加水量と同量、または加水量を超える量の水12を、漏洩防止用内袋40内に充填すること、を特徴とする。また、本実施形態の実施例2に係る蓄熱材の容器内封入方法では、無水和物11は粉末状であり、無水和物11と、無水和物11に対し水和物を生成するのに必要な加水量と同量、または加水量を超える量の水12と、融点調整剤21と、増粘剤22とを含んでスラリー状態に混合したスラリー状混合物15を調製すること、スラリー状混合物15の調製後、スラリー状混合物15を漏洩防止用内袋40内に充填すること、を特徴とする。 Further, in the method of encapsulating the heat storage material in the container according to the first embodiment of the present embodiment, the anhydride 11 (baked ammonium alum 11) is filled in the leakage prevention inner bag 40, and then water is added to the anhydride 11. The inner bag 40 for preventing leakage is filled with water 12 in an amount equal to or exceeding the amount of water required to produce a Japanese product. Further, in the method of encapsulating the heat storage material in the container according to the second embodiment of the present embodiment, the anhydrous mixture 11 is in the form of a powder, and the anhydrous mixture 11 and the hydrate are produced with respect to the anhydrous mixture 11. To prepare a slurry-like mixture 15 containing water 12, a melting point adjusting agent 21, and a thickener 22 in an amount equal to or exceeding the required amount of water added, and mixing them in a slurry state. After the preparation of 15, the slurry-like mixture 15 is filled in the leakage prevention inner bag 40.

このような特徴により、潜熱蓄熱材10に融点調整剤21と増粘剤22を添加した蓄熱材組成物3を、漏洩防止用内袋40内で生成して充填した状態の蓄熱材封入物2を作製し、この蓄熱材封入物2を封入袋50に収容した蓄熱材封入パック1では、蓄熱材封入パック1内の空隙部(図7中、空隙部4を参照)が、従来の実施形態に係る蓄熱材の容器内封入方法に比べ、図6に示すように、42.0/70.8×100≒61(%)にまで抑制できている。そのため、蓄熱材封入パック1では、空隙部の発生を抑えているため、従来比で、蓄熱材組成物3と蓄熱槽60内の熱媒体61との間の熱伝導に要する時間も短くなる。換言すれば、蓄熱材封入パック1における蓄熱時や放熱時に、伝熱がより早くできるようになるため、提供先からの排熱を蓄熱材封入パック1に蓄熱する応答性や、蓄熱材封入パック1から放熱した熱を供給先に供給する応答性が、従来比で向上する。 Due to these characteristics, the heat storage material enclosure 2 in a state in which the heat storage material composition 3 in which the melting point adjusting agent 21 and the thickener 22 are added to the latent heat storage material 10 is generated and filled in the leakage prevention inner bag 40. In the heat storage material encapsulation pack 1 in which the heat storage material encapsulation 2 is housed in the encapsulation bag 50, the void portion (see the void portion 4 in FIG. 7) in the heat storage material encapsulation pack 1 is a conventional embodiment. As shown in FIG. 6, the heat storage material can be suppressed to 42.0 / 70.8 × 100≈61 (%) as compared with the method of encapsulating the heat storage material in the container. Therefore, in the heat storage material encapsulation pack 1, since the generation of voids is suppressed, the time required for heat conduction between the heat storage material composition 3 and the heat medium 61 in the heat storage tank 60 is shortened as compared with the conventional case. In other words, since heat can be transferred faster during heat storage and heat dissipation in the heat storage material encapsulation pack 1, the responsiveness of storing the exhaust heat from the provider in the heat storage material encapsulation pack 1 and the heat storage material encapsulation pack 1 The responsiveness of supplying the heat radiated from 1 to the supply destination is improved as compared with the conventional case.

また、スラリー状混合物15を漏洩防止用内袋40に充填した蓄熱材封入物2では、粉末状のアンモニウムミョウバン12水和物10と、粉末状の融点調整剤21と、粉末状の増粘剤22とを混ぜ合わせた粉末状の混合物を漏洩防止用内袋40に充填する場合に比べ、蓄熱材封入物2内で生成した蓄熱材組成物3は、その構成成分の濃度や分布を均一化した状態で、調製することができる。また、水12が、規定の加水量を超えて加えられても、その超えた分の水12は、蓄熱材封入パック1内で蓄熱材組成物3と共存するが、この共存する水12も、融点調整剤21と同様、蓄熱材組成物3の温度を下げることに寄与するものと考えられ、蓄熱材組成物3に悪影響を及ばさないようであれば、蓄熱材封入パック1内に残存していても良い。 Further, in the heat storage material enclosure 2 in which the slurry-like mixture 15 is filled in the leakage prevention inner bag 40, the powdery ammonium myoban dodecahydrate 10, the powdery melting point adjusting agent 21, and the powdery thickener are used. Compared with the case where the powdery mixture mixed with 22 is filled in the leakage prevention inner bag 40, the heat storage material composition 3 produced in the heat storage material enclosure 2 makes the concentration and distribution of its constituent components uniform. Can be prepared in the same state. Further, even if the water 12 is added in excess of the specified amount of water, the excess water 12 coexists with the heat storage material composition 3 in the heat storage material encapsulation pack 1, but the coexisting water 12 also coexists. Similar to the melting point adjusting agent 21, it is considered to contribute to lowering the temperature of the heat storage material composition 3, and if it does not adversely affect the heat storage material composition 3, it remains in the heat storage material encapsulation pack 1. You may do it.

また、本実施形態に係る蓄熱材の容器内封入方法では、無機塩水和物10は、漏洩防止用内袋40内で生成され、漏洩防止用内袋40とは別に、漏洩防止用内袋40より大きく、柔軟性を有した袋状に形成された封入袋50を用い、生成される無機塩水和物10を内包する漏洩防止用内袋40は、2枚の封入袋50(第1封入袋50A、第2封入袋50B)により、入れ子のように、二重に重ね合わせた2層の状態で、封入袋50によって覆い包まれ、封入袋50の封止により、封入袋50内に封入されていること、を特徴とする。この特徴により、無水和物11と水12、またはスラリー状混合物15を封入袋50内に封入するにあたり、漏洩防止用内袋40が無水和物11と水12、またはスラリー状混合物15の漏洩・飛散を防止し、例えば、融着等で封入袋50を封止する封止部52に、無水和物11、スラリー状混合物15等による異物が付着するのを抑止することができる。ひいては、二重袋構造の封入袋50は、このような異物による阻害を受けることなく、しっかりと封止でき、漏洩防止用内袋40内で生成された蓄熱材組成物3は、封入袋50の外部に漏れ出ることなく、より確実に封入袋50内に収容できている。 Further, in the method for encapsulating the heat storage material in the container according to the present embodiment, the inorganic salt hydrate 10 is generated in the leakage prevention inner bag 40, and the leakage prevention inner bag 40 is separated from the leakage prevention inner bag 40. Using the larger and more flexible bag-shaped encapsulation bag 50, the leakage prevention inner bag 40 containing the generated inorganic salt hydrate 10 is two encapsulation bags 50 (first encapsulation bag). 50A, 2nd encapsulation bag 50B), in a state of two layers stacked in a double layer like a nest, covered with the encapsulation bag 50, and encapsulated in the encapsulation bag 50 by sealing the encapsulation bag 50. It is characterized by being. Due to this feature, when the anhydride 11 and water 12 or the slurry-like mixture 15 are sealed in the sealing bag 50, the leak-preventing inner bag 40 leaks the anhydride 11 and water 12 or the slurry-like mixture 15. It is possible to prevent scattering and, for example, prevent foreign matter from adhering to the sealing portion 52 that seals the sealing bag 50 by fusion or the like due to the anhydride 11 or the slurry-like mixture 15. As a result, the sealed bag 50 having a double bag structure can be firmly sealed without being hindered by such foreign substances, and the heat storage material composition 3 generated in the leak-preventing inner bag 40 is the sealed bag 50. It can be more reliably housed in the sealed bag 50 without leaking to the outside.

すなわち、焼アンモニウムミョウバン11(無水和物11)や添加剤水溶液30を封入袋50内に充填するときや、スラリー状混合物15を封入袋50内に注ぐとき、無水和物11等の粉末やスラリー状混合物15を、誤って封入袋50の開口51付近にこぼれてしまうこともあり、無水和物11等の粉末やスラリー状混合物15が封入袋50に付着する。これらの付着物が開口51付近にあったまま、この部分を融着等でシールすると、封入袋50が十分に封止できなく、蓄熱材組成物3が封入袋50からこぼれ出てしまうため、折返し部42で閉塞した状態の漏洩防止用内袋40を、封入袋50内に収容し、封入袋50の開口51を封止することにより、蓄熱材組成物3の漏れがより確実に抑止できる。 That is, when the baked ammonium myoban 11 (anhydride 11) or the additive aqueous solution 30 is filled in the sealing bag 50, or when the slurry-like mixture 15 is poured into the sealing bag 50, the powder or slurry of the anhydride 11 or the like is used. The state mixture 15 may be spilled in the vicinity of the opening 51 of the encapsulation bag 50 by mistake, and the powder such as the anhydride 11 or the slurry-like mixture 15 adheres to the encapsulation bag 50. If this portion is sealed by fusion or the like while these deposits are in the vicinity of the opening 51, the encapsulation bag 50 cannot be sufficiently sealed and the heat storage material composition 3 spills out from the encapsulation bag 50. Leakage of the heat storage material composition 3 can be more reliably suppressed by accommodating the leakage prevention inner bag 40 in the state of being blocked by the folded-back portion 42 in the sealing bag 50 and sealing the opening 51 of the sealing bag 50. ..

また、本実施形態に係る蓄熱材の容器内封入方法では、漏洩防止用内袋40内に、無水和物11と水12とを充填して漏洩防止用内袋40を閉塞後、または、スラリー状混合物15を充填して漏洩防止用内袋40を閉塞後、この状態で漏洩防止用内袋40を二重の封入袋50(第1封入袋50A、第2封入袋50B)内に収容し、第1封入袋50Aと第2封入袋50Bとも、封入袋50内を吸引しながら、これらの封入袋50の開口51を封止すること、を特徴とする。上述の特徴により、漏洩防止用内袋40内に生成される蓄熱材組成物3を、漏洩防止用内袋40を介して封入袋50に密着した状態で、漏洩防止用内袋40及び封入袋50に封入することができる。すなわち、漏洩防止用内袋40内に、無水和物11と水12とを充填してこの漏洩防止用内袋40を閉塞した場合、または、スラリー状混合物15を充填してこの漏洩防止用内袋40を閉塞した場合、無水和物11の粉末同士の間にあった間隙は水12によって満たされ、内部に空隙を持たない固体状の無機塩水和物10を漏洩防止用内袋40内に生成することができるが、漏洩防止用内袋40を閉塞する際に外部から空気が浸入する。それ故に、無機塩水和物10である潜熱蓄熱材10等と漏洩防止用内袋40の間に、空隙部4が必然的に生じる。しかしながら、上述の特徴により、二重袋構造の第1封入袋50A、第2封入袋50B(封入袋50)内をそれぞれ吸引しながら、各封入袋50の開口51を封止することで、漏洩防止用内袋40内に侵入した空気を除外し、漏洩防止用内袋40内に生成される蓄熱材組成物3を、漏洩防止用内袋40を介して封入袋50に密着した状態で、漏洩防止用内袋40及び封入袋50内に封入することができる。そのため、このような空隙部に起因した熱伝導への悪影響を、より効果的かつ確実に抑制することができる。 Further, in the method for enclosing the heat storage material in the container according to the present embodiment, the leak-preventing inner bag 40 is filled with the anhydrous sum 11 and water 12 to close the leak-preventing inner bag 40, or the slurry. After filling the state mixture 15 and closing the leakage prevention inner bag 40, the leakage prevention inner bag 40 is housed in the double sealing bag 50 (first sealing bag 50A, second sealing bag 50B) in this state. Both the first encapsulation bag 50A and the second encapsulation bag 50B are characterized in that the opening 51 of the encapsulation bag 50 is sealed while sucking the inside of the encapsulation bag 50. Due to the above-mentioned characteristics, the heat storage material composition 3 generated in the leakage prevention inner bag 40 is in close contact with the sealing bag 50 via the leakage prevention inner bag 40, and the leakage prevention inner bag 40 and the sealing bag It can be enclosed in 50. That is, when the leak-preventing inner bag 40 is filled with the anhydride 11 and water 12 to close the leak-preventing inner bag 40, or the slurry-like mixture 15 is filled to fill the leak-preventing inner bag 40. When the bag 40 is closed, the gap between the powders of the anhydride 11 is filled with water 12, and a solid inorganic salt hydrate 10 having no void inside is generated in the leakage prevention inner bag 40. However, when the leakage prevention inner bag 40 is closed, air enters from the outside. Therefore, a gap 4 is inevitably generated between the latent heat storage material 10 or the like, which is the inorganic salt hydrate 10, and the leakage prevention inner bag 40. However, due to the above-mentioned characteristics, leakage occurs by sealing the opening 51 of each enclosed bag 50 while sucking the inside of the first enclosed bag 50A and the second enclosed bag 50B (encapsulated bag 50) having a double bag structure. The air that has entered the prevention inner bag 40 is excluded, and the heat storage material composition 3 generated in the leakage prevention inner bag 40 is brought into close contact with the sealing bag 50 via the leakage prevention inner bag 40. It can be sealed in the leakage prevention inner bag 40 and the sealing bag 50. Therefore, the adverse effect on heat conduction caused by such a gap can be more effectively and surely suppressed.

また、本実施形態に係る蓄熱材の容器内封入方法では、水12に添加剤20(融点調整剤21、増粘剤22)が溶解した添加剤水溶液30を調製した後、水12に代えて添加剤水溶液30が、漏洩防止用内袋40内に充填されること、または、スラリー状混合物15を生成するのに、無水和物11と混合されること、を特徴とする。この特徴により、漏洩防止用内袋40内で生成した蓄熱材組成物3は、その構成成分の濃度や分布を均一化した状態で、調製することができる。特に、まとめて生成した蓄熱材組成物3を、複数の漏洩防止用内袋40に小分けして複数の蓄熱材封入パック1を作製する場合、各漏洩防止用内袋40内で生成された蓄熱材組成物3の組成が、全漏洩防止用内袋40とも均一に保たれる。 Further, in the method for encapsulating the heat storage material in the container according to the present embodiment, after preparing the additive aqueous solution 30 in which the additive 20 (melting point adjusting agent 21 and thickener 22) is dissolved in water 12, the water 12 is replaced. The additive aqueous solution 30 is filled in the leakage prevention inner bag 40, or is mixed with the anhydrous mixture 11 to produce the slurry-like mixture 15. Due to this feature, the heat storage material composition 3 produced in the leakage prevention inner bag 40 can be prepared in a state where the concentration and distribution of the constituent components are made uniform. In particular, when the heat storage material composition 3 collectively generated is subdivided into a plurality of leakage prevention inner bags 40 to produce a plurality of heat storage material encapsulation packs 1, the heat storage generated in each leakage prevention inner bag 40 is produced. The composition of the material composition 3 is kept uniform with the inner bag 40 for preventing all leakage.

すなわち、従来、潜熱蓄熱材の粉末と添加剤の粉末とを混ぜ合わせた粉状の混合物を、固相状態でそのまま直接、各々の容器に充填していたため、各容器の間で、潜熱蓄熱材と添加剤との混合比率に誤差が生じてしまい、蓄熱時または放熱時に熱を移動できる蓄熱性能に悪影響が生じる虞があった。しかしながら、本実施形態の実施例2に係る蓄熱材の容器内封入方法では、蓄熱材組成物3の構成成分は、均一化した濃度や分布になるため、蓄熱材封入物2を収容した蓄熱材封入パック1が複数作製されても、各蓄熱材封入パック1において、各蓄熱材封入パック1の蓄熱性能に、バラツキがほとんどなく、品質の高い蓄熱材封入パック1が提供できる。 That is, conventionally, since a powdery mixture of a latent heat storage material powder and an additive powder is directly filled in each container as it is in a solid state, the latent heat storage material is sandwiched between the containers. An error occurs in the mixing ratio of the additive and the additive, which may adversely affect the heat storage performance capable of transferring heat during heat storage or heat dissipation. However, in the method for encapsulating the heat storage material in the container according to the second embodiment of the present embodiment, the components of the heat storage material composition 3 have a uniform concentration and distribution, so that the heat storage material containing the heat storage material enclosure 2 is contained. Even if a plurality of encapsulation packs 1 are produced, the heat storage performance of each heat storage material encapsulation pack 1 has almost no variation in each heat storage material encapsulation pack 1, and a high quality heat storage material encapsulation pack 1 can be provided.

また、本実施形態に係る蓄熱材の容器内封入方法では、潜熱蓄熱材10の物性を調整する水溶性の添加剤20が配合され、添加剤20は、潜熱蓄熱材10の融点を、必要に応じて設定した温度に調整する融点調整剤21、液相状態にある潜熱蓄熱材10の融液の粘度を高める増粘剤22であること、を特徴とする。また、本実施形態に係る蓄熱材の容器内封入方法では、添加剤20として配合する融点調整剤21は、無水硫酸ナトリウム(NaSO)であること、を特徴とする。また、本実施形態に係る蓄熱材の容器内封入方法では、潜熱蓄熱材10に添加剤20を配合した蓄熱材組成物3では、当該蓄熱材組成物3全体の重量に占める無水硫酸ナトリウム(融点調整剤21)の配合比率は、10wt%以下の範囲内であること、を特徴とする。 Further, in the method for encapsulating the heat storage material in a container according to the present embodiment, a water-soluble additive 20 for adjusting the physical properties of the latent heat storage material 10 is blended, and the additive 20 requires the melting point of the latent heat storage material 10. It is characterized by being a melting point adjusting agent 21 that adjusts to a temperature set accordingly, and a thickener 22 that increases the viscosity of the melt of the latent heat storage material 10 in a liquid phase state. Further, in the method for encapsulating the heat storage material in a container according to the present embodiment, the melting point adjusting agent 21 to be blended as the additive 20 is anhydrous sodium sulfate (Na 2 SO 4 ). Further, in the method for encapsulating the heat storage material in the container according to the present embodiment, in the heat storage material composition 3 in which the latent heat storage material 10 is mixed with the additive 20, anhydrous sodium sulfate (melting point) occupying the total weight of the heat storage material composition 3 is used. The blending ratio of the adjusting agent 21) is within the range of 10 wt% or less.

この特徴により、無水硫酸ナトリウムは、融点884℃の物性で、常温では固体の物質であるものの、蓄熱材組成物3全体の重量に対し、例えば、5wt%の配合比率で、潜熱蓄熱材10であるアンモニウムミョウバン(融点93.5℃)等に添加されれば、融点を所望とする約90℃に調整した蓄熱材組成物3を生成することができる。 Due to this feature, anhydrous sodium sulfate has a melting point of 884 ° C. and is a solid substance at room temperature, but the latent heat storage material 10 has a blending ratio of, for example, 5 wt% with respect to the total weight of the heat storage material composition 3. When added to a certain ammonium myoban (melting point 93.5 ° C.) or the like, the heat storage material composition 3 having a desired melting point of about 90 ° C. can be produced.

特に、ガスエンジンシステムの排熱や、工場や事業所、家庭等から生じた100℃近くの排熱を、熱媒体61を介して蓄熱材組成物3(潜熱蓄熱材10)に蓄熱し、この潜熱蓄熱材10からの放熱が、主に給湯設備や空気調和設備等の熱源に供給される場合、熱源に供給される熱は、取扱い上、80〜90℃の温度帯域であることが望ましい。潜熱蓄熱材10として用いているアンモニウムミョウバン12水和物は、融点93.5℃の物性であり、潜熱蓄熱材10の融点は、融点調整剤21により約90℃に調整される。また、蓄熱材組成物3の融点が約90℃であると、例えば、90℃以上の熱源で蓄熱し、80〜90℃の温度帯域で放熱することにより、給湯設備や、冷暖房を行う空気調和設備の熱源(エネルギ源)等として、約90℃の熱源は、このような給湯設備等にとって、使い勝手が良い。そのため、産業界において幅広い分野で多様的に活用することができる。 In particular, the exhaust heat of the gas engine system and the exhaust heat of about 100 ° C. generated from factories, offices, homes, etc. are stored in the heat storage material composition 3 (latent heat storage material 10) via the heat medium 61, and this is stored. When the heat radiated from the latent heat storage material 10 is mainly supplied to a heat source such as a hot water supply facility or an air conditioning facility, it is desirable that the heat supplied to the heat source is in the temperature range of 80 to 90 ° C. for handling. The ammonium myoban dodecahydrate used as the latent heat storage material 10 has physical properties of a melting point of 93.5 ° C., and the melting point of the latent heat storage material 10 is adjusted to about 90 ° C. by the melting point adjusting agent 21. Further, when the melting point of the heat storage material composition 3 is about 90 ° C., for example, heat is stored in a heat source of 90 ° C. or higher and dissipated in a temperature range of 80 to 90 ° C., thereby performing hot water supply equipment and air conditioning for heating and cooling. As a heat source (energy source) of the equipment, a heat source of about 90 ° C. is convenient for such a hot water supply equipment. Therefore, it can be used in a wide variety of fields in the industrial world.

また、融点調整剤21は、配合比率10wt%以下の範囲内であることが好ましい理由として、融点調整剤21は、増粘剤22であるマンニトールと異なり、融点調整剤21自体に蓄熱できる特性がないため、融点調整剤21の配合比率が多くなり過ぎてしまうと、蓄熱材組成物3全体で蓄熱できる特性が低下してしまう。そのため、蓄熱材組成物3全体の蓄熱特性の極端な低下を抑制しつつ、蓄熱材組成物3の融点を所望の約90℃に設定する条件が、配合比率10wt%以下の範囲内である。また、蓄熱材組成物3に占める無水硫酸ナトリウムがこのような配合比率10wt%以下の範囲内であれば、100℃近くの排熱に基づいて、80℃以上の温度を熱源として必要とする環境下で、潜熱蓄熱材10に蓄熱した熱を長時間、80℃以上の高温で、放熱させることができる。 Further, the reason why the melting point adjusting agent 21 is preferably in the range of 10 wt% or less is that the melting point adjusting agent 21 has a characteristic that heat can be stored in the melting point adjusting agent 21 itself unlike the thickener 22 mannitol. Therefore, if the blending ratio of the melting point adjusting agent 21 becomes too large, the property that heat can be stored in the entire heat storage material composition 3 deteriorates. Therefore, the condition for setting the melting point of the heat storage material composition 3 to a desired temperature of about 90 ° C. while suppressing an extreme decrease in the heat storage characteristics of the entire heat storage material composition 3 is within the range of 10 wt% or less. Further, if the anhydrous sodium sulfate in the heat storage material composition 3 is within such a blending ratio of 10 wt% or less, an environment requiring a temperature of 80 ° C. or higher as a heat source based on exhaust heat of nearly 100 ° C. Below, the heat stored in the latent heat storage material 10 can be dissipated at a high temperature of 80 ° C. or higher for a long time.

また、本実施形態に係る蓄熱材の容器内封入方法では、添加剤20として配合する増粘剤22は、糖アルコールに属する物質であること、を特徴とする。この特徴により、無機塩水和物10が、アンモニウムミョウバン12水和物等のミョウバン水和物であるため、増粘剤22は無機塩水和物10の構成成分である水に溶解し易く、組成した蓄熱材組成物3は、化学的に安定している。また、潜熱蓄熱材10の成分と融点調整剤21の成分とを均一な状態に保持することができるほか、潜熱蓄熱材10と同様、増粘剤22にも、潜熱の蓄熱または放熱を可能とする蓄熱性能を具備することができる。融点調整剤21が、蓄熱材組成物3の融点を約90℃に調整できる一方で、増粘剤22により、この融点調整剤21の成分と潜熱蓄熱材10の成分との不均一化が経時的に発生するのを抑止できている。 Further, in the method for encapsulating the heat storage material in a container according to the present embodiment, the thickener 22 to be blended as the additive 20 is a substance belonging to sugar alcohol. Due to this feature, since the inorganic salt hydrate 10 is an alum hydrate such as ammonium alum 12 hydrate, the thickener 22 is easily dissolved in water, which is a constituent of the inorganic salt hydrate 10, and is composed. The heat storage material composition 3 is chemically stable. Further, the components of the latent heat storage material 10 and the components of the melting point adjusting agent 21 can be kept in a uniform state, and like the latent heat storage material 10, the thickener 22 can also store or dissipate latent heat. It can be provided with a heat storage performance. While the melting point adjusting agent 21 can adjust the melting point of the heat storage material composition 3 to about 90 ° C., the thickener 22 causes non-uniformity between the components of the melting point adjusting agent 21 and the components of the latent heat storage material 10 over time. It has been possible to prevent it from occurring.

また、本実施形態に係る蓄熱材の容器内封入方法では、増粘剤22は、マンニトール(C14)であること、を特徴とする。この特徴により、マンニトールは、液相状態にある潜熱蓄熱材10の融液の粘度を高めると共に、蓄熱材組成物3を構成する成分同士の相分離現象や、この蓄熱材組成物3を構成する成分で、密度が互いに異なる成分同士に対し、密度差による成分同士の不均一化を防止することができる。また、マンニトールは、無毒で非危険物であるため、取扱いが容易である上に、安価でもある。 Further, in the method for encapsulating the heat storage material in a container according to the present embodiment, the thickener 22 is mannitol (C 6 H 14 O 6 ). Due to this feature, mannitol increases the viscosity of the melt of the latent heat storage material 10 in the liquid phase state, and also constitutes the phase separation phenomenon between the components constituting the heat storage material composition 3 and the heat storage material composition 3. For components having different densities, it is possible to prevent non-uniformity between the components due to the difference in density. In addition, mannitol is non-toxic and non-dangerous, so it is easy to handle and inexpensive.

ところで、蓄熱性能を備えていない従来の添加剤が、潜熱蓄熱材に配合されていると、この潜熱蓄熱材とこの従来の添加剤との組成物である従来の潜熱蓄熱材組成物では、従来の添加剤が配合されているために、従来の潜熱蓄熱材組成物の蓄熱量は、それと同体積で比べても、潜熱蓄熱材だけの蓄熱量より大幅に低下する。これに対し、本実施形態の蓄熱材組成物3では、マンニトールは、増粘性のほか、当該蓄熱材組成物3に含有する主の潜熱蓄熱材10と共に、潜熱の蓄熱または放熱を可能とする蓄熱性能を具備している。そのため、添加剤20としてマンニトールが添加されていても、蓄熱性能を備えていない従来の添加剤と異なり、蓄熱材組成物3の畜熱量は、同体積で比べても、潜熱蓄熱材だけの蓄熱量より大幅に低下するのを抑制できている。 By the way, when a conventional additive having no heat storage performance is blended in the latent heat storage material, the conventional latent heat storage material composition which is a composition of the latent heat storage material and the conventional additive is conventionally used. The heat storage amount of the conventional latent heat storage material composition is significantly lower than that of the latent heat storage material alone, even if the volume is the same as that of the conventional latent heat storage material composition. On the other hand, in the heat storage material composition 3 of the present embodiment, in addition to the thickening, mannitol can store latent heat or dissipate heat together with the main latent heat storage material 10 contained in the heat storage material composition 3. It has performance. Therefore, even if mannitol is added as the additive 20, unlike the conventional additive that does not have the heat storage performance, the heat storage amount of the heat storage material composition 3 is the heat storage of only the latent heat storage material even when compared in the same volume. It is possible to suppress the decrease significantly from the amount.

また、本実施形態に係る蓄熱材の容器内封入方法では、潜熱蓄熱材10に添加剤20を配合した蓄熱材組成物3では、当該蓄熱材組成物3全体の重量に占める増粘剤22の配合比率は、20wt%以下の範囲内であること、を特徴とする。この特徴により、蓄熱材組成物3に融点調整剤21が配合されている場合に、融点調整剤21により、蓄熱材組成物3の融点を弊害なく約90℃に調整することができると共に、潜熱蓄熱材10の成分と融点調整剤21の成分とが、不均一化せずバランス良く拡散した状態を、増粘剤22により、安定的に維持することができる。 Further, in the method for encapsulating the heat storage material in the container according to the present embodiment, in the heat storage material composition 3 in which the latent heat storage material 10 is mixed with the additive 20, the thickener 22 accounts for the total weight of the heat storage material composition 3. The compounding ratio is characterized in that it is within the range of 20 wt% or less. Due to this feature, when the melting point adjusting agent 21 is blended in the heat storage material composition 3, the melting point adjusting agent 21 can adjust the melting point of the heat storage material composition 3 to about 90 ° C. without any harmful effect and latent heat. The thickener 22 can stably maintain a state in which the components of the heat storage material 10 and the components of the melting point adjusting agent 21 are diffused in a well-balanced manner without making them non-uniform.

好ましくは、増粘剤22が、配合比率5〜10wt%の範囲内で配合されていると、増粘剤22であるマンニトールは、潜熱蓄熱材10と相対的に小さいものの、マンニトール自体に蓄熱できる特性を有している。しかしながら、マンニトールの配合比率が多くなり過ぎてしまうと、マンニトールと潜熱蓄熱材10との配合比率の関係を見たときに、蓄熱材組成物3全体で蓄熱可能な蓄熱量は、その最大値から外れてしまい、小さくなってしまう。そのため、蓄熱材組成物3内で潜熱蓄熱材10の成分と融点調整剤21の成分との保持を、適切な状態で維持しつつ、蓄熱材組成物3による蓄熱量を、より大きく保つことができる条件が、配合比率5〜10wt%の範囲内である。 Preferably, when the thickener 22 is blended in the range of 5 to 10 wt%, the thickener 22, mannitol, can store heat in the mannitol itself, although it is relatively small with the latent heat storage material 10. It has characteristics. However, if the blending ratio of mannitol becomes too large, the amount of heat storage that can be stored in the entire heat storage material composition 3 is determined from the maximum value when looking at the relationship between the blending ratio of mannitol and the latent heat storage material 10. It will come off and become smaller. Therefore, it is possible to maintain a larger amount of heat storage by the heat storage material composition 3 while maintaining the retention of the component of the latent heat storage material 10 and the component of the melting point adjusting agent 21 in the heat storage material composition 3 in an appropriate state. The conditions that can be achieved are within the range of the blending ratio of 5 to 10 wt%.

また、本実施形態に係る蓄熱材の容器内封入方法では、無機塩水和物10は、ミョウバン水和物であること、を特徴とする。この特徴により、様々な種類の無機塩水和物の中でも、例えば、アンモニウムミョウバン12水和物等のようなミョウバン水和物を用いた潜熱蓄熱材10は、相変化に伴う潜熱が比較的大きい物性を有する。そのため、このような物性の潜熱蓄熱材10では、蓄熱できる蓄熱量も比較的大きい。また、ミョウバン水和物である潜熱蓄熱材10を含む蓄熱材組成物3は、大容量の熱を蓄熱し、それを放熱する蓄放熱性能を具備できている点で、優れている。 Further, in the method for encapsulating the heat storage material in a container according to the present embodiment, the inorganic salt hydrate 10 is characterized by being alum hydrate. Due to this feature, among various types of inorganic salt hydrates, the latent heat storage material 10 using alum hydrate such as ammonium alum dodecahydrate has a relatively large latent heat due to phase change. Has. Therefore, the latent heat storage material 10 having such physical properties has a relatively large amount of heat storage that can store heat. Further, the heat storage material composition 3 containing the latent heat storage material 10 which is alum hydrate is excellent in that it can have a heat storage and heat dissipation performance of storing a large amount of heat and radiating it.

また、本実施形態に係る蓄熱材の容器内封入方法では、ミョウバン水和物10は、アンモニウムミョウバン12水和物、または、カリウムミョウバン12水和物であること、を特徴とする。 Further, in the method for encapsulating the heat storage material in a container according to the present embodiment, the alum hydrate 10 is an ammonium alum hydrate or a potassium alum hydrate.

この特徴により、アンモニウムミョウバン12水和物やカリウムミョウバン12水和物は、市場で幅広く流通して入手し易く、安価である。 Due to this feature, ammonium alum dodecahydrate and potassium alum dodecahydrate are widely distributed in the market, easily available, and inexpensive.

以上において、本発明を実施形態、実施例1,2に即して説明したが、本発明は上記実施形態、実施例1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できる。 Although the present invention has been described above with reference to the first and second embodiments, the present invention is not limited to the above embodiments 1 and 2, and is not deviating from the gist thereof. It can be changed and applied as appropriate.

(1)例えば、実施形態では、蓄熱材組成物3を漏洩防止用内袋40内に収容して蓄熱材封入物2を作製した後、この蓄熱材封入物2を第1封入袋50Aに封入して蓄熱材封入プレパック1Aを作製し、さらに蓄熱材封入プレパック1Aを第2封入袋50Bに封入して蓄熱材封入パック1を作製した。つまり、漏洩防止用内袋40と第1封入袋50Aと第2封入袋50Bとの三重袋構造の容器内に蓄熱材組成物3を封入して、蓄熱槽60内に収容する態様の蓄熱材封入パック1を構成した。しかしながら、漏洩防止用内袋40を用いず、柔軟性を有した袋状の封入袋50内に直接、無水和物11と水12とを充填して封入袋50を閉塞後、または、スラリー状混合物15を充填して封入袋50を閉塞後、この封入袋50内を吸引しながら、封入袋50の開口51を封止することにより、蓄熱槽60内に収容する態様の蓄熱材封入パックが、構成されていても良い。これにより、封入袋50内に生成される潜熱蓄熱材10や蓄熱材組成物3を、封入袋50と密着した状態で封入袋50内に封入することができるため、蓄熱材組成物3と封入袋50との間に生じる空隙部に起因した熱伝導への悪影響を、より確実に抑制することができる。但し、この場合、封入袋50を封止する上で充填時に、無水和物11やスラリー状混合物15等が、こぼれ出るのを防止できており、異物として封入袋50の開口51付近に付着しないことが重要である。 (1) For example, in the embodiment, the heat storage material composition 3 is housed in the leakage prevention inner bag 40 to prepare the heat storage material enclosure 2, and then the heat storage material inclusion 2 is sealed in the first sealing bag 50A. Then, the heat storage material-encapsulated prepack 1A was produced, and the heat storage material-encapsulated prepack 1A was further enclosed in the second encapsulation bag 50B to prepare the heat storage material-encapsulated pack 1. That is, the heat storage material is contained in the heat storage tank 60 by enclosing the heat storage material composition 3 in a container having a triple bag structure of the leakage prevention inner bag 40, the first sealed bag 50A, and the second sealed bag 50B. The enclosed pack 1 was constructed. However, without using the leakage prevention inner bag 40, the flexible bag-shaped encapsulation bag 50 is directly filled with the anhydrous product 11 and water 12 to close the encapsulation bag 50, or in the form of a slurry. After filling the mixture 15 and closing the encapsulation bag 50, the opening 51 of the encapsulation bag 50 is sealed while sucking the inside of the encapsulation bag 50, so that the heat storage material encapsulation pack accommodated in the heat storage tank 60 , May be configured. As a result, the latent heat storage material 10 and the heat storage material composition 3 generated in the sealing bag 50 can be sealed in the sealing bag 50 in close contact with the sealing bag 50, so that the latent heat storage material composition 3 and the heat storage material composition 3 are sealed. The adverse effect on heat conduction caused by the gap between the bag 50 and the bag 50 can be more reliably suppressed. However, in this case, the anhydrous product 11 and the slurry-like mixture 15 can be prevented from spilling out during filling when the sealing bag 50 is sealed, and the foreign matter does not adhere to the vicinity of the opening 51 of the sealing bag 50. This is very important.

(2)また、実施形態では、アンモニウムミョウバン12水和物10(潜熱蓄熱材10)に、添加剤20として、融点調整剤21と増粘剤22とを配合した蓄熱材組成物3を挙げたが、蓄熱材組成物に配合する添加剤は、融点調整剤や増粘剤のほかにも、融液状態にある蓄熱材の結晶化の誘起を促す過冷却防止剤を含むものであっても良い。
(3)また、実施形態では、第1の容器の構成は、例示した漏洩防止用内袋40の構成に限定されず、種々変更可能である。同様に、第2の容器の構成は、例示した封入袋50の構成に限定されず、種々変更可能である。
(2) Further, in the embodiment, the heat storage material composition 3 in which the melting point adjusting agent 21 and the thickener 22 are mixed as the additive 20 in ammonium myoban dodecahydrate 10 (latent heat storage material 10) is mentioned. However, even if the additive to be blended in the heat storage material composition contains, in addition to the melting point adjusting agent and the thickener, an anticooling agent that promotes the induction of crystallization of the heat storage material in the melted state. good.
(3) Further, in the embodiment, the configuration of the first container is not limited to the configuration of the leakage prevention inner bag 40 illustrated, and can be variously changed. Similarly, the configuration of the second container is not limited to the configuration of the encapsulated bag 50 illustrated, and can be variously changed.

(4)また、実施形態では、蓄熱材組成物3を利用した蓄熱槽60を、図4に例示したが、本発明に係る蓄熱材の容器内封入方法で封入された蓄熱材や蓄熱材組成物を利用した蓄熱槽について、当該蓄熱槽内で蓄熱材組成物等と熱媒体とを区画し、蓄熱材組成物等と熱媒体との間で、熱が伝導できる構造であれば、蓄熱槽の構成・形状・仕様は、何でも良い。
(5)また、実施形態では、融点調整剤21の配合により、蓄熱材組成物3の融点を約90℃に調整したが、融点調整剤により調整される蓄熱材組成物の融点温度は、約90℃に限定されるものではなく、蓄熱材組成物から放熱される熱を利用する熱供給先で、必要する熱源の温度に対応した温度に調整されたものであれば良い。
(6)また、実施形態では、蓄熱材を、相変化に伴う潜熱の移動により蓄熱または放熱を行う潜熱蓄熱材としたが、蓄熱材は、水との化学反応に伴う反応熱の出入りを利用して蓄熱または放熱を行う化学蓄熱材にも適用できるものと考えられる。
(4) Further, in the embodiment, the heat storage tank 60 using the heat storage material composition 3 is illustrated in FIG. 4, but the heat storage material and the heat storage material composition sealed by the method for enclosing the heat storage material in the container according to the present invention. Regarding a heat storage tank using a material, if the structure is such that the heat storage material composition and the heat medium are partitioned in the heat storage tank and heat can be conducted between the heat storage material composition and the heat medium, the heat storage tank The configuration, shape, and specifications of the above can be anything.
(5) Further, in the embodiment, the melting point of the heat storage material composition 3 is adjusted to about 90 ° C. by blending the melting point adjusting agent 21, but the melting point temperature of the heat storage material composition adjusted by the melting point adjusting agent is about. The temperature is not limited to 90 ° C., and any heat supply destination that utilizes the heat radiated from the heat storage material composition and adjusted to a temperature corresponding to the temperature of the required heat source may be used.
(6) Further, in the embodiment, the heat storage material is a latent heat storage material that stores heat or dissipates heat by moving latent heat due to a phase change, but the heat storage material utilizes the inflow and outflow of reaction heat due to a chemical reaction with water. It is considered that it can also be applied to chemical heat storage materials that store heat or dissipate heat.

3 蓄熱材組成物
10 潜熱蓄熱材,アンモニウムミョウバン12水和物(蓄熱材,無機塩水和物,ミョウバン水和物)
11 焼アンモニウムミョウバン(無水和物)
12 水
15 スラリー状混合物
20 添加剤
21 融点調整剤(添加剤)
22 増粘剤(添加剤)
30 添加剤水溶液
40 漏洩防止用内袋(第1の容器)
50 封入袋(第2の容器)
51 開口
3 Heat storage material composition 10 Latent heat storage material, ammonium alum 12 hydrate (heat storage material, inorganic salt hydrate, alum hydrate)
11 Grilled ammonium alum (anhydrous)
12 Water 15 Slurry mixture 20 Additive 21 Melting point adjuster (additive)
22 Thickener (additive)
30 Additive aqueous solution 40 Leakage prevention inner bag (first container)
50 Enclosed bag (second container)
51 opening

Claims (14)

蓄熱または放熱を行う蓄熱材を封入した容器が、蓄熱槽に収容された蓄熱装置の製造方法において、
前記蓄熱材は、無機塩水和物からなること、
前記容器は、側面を有した袋状に形成され、
前記無機塩水和物に含む水和水を脱離した無機塩無水物と、加えた水とを、前記容器内で水和反応させることにより、前記無機塩水和物を生成し、前記容器内に封入すること、
前記水は、前記無機塩無水物に対し水和物を生成するのに必要な加水量と同量、または前記加水量を超える量であること、
前記蓄熱材の物性を調整する水溶性の添加剤が配合されていること、
前記添加剤を予め前記水に溶解させた後、前記無機塩無水物と前記水との水和反応が当該容器内で終了するまで、前記無機塩無水物と前記水とが前記容器内で混合した状態にある混合物を、前記容器内で水平に静置したまま凝固させることにより、前記蓄熱材を前記容器内に封入させること、
前記蓄熱材を封入した前記容器は、その長手方向にある前記側面を水平方向に沿う態様に配置して、当該蓄熱槽内に収容されること、
を特徴とする蓄熱装置の製造方法。
Sealed containers heat storage material that performs heat storage or heat radiation, in the manufacturing method of the contained heat storage apparatus in the thermal storage tank,
The heat storage material shall consist of inorganic salt hydrate.
The container is formed in the shape of a bag having side surfaces.
The inorganic salt anhydride obtained by desorbing the hydrated water contained in the inorganic salt hydrate and the added water are subjected to a hydration reaction in the container to produce the inorganic salt hydrate, and the inorganic salt hydrate is produced in the container. Encapsulating,
The amount of water is equal to or greater than the amount of water required to form a hydrate with respect to the inorganic salt anhydride.
A water-soluble additive that adjusts the physical properties of the heat storage material is blended.
After the additive is dissolved in the water in advance, the inorganic salt anhydride and the water are mixed in the container until the hydration reaction between the inorganic salt anhydride and the water is completed in the container. By solidifying the mixture in the above-mentioned state while standing horizontally in the container, the heat storage material is sealed in the container.
The container in which the heat storage material is sealed is housed in the heat storage tank by arranging the side surface in the longitudinal direction thereof in a horizontal direction.
A method for manufacturing a heat storage device .
請求項1に記載する蓄熱装置の製造方法において、
前記無機塩無水物を前記容器内に充填した後、前記添加剤が溶解した前記水を、前記容器内に充填すること、を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 1,
A method for producing a heat storage device , which comprises filling the container with the inorganic salt anhydride and then filling the container with the water in which the additive is dissolved.
請求項1に記載する蓄熱装置の製造方法において、
前記無機塩無水物は粉末状であり、前記無機塩無水物と、前記添加剤が溶解した前記水とを、少なくとも含んでスラリー状態に混合したスラリー状混合物を調製すること、
前記スラリー状混合物の調製後、前記スラリー状混合物を前記容器内に充填すること、を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 1,
The inorganic salt anhydride is in the form of powder, and a slurry-like mixture is prepared in which the inorganic salt anhydride and the water in which the additive is dissolved are mixed at least in a slurry state.
A method for manufacturing a heat storage device, which comprises filling the container with the slurry-like mixture after preparing the slurry-like mixture.
請求項2または請求項3に記載する蓄熱装置の製造方法において、
前記容器は、柔軟性を有した袋状に形成されていること、
前記容器内に、前記無機塩無水物と、前記添加剤が溶解した前記水とを充填して前記容器を閉塞後、または、前記スラリー状混合物を充填して前記容器を閉塞後、
前記容器内を吸引しながら、前記容器の開口が封止されること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 2 or 3.
The container must be formed in a flexible bag shape.
After filling the container with the inorganic salt anhydride and the water in which the additive is dissolved to close the container, or after filling the container with the slurry-like mixture to close the container,
The opening of the container is sealed while sucking the inside of the container.
A method for manufacturing a heat storage device .
請求項4に記載する蓄熱装置の製造方法において、
前記無機塩水和物は、前記容器として、第1の前記容器内で生成され、
前記第1の容器とは別に、前記第1の容器より大きく、柔軟性を有した袋状に形成された第2の容器を用い、
生成される前記無機塩水和物を内包する前記第1の容器は、
単数の前記第2の容器による単層の状態で、または、
複数の前記第2の容器により、入れ子のように、多重に重ね合わせた複層の状態で、前記第2の容器によって覆い包まれ、前記第2の容器の封止により、前記第2の容器内に封入されていること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 4,
The inorganic salt hydrate is produced in the first container as the container.
In addition to the first container, a second container larger than the first container and formed in a flexible bag shape is used.
The first container containing the produced inorganic salt hydrate is
In a single layer with a single container of the second container, or
The second container is covered by the second container in a state of multiple layers stacked in a nested manner by the plurality of the second containers, and by sealing the second container, the second container is sealed. Being enclosed inside,
A method for manufacturing a heat storage device .
請求項5に記載する蓄熱装置の製造方法において、
前記第1の容器内に、前記無機塩無水物と前記水とを充填して前記第1の容器を閉塞後、または、前記スラリー状混合物を充填して前記第1の容器を閉塞後、
この状態で前記第1の容器を前記第2の容器内に収容し、少なくとも最も外側の前記第2の容器内を吸引しながら、この外側の前記第2の容器の開口を封止すること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 5.
After filling the first container with the inorganic salt anhydride and the water to close the first container, or filling the first container with the slurry-like mixture to close the first container,
In this state, the first container is housed in the second container, and the opening of the second container on the outer side is sealed while sucking at least the outermost second container.
A method for manufacturing a heat storage device .
請求項1乃至請求項6のいずれか1つに記載する蓄熱装置の製造方法において、
前記添加剤は、前記蓄熱材の融点を、必要に応じて設定した温度に調整する融点調整剤、液相状態にある前記蓄熱材の融液の粘度を高める増粘剤、または、前記蓄熱材の過冷却現象を防ぐのに、融液状態にある前記蓄熱材の結晶化の誘起を促す過冷却防止剤の少なくとも何れかであること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to any one of claims 1 to 6.
The additive is a melting point adjuster that adjusts the melting point of the heat storage material to a temperature set as necessary, a thickener that increases the viscosity of the melt of the heat storage material in a liquid phase state, or the heat storage material. To prevent the supercooling phenomenon of the above, it must be at least one of the supercooling inhibitors that promotes the induction of crystallization of the heat storage material in the melted state.
A method for manufacturing a heat storage device .
請求項7に記載する蓄熱装置の製造方法において、
前記添加剤として配合する前記融点調整剤は、無水硫酸ナトリウム(NaSO)であること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 7.
The melting point adjusting agent to be blended as the additive is anhydrous sodium sulfate (Na 2 SO 4 ).
A method for manufacturing a heat storage device .
請求項8に記載する蓄熱装置の製造方法において、
前記蓄熱材に前記添加剤を配合した蓄熱材組成物では、
前記蓄熱材組成物全体の重量に占める前記無水硫酸ナトリウム(NaSO)の配合比率は、10wt%以下の範囲内であること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 8,
In the heat storage material composition in which the additive is blended with the heat storage material,
The blending ratio of the anhydrous sodium sulfate (Na 2 SO 4 ) to the total weight of the heat storage material composition shall be within the range of 10 wt% or less.
A method for manufacturing a heat storage device .
請求項7乃至請求項9のいずれか1つに記載する蓄熱装置の製造方法において、
前記添加剤として配合する前記増粘剤は、糖アルコールに属する物質であること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to any one of claims 7 to 9.
The thickener to be blended as the additive is a substance belonging to sugar alcohol.
A method for manufacturing a heat storage device .
請求項10に記載する蓄熱装置の製造方法において、
前記増粘剤は、マンニトール(C14)であること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 10,
The thickener shall be mannitol (C 6 H 14 O 6 ).
A method for manufacturing a heat storage device .
請求項10または請求項11に記載する蓄熱装置の製造方法において、
前記蓄熱材に前記添加剤を配合した蓄熱材組成物では、
前記蓄熱材組成物全体の重量に占める前記増粘剤の配合比率は、20wt%以下の範囲内であること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 10 or 11.
In the heat storage material composition in which the additive is blended with the heat storage material,
The blending ratio of the thickener to the total weight of the heat storage material composition shall be within the range of 20 wt% or less.
A method for manufacturing a heat storage device .
請求項1乃至請求項12のいずれか1つに記載する蓄熱装置の製造方法において、
前記無機塩水和物は、ミョウバン水和物であること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to any one of claims 1 to 12.
The inorganic salt hydrate must be alum hydrate.
A method for manufacturing a heat storage device .
請求項13に記載する蓄熱装置の製造方法において、
前記ミョウバン水和物は、アンモニウムミョウバン12水和物(AlNH(SO4)・12HO)、または、カリウムミョウバン12水和物(AlK(SO4)・12HO)であること、
を特徴とする蓄熱装置の製造方法。
In the method for manufacturing a heat storage device according to claim 13,
Said alum hydrate, ammonium alum dodecahydrate (AlNH 4 (SO4) 2 · 12H 2 O), or a potassium alum dodecahydrate (AlK (SO4) 2 · 12H 2 O),
A method for manufacturing a heat storage device .
JP2016221036A 2016-11-11 2016-11-11 Manufacturing method of heat storage device Active JP6754275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016221036A JP6754275B2 (en) 2016-11-11 2016-11-11 Manufacturing method of heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221036A JP6754275B2 (en) 2016-11-11 2016-11-11 Manufacturing method of heat storage device

Publications (2)

Publication Number Publication Date
JP2018077035A JP2018077035A (en) 2018-05-17
JP6754275B2 true JP6754275B2 (en) 2020-09-09

Family

ID=62149212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221036A Active JP6754275B2 (en) 2016-11-11 2016-11-11 Manufacturing method of heat storage device

Country Status (1)

Country Link
JP (1) JP6754275B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279784B1 (en) 2017-03-13 2018-02-14 東邦瓦斯株式会社 Latent heat storage material composition and latent heat storage tank
JP7419140B2 (en) * 2020-03-31 2024-01-22 株式会社カネカ Inorganic latent heat storage material composition
JP7583867B1 (en) 2023-06-27 2024-11-14 東邦瓦斯株式会社 Method for manufacturing latent heat storage material charge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103288A (en) * 1976-02-23 1977-08-30 Toyo Aluminium Kk Vacuum packaging goods of powder and vacuum gas fill packaging goods
JPS60253780A (en) * 1984-05-29 1985-12-14 三菱製紙株式会社 Wrapping paper for insulation
JP4474719B2 (en) * 2000-02-18 2010-06-09 パナソニック株式会社 Cold storage heat generator and flexible heating / cooling body using the same
JP2008133804A (en) * 2006-11-29 2008-06-12 Toyota Motor Corp Engine manufacturing method
JP6134273B2 (en) * 2014-02-13 2017-05-24 東邦瓦斯株式会社 Latent heat storage material and latent heat storage tank

Also Published As

Publication number Publication date
JP2018077035A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6754275B2 (en) Manufacturing method of heat storage device
US11149179B2 (en) Latent heat storage material composition
CN106753254A (en) A kind of inorganic hydrated salt composite phase-change heat-storage material and its preparation and application
CN104531077A (en) Preparation method of expanded-graphite-base hydrated salt composite solid-solid phase-change energy storage material
WO2018168340A1 (en) Latent-heat storage material composition and latent-heat storage tank
JPWO2019172149A1 (en) Cold storage composition and its use
JP6588491B2 (en) Method for disposing latent heat storage material in heat storage tank and latent heat storage tank
JP6134273B2 (en) Latent heat storage material and latent heat storage tank
JP2006219557A (en) Heat storage material composition, heat storage body using the same and heat storage apparatus
US11692116B2 (en) Phase change material composition and method of preparation thereof
CN101343530A (en) A kind of phase change thermal storage material and its preparation method
CN100506942C (en) A low-temperature phase change heat storage material and its preparation method
JP2017015309A (en) Heat storage material filling container and heat storage tank
JP6500152B1 (en) Latent heat storage material composition
US9695349B1 (en) Phase change material composition and method of fabricating and packaging the same
CN108822804A (en) A kind of phase-changing energy storage material and preparation method thereof encapsulated with porous material
JP2004059154A (en) Sealing material packed body and method of packing sealing material
CN212205769U (en) Heat insulation device with phase change material
CN108099220A (en) A kind of 3D printing cold plate phase-change material charging method
KR20170023378A (en) Filling and packing apparatus of spout pouch
JP2023045030A (en) Latent heat storage material composition
JP7583867B1 (en) Method for manufacturing latent heat storage material charge
JP3170690U (en) Heat storage material
CN108822802A (en) The quaternary disodium hydrogen phosphate base phase change heat storage material that can be encapsulated with aluminium
JP2001031957A (en) Heat storage material composition and heat storage-type hot water supplying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191030

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6754275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250