JPS59133387A - Anode shaping method - Google Patents

Anode shaping method

Info

Publication number
JPS59133387A
JPS59133387A JP58007438A JP743883A JPS59133387A JP S59133387 A JPS59133387 A JP S59133387A JP 58007438 A JP58007438 A JP 58007438A JP 743883 A JP743883 A JP 743883A JP S59133387 A JPS59133387 A JP S59133387A
Authority
JP
Japan
Prior art keywords
anode
defective
shaping
stage
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58007438A
Other languages
Japanese (ja)
Other versions
JPS6221076B2 (en
Inventor
Tomoji Honma
本間 友二
Kuninori Yamamura
山村 都展
Tetsuo Saeki
哲夫 佐伯
Kohei Kimura
幸平 木村
Harunori Aoyama
青山 晴則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Engineering Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Engineering Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP58007438A priority Critical patent/JPS59133387A/en
Publication of JPS59133387A publication Critical patent/JPS59133387A/en
Publication of JPS6221076B2 publication Critical patent/JPS6221076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To shape easily, surely and efficiently an anode by upsetting the anode accepted in a perpendicular state, straightening the sectional shape thereof in a horizontal state, measuring the weight and thickness thereof, expelling the defective, and subjecting the non-defective to edge working. CONSTITUTION:A metallic anode A for electrolysis produced in a smelting factory is kept supported and suspended at edges E and is carried into an accepting stage 1 where the anode is repositioned to a horizontal state by an upsetting device 2 and is carried on the 1st walking conveyor WC1 by which the anode is carried into a straightening stage 3. The bend, camber, twist, etc. of the anode A are straightened by a press device P in said stage and after the sectional shape is straightened, the anode is passed through a weight measuring device 4 and a thickness measuring device 5. The defective anode AN is expelled in a defective anode expelling stage 6 by a discharging stage 8. The non-defective anode AG is carried by the 2nd walking conveyor WC2 into edge working stages 9, 10, where the lower parts F of the edges E are cut and ground by automatic rotating tools MC1, MC2. The anode AG after the shaping is again positioned in the suspended state by an upsetting device 11 and is discharged from a discharging stage 12.

Description

【発明の詳細な説明】 この発明は、電解用金属アノードの整形方法に関する。[Detailed description of the invention] The present invention relates to a method for shaping a metal anode for electrolysis.

金属の′電解#!製においては、単位床面積当りの電解
能力向上と低コスト化のために電解槽中のアノードとカ
ノードの間隔を出米葛だけ小さくすることが要求される
'Electrolysis of metals'! In manufacturing, it is required to reduce the distance between the anode and cathode in the electrolytic cell by an amount equal to 100% in order to improve the electrolytic capacity per unit floor area and reduce costs.

製錬によって得た粗銅、粗ニッケル、粗鉛、粗錫などを
、第1図に示すように一縁両端から匠右に突出延長する
耳E、Eを有する四角板状に一造し、耳E、Eを電解槽
の縁に掛はアノードAとして電解を行なっている。この
アノードAの鋳造は、鋳型の管理の最も簡単な開放水平
鋳型による−(j造が最も普遍的に行われておシ、自動
秤量された溶融金属が鋳型に注ぎ込まれる。
Crude copper, crude nickel, crude lead, crude tin, etc. obtained through smelting are made into a rectangular plate shape with ears E and E extending from both ends of one edge to the right of the craftsman, as shown in Figure 1. E and E, which are hung on the edge of the electrolytic cell, are used as anodes A to perform electrolysis. This anode A is cast by an open horizontal mold, which is the simplest to control, and is most commonly carried out by casting, in which automatically weighed molten metal is poured into the mold.

鋳型は、鋳造されたアノードAを鋳型から取り出し易く
するため鋳型の凹部側面を外方に傾斜せしめである。従
って倚られたアノードAの周縁も斜めに傾斜している。
The mold has a concave side surface inclined outward to facilitate removal of the cast anode A from the mold. Therefore, the peripheral edge of the pressed anode A is also obliquely inclined.

電解槽内には精製した金属の薄板をカソードとして鉛直
に吊シ下げるが、これに並べて上記の如く鋳造したアノ
ードAを電解槽に耳E、Eを掛けて吊シ下げると、俗耳
Eの下部Fは、アノードAの広い面に対して直角とな−
っておらず傾斜しているため、電解槽の縁に中央で策ら
ず、片側の角で莱るようになるため、アノードAが鉛直
とならず鉛直に対して傾き、カソードと短絡、アノード
Aの溶解不均一を起し、その結果、電解製品の電着状態
不良、電解電力および切返率の増大を招Xする。アノー
ドAの不良は上記のような俗耳Eの下部Fの必然的な傾
きによるものはが9ではなく、鋳張シ、反シに由来する
ものがあシ、これらのアノード欠陥も同様に電解成績低
下原因となる。
Inside the electrolytic cell, a thin plate of refined metal is hung vertically as a cathode, and when the anode A, which was cast in the manner described above, is suspended from the electrolytic cell by hooking the ears E and E, a common ear E is formed. The lower part F is perpendicular to the wide surface of the anode A.
Because it is tilted and not centered on the edge of the electrolytic cell, the anode A is not vertical but is tilted to the vertical, causing a short circuit with the cathode and the anode. This causes non-uniform dissolution of A, resulting in poor electrodeposition of the electrolytic product and an increase in electrolytic power and switching rate. The defective anode A is not due to the inevitable inclination of the lower part F of the common ear E as described above, but is due to the casting and casting, and these anode defects are also caused by electrolysis. This will cause a decline in grades.

この問題をさけるために、アノードAの耳Eの下部Fに
銅片などのライナーを挾み、目視によりアノードAが鉛
直となるように調整しているが、この調整にかなシの人
手と時間を要する。またアノードAの垂直懸垂性その他
の外形上の問題以外に、導体との接触抵抗が小さいこと
も金属電解における必須条件である。そしてアノードA
は自重によって生じる導体と耳Eの下部Fとの接触圧に
よって導体との導通を保っているだけなので、耳Eの下
部Fに汚れ、異物、酸化物層などがあることは接触抵抗
の増大に直結するが、鋳造されたままのアノードAを用
いる限シこれらの問題を避けることができず、耳Eの下
部Fを切削あるいは研磨することが是非必要である。
In order to avoid this problem, a liner such as a copper piece is placed between the lower part F of the ear E of the anode A, and the anode A is visually adjusted to be vertical. However, this adjustment takes a lot of manpower and time. It takes. In addition to problems with the vertical suspension and other external shapes of the anode A, low contact resistance with a conductor is also an essential condition in metal electrolysis. and anode A
Since the conductor is maintained only by the contact pressure between the conductor and the lower part F of the ear E due to its own weight, the presence of dirt, foreign matter, oxide layer, etc. on the lower part F of the ear E will increase the contact resistance. Although directly connected, these problems cannot be avoided as long as the as-cast anode A is used, and it is absolutely necessary to cut or polish the lower part F of the ear E.

本発明者らは、これらの諸問題を解決するためのアノー
ド整形方法に、整形装置゛では矯正し得ない不良アノー
ドを選別排除する方法も加えて、最も効率的なシステム
を探究した結果、アノードを可及的に水平支持位置で整
形処理することが望ましいという結論に達し、それを押
し進めることによって下記のような本発明にいたった。
The present inventors added a method of selecting and eliminating defective anodes that cannot be corrected with a shaping device to the anode shaping method to solve these problems, and as a result of searching for the most efficient system, the anode shaping method We came to the conclusion that it is desirable to perform the shaping process in a horizontally supported position as much as possible, and by pursuing this, we arrived at the present invention as described below.

すなわち、本発明の構成は、特許請求の範囲に記載され
るように、電解用金属アノードを搬入する受入れ工程と
、整形終了後のアノードを搬出する搬出工程と、の間に
、少くとも必要な整形工程及び不良アノードの排出工程
を行なわしめるようにしたアノード整形方法において、
前記整形工程は、少くともアノードを水平支持状態に保
持しつつ、アノードの断面形状を矯正する段階およびア
ノードの耳の下部を切削あるいは研磨する段階から成る
ことを特徴とするアノード整形方法である。
That is, as described in the claims, the configuration of the present invention is such that at least necessary In an anode shaping method that includes a shaping process and a defective anode discharge process,
The anode shaping method is characterized in that the shaping step comprises at least the steps of correcting the cross-sectional shape of the anode while holding the anode in a horizontally supported state, and cutting or polishing the lower part of the ear of the anode.

次に、本発明方法の1例を図面に沿って説明する。Next, one example of the method of the present invention will be explained with reference to the drawings.

製錬工場で生産された金属アノードA(例えば銅〜アノ
ード)は、製錬工場から直接、あるいは未整形アノード
ストックヤードがらトラック、フォークリフト、クレー
ンあるいはコンベアなどによって運搬され、通常はアノ
ードAの両耳E、Eを支持懸垂されて受入れ工程1に搬
入される。したがって、本システムの受入れ工程1は、
1枚あるいは複数枚のアノードAを両耳E、E支持によ
る垂直懸垂状態のままで受けいれて垂直懸垂しつつ該両
耳E、Eを結ぶ線とほぼ直交する方向にアノードAを1
枚ずつアノードAの反転装置2まで送シ込み、該反転装
置2にょ9アノニドAを垂直懸垂状態から転換させて次
の第1のウオーキングコンベアWcIの始端上で水平支
持状態にさせる。
Metal anode A (e.g., copper to anode) produced at a smelting factory is transported directly from the smelting factory or from an unformed anode stockyard by truck, forklift, crane, conveyor, etc., and is usually transported from both ears of anode A. E and E are supported and suspended and transported to the receiving process 1. Therefore, the acceptance process 1 of this system is
One or more anodes A are received in a vertically suspended state supported by both ears E and E, and the anode A is placed vertically in a direction substantially perpendicular to the line connecting the ears E and E.
The anode A is fed one by one to the reversing device 2, and the anode A is changed from the vertically suspended state to the horizontally supported state on the starting end of the next first walking conveyor WcI.

上記ウオーキングコンベアwc、は、第2図と第3図に
示すようにその流れ方向が上記受入れ工程1の搬入方向
とほぼ直交されておシ、流れの途中にはアノードAの断
面形状を矯正するための断面形状矯正段階3のブレス装
置Pが設けられている。ここで、上記断面形状の矯正と
は、アノードAの曲シ、反シおよび捻れを矯正すること
、あるいは更に断面を目標とする好適な形状をなすよう
に整えることである。
As shown in FIGS. 2 and 3, the walking conveyor wc has a flow direction substantially perpendicular to the carrying direction of the receiving step 1, and corrects the cross-sectional shape of the anode A during the flow. A brace device P for cross-sectional shape correction stage 3 is provided. Here, the above-mentioned correction of the cross-sectional shape refers to correcting the bending, reversing, and twisting of the anode A, or further adjusting the cross-section so that it has a desired desired shape.

また、ウオーキングコンベアWC,の終端側には、各ア
ノードAの重量を測る単重量測定段階4、谷アノードA
の厚みを測る厚与測定段階5及び該単重量測定段階4に
おいて重量不合格あるいは厚み測定段階5で厚み不合格
となった不良アノードANを排除する不良アノードの排
除段階6が設けられている。
Also, on the terminal side of the walking conveyor WC, there is a single weight measurement stage 4 for measuring the weight of each anode A, and a valley anode A.
A thickness measurement step 5 for measuring the thickness of the anode, and a defective anode elimination step 6 for removing defective anodes AN which have failed in weight in the unit weight measurement step 4 or failed in thickness in the thickness measurement step 5 are provided.

しかして、ウオーキングコンベアwc1の始端上に水平
支持されたアノードAは、第3図に示すウオーキングコ
ンベアWC1の作動によシ搬送され、その途中で矯正加
工が施される。すなわち、該ウオーキングコンベアWC
1は下流側言換れば第3図囚の図面左向きにストローク
dだけ移動されて第1のアノードA1は第3図(B)に
示すようにプレス装置Pの位置決め位置に達する。その
状態でウオーキングコンベアWC1は下降されて、アノ
ードA1はウオーキングコンベアWC,からプレス装置
Pのアノード受けPH上に載置されて、水平支持状態の
ままでプレス装置3によシ両耳E、EとアノードA1本
体の数個所をプレスされ断面形状が矯正される。
The anode A, which is horizontally supported on the starting end of the walking conveyor wc1, is conveyed by the operation of the walking conveyor WC1 shown in FIG. 3, and is subjected to a correction process along the way. That is, the walking conveyor WC
1 is moved downstream, in other words, leftward in the drawing in FIG. 3 by a stroke d, and the first anode A1 reaches the positioning position of the press device P as shown in FIG. 3(B). In this state, the walking conveyor WC1 is lowered, and the anode A1 is placed on the anode receiver PH of the press device P from the walking conveyor WC, and is transferred to the press device 3 with both ears E and E while being horizontally supported. Several places on the anode A1 body are pressed to correct the cross-sectional shape.

上記アノードA1が矯正されている間に、ウオーキング
コンベアWC,は第3図(C)に示すように下降状態で
ストロークdだけ上流側、すなわち第3図(C)図面右
側にもどされたのち、ウオーキングコンベアWC1は第
3図■)に示すように上昇される。そして第3図(Qに
示すように再びストロークdだけ下流側、すなわち第3
図(5))図面圧側に移動され、ウオーキングコンベア
WC,上のアノードA1は、プレス装置Pの位置決め位
置から単重量測定段階4側に搬送されると共に、次の紀
2のアノードA2およびアノードA1本体降も同様にし
てフ0レス装置Pの位置決め位置に達する。この様にし
て、断面形状の矯正されたアノードAは単重量測定段階
4側に順次搬送されるが、その途中で厚み測定段階5の
タッチセンサ装置によシ、厚み過大断面形状あるいは切
張9・の未矯正のアノードが厚み不合格の不良アノード
として検出される。そして、単重量測定段階4において
は、厚み合格アノードに対してのみロードセルを作用式
せて単重量を測定し、所定重量範囲以外のアノードを重
量不合格アノードとして検出する。結局、上記厚み測定
段階5で厚み不合格、あるいは単重量測定段階4で重量
不合格となった不良アノードANは、不良アノートノ排
除段階6の排除装置でウオーキングコンベアWC1上か
ら排除されると共に、反転装置7により水平保持状態か
ら垂直懸垂状態に転換された後、不良アノードの搬出工
程8にょシネ良アノードANの両耳E、Eが支持されて
搬出される。
While the anode A1 is being corrected, the walking conveyor WC is returned to the upstream side by a stroke d in a downward state as shown in FIG. 3(C), that is, to the right side of the drawing in FIG. 3(C). The walking conveyor WC1 is raised as shown in FIG. 3 (■). Then, as shown in Figure 3 (Q), the stroke d is downstream again, that is, the third
Figure (5)) The anode A1 on the walking conveyor WC is moved to the drawing pressure side, and is conveyed from the positioning position of the press P to the unit weight measurement stage 4 side, and the anode A2 and anode A1 of the next Era 2 The lowering of the main body reaches the positioning position of the press release device P in the same manner. In this way, the anode A whose cross-sectional shape has been corrected is sequentially conveyed to the unit weight measuring stage 4, but on the way, the touch sensor device of the thickness measuring stage 5 detects that the cross-sectional shape is too thick or the cross-sectional shape is too thick.・An uncorrected anode is detected as a defective anode whose thickness is rejected. In the unit weight measuring step 4, the unit weight is measured by operating the load cell only on the anodes whose thickness passes the test, and anodes whose weights are outside a predetermined weight range are detected as the anodes whose weight does not pass. In the end, the defective anode AN whose thickness was rejected in the thickness measurement step 5 or whose weight was rejected in the single weight measurement step 4 is removed from the walking conveyor WC1 by the removal device in the defective anode removal step 6, and is turned over. After being changed from the horizontally held state to the vertically suspended state by the device 7, both ears E and E of the good anode AN are supported and carried out in a step 8 for carrying out the defective anode.

一方、上記厚み測定段階5で厚み合格、および単重量測
定段階4で重量合格となった良品アノードAGは、順次
水平支持状態の′81−ま2系列に分けて搬送されてウ
オーキングコンベアwc2. wc3゜始端上で水平支
持状態にされる。
On the other hand, the non-defective anodes AG which passed the thickness test in the thickness measurement stage 5 and passed the weight test in the single weight measurement stage 4 are sequentially conveyed in two horizontally supported '81-1 series to the walking conveyor wc2. It is placed in a horizontally supported state on the starting edge of wc3°.

上記つ、イーキングコンベアWC2,MC3は、上記ウ
オーキングコンベアーvVC,と同様のもので、第2図
と第4図に示すように、流れの途中には各々良品アノー
ドA。の耳の下部を切削あるいは研磨する再加工段階9
,1oの加工機1vIC,、MC2が設けられている。
The above-mentioned eking conveyors WC2 and MC3 are similar to the above-mentioned walking conveyor vVC, and as shown in FIGS. 2 and 4, each of them has a non-defective anode A in the middle of the flow. Reprocessing step 9 of cutting or polishing the lower part of the ear.
, 1o processing machines 1vIC, , MC2 are provided.

しかして、ウオーキングコンベアWC2,WC3の始端
上に各々水平支持された良品アノードA。は、第4図に
示すウオーキングコンベアWC2、MC3の作動により
搬送され、その途中で耳の加工が施される。すなわち、
ウオーキングコンベアwc2.wc3は、下流側言換れ
ば第4図(A)の図面左向きにストロークhだけ移動さ
れて、各々第1の良品アノードAGIは、第4図[F]
)に示すように加工機IVICI 、 MC2の位置決
め位置に達する。その状態でウオーキングコンベアWC
2,WC3は下降されて、良品アノードA はウオーキ
ングコンベアWC2,WC3から加1 王様]VIC+ 、 IVIC2のアノード受けM、’
 H上に載置され水平支持状態のままで加工機1Vfc
+ 、MC2に付属する位置決め装置によシ位置決めさ
れたのちクランプされる。クランプされた良品アノード
AG工の両耳E、Eの下部F、Fば、加工機MC1,M
C2の自動回転工具により切削もしくは研磨される。し
たがって上記両耳E、Eの下部F、Fの鋳型の形状によ
る傾斜のみならず、嗣張シ、反りに由来する傾斜をも良
品アノードAG□の広い面と直角となる様に修正加工す
ることができると同時に、下部F。
Thus, good quality anodes A are horizontally supported on the starting ends of walking conveyors WC2 and WC3. are transported by the operation of walking conveyors WC2 and MC3 shown in FIG. 4, and the edges are processed on the way. That is,
Walking conveyor wc2. wc3 is moved downstream, in other words, to the left in FIG. 4(A) by a stroke h, and each of the first good anodes AGI is moved to the left in FIG.
), the processing machine IVICI reaches the positioning position of MC2. Walking conveyor WC in that state
2, WC3 is lowered, and the good anode A is transferred from the walking conveyor WC2, WC3 to the anode receiver M,' of VIC+, IVIC2.
Processing machine 1Vfc is placed on H and remains horizontally supported.
+, it is positioned by a positioning device attached to MC2 and then clamped. Clamped good anode AG machine both ears E, lower part F of E, processing machine MC1, M
Cut or polished by C2 automatic rotary tool. Therefore, not only the inclination due to the shape of the mold of the lower part F of both ears E and E, but also the inclination due to overfilling and warping must be corrected so that they are perpendicular to the wide surface of the good anode AG□. At the same time, the lower F.

Fの汚れ、異物、酸化物層なども完全に除去できること
・になる。
F stains, foreign matter, oxide layers, etc. can be completely removed.

上述のようにして良品アノードAG□が修正加工されて
いる間に、ウオーキングコンベアWC2,WC3はl(
4図(Qに示すように下降林態でストロークhだけ上流
側、すなわち第4図Ω図面右側にもどされたのち、良品
アノードA。、はアンクランプされると共にウオーキン
グコンベアwc2. ’ wc3は第4図■に示すよう
に上昇される。そして笛4図■に示すように再びストロ
ークhだけ下流に移動され、ウオーキングコンベアwc
2. we3上の各良品アノードAG□は、加工機MC
+ 、’MC2の位置決め位置から下流側に搬送される
と共に次の第2の良品アノードAG2および良品アノー
ドA。3以降も同様にして加工+/AMc、、MC2の
位置決め位置に順次達する。
While the non-defective anode AG□ is being corrected as described above, the walking conveyors WC2 and WC3 are
After being returned to the upstream side by a stroke h in the descending forest condition as shown in Fig. 4 (Q), that is, to the right side of the Fig. As shown in Figure 4 ■, the whistle is then moved downstream by stroke h again as shown in Figure 4 ■, and the walking conveyor wc
2. Each non-defective anode AG□ on we3 is processed by processing machine MC.
+, 'The second non-defective anode AG2 and the non-defective anode A are transported downstream from the positioning position of MC2. After 3, the positioning positions of machining +/AMc, MC2 are sequentially reached in the same manner.

一連の整形加工が施されてウオーキングコンベアvvc
2. wc3の終端に達した良品アノードA。は、第2
図に示すように一系列に合併されて反転装置111で搬
送され、該反転装置11により各良品アノードAGは順
次水平支持状態から垂直支持状態に反転された後、搬出
工程12によシ両耳E。
Walking conveyor VVC with a series of shaping processes
2. Good anode A has reached the end of wc3. is the second
As shown in the figure, the good anodes AG are combined into one series and transported by the reversing device 111, and each non-defective anode AG is sequentially reversed from the horizontally supported state to the vertically supported state by the reversing device 11. E.

Eを支持して搬出され、次段の電解工場あるいは整形ず
みアノードストックヤードに運搬される。
E is supported and carried out, and transported to the next stage electrolytic factory or shaped anode stockyard.

以上は、本発明による完全なフローの例であるが、鋳造
工程から出されるアノードの品質によっては、上記のう
ち一部の段階を省略することができる。したがって本発
明は、通常の平注ぎアノードに適用し得るだけでなく、
必要があれば連続鋳造アノードの仕上げにも適用し得る
。また、整形工程中のアノードの搬送は、ウオーキング
コンベアに限ることなく、種々の搬送装置を用いること
ができるのはいうまでもない。
Although the above is an example of a complete flow according to the present invention, some of the steps described above may be omitted depending on the quality of the anode coming out of the casting process. Therefore, the present invention is not only applicable to ordinary flat pour anodes, but also
If necessary, it can also be applied to finish continuously cast anodes. Furthermore, it goes without saying that the transportation of the anode during the shaping process is not limited to the walking conveyor, and that various transportation devices can be used.

ところで上述した整形システムの主要部において、アノ
ードを水平支持状態で扱うようにした粘釆、下記のよう
な利点が得られた。
By the way, in the main part of the above-mentioned shaping system, a viscous adhesive in which the anode is handled in a horizontally supported state has the following advantages.

(1)整形される対象物であるアノードの加工時の安定
把握および搬送が非常に容易であるため、整形システム
全体が単純化された。
(1) The entire shaping system has been simplified because it is very easy to stably grasp and transport the anode, which is the object to be shaped, during processing.

(2)垂直懸垂支持状態でアノードを扱うより搬送速匿
を早くでき、しかも各加工の際の位置合ぜが早くて正確
にできる。
(2) Transport and storage can be faster than handling the anode in a vertically suspended state, and positioning during each process can be done quickly and accurately.

(3)断面形状矯正段階においてアノードに対して上下
プレスが可能となシ、機械的無理がなく、−またアノー
ドのバランス保持に留意する必要がない。
(3) In the step of correcting the cross-sectional shape, the anode can be pressed up and down, so there is no mechanical strain, and there is no need to pay attention to maintaining the balance of the anode.

(4)不良アノードの抜き取や排除、あるいはアノード
の搬送および加工系列の分岐、統合が容易となシ、した
がって、整形システム全体として必要スペースを小さく
することができる。
(4) It is easy to extract and eliminate defective anodes, and to transport anodes and branch and integrate processing lines, and therefore, the space required for the entire shaping system can be reduced.

尚、上述の整形システムによ98秒に1枚の割合で銅ア
ノードを整形処理することができる。た7ビし、良品ア
ノードの分岐数がこの図面実施例では2系列であるが、
さらに2系統以上に増して各系列ごとに再加工段階を設
ければ、アノードの並列加工処理が行なえ、整形処理量
を増大できるのはいう゛までもない。
The above-mentioned shaping system can shape one copper anode every 98 seconds. However, the number of branches of the good anode is two lines in this drawing example,
It goes without saying that if the number of systems is increased to two or more and a reprocessing step is provided for each system, the anodes can be processed in parallel and the amount of shaping processing can be increased.

以上説明したように、本発明によれば、未整形のアノー
ドを受入れる受入れ工程と、整形終了後のアノードを搬
出する搬出工程間に、少くとも必要な整形工程と不良ア
ノードの排出工程とを設け、整形工程は、少くともアノ
ードを水平支持状態に保持して、断面形状を矯正する段
階と耳の下部を切削もしくは研磨する段階から成るよう
にしたので、アノードのバランス保持に留意することン
よくアノード本体と耳の曲シ、反シおよび捻れの矯正あ
るいは更に断面を目標とする好適な形状にすること、お
よび耳の下部の傾斜や切張シなどの除去が容易かつ確実
に実施することができ、アノードの形状が正されてアノ
ードの垂直懸垂性が改善され、したがって、電解時のア
ノードの短絡などの部数2大幅に減少できる効果がある
As explained above, according to the present invention, at least the necessary shaping process and defective anode discharge process are provided between the receiving process for accepting unshaped anodes and the carrying-out process for carrying out the anodes after shaping. The shaping process consists of at least the step of holding the anode in a horizontally supported state and correcting its cross-sectional shape, and the step of cutting or polishing the lower part of the ear, so care must be taken to maintain the balance of the anode. It is possible to easily and reliably correct curvature, undulation, and twisting of the anode body and ears, or to make the cross section into a targeted and suitable shape, and to easily and reliably remove sloping, cutting, etc. at the lower part of the ears. As a result, the shape of the anode is corrected and the vertical suspension of the anode is improved, so that the number of short circuits of the anode during electrolysis can be significantly reduced.

また、本発明によれは、不良アノードが自動的に排除さ
れ、別系統からまとめて搬出されるので、従来不良アノ
ードの選別および抜き出しに要した労カフへ犬幅に節減
できる効果がある。
Further, according to the present invention, since defective anodes are automatically removed and transported out from a separate system, the labor required for sorting out and extracting defective anodes can be significantly reduced.

また本発明において、不良アノードの排除を全フローの
能力のネックである再加工段階の前で行なうことによシ
、整形工程全体の能力の向上が図れる効果がある。
Furthermore, in the present invention, by eliminating defective anodes before the reprocessing stage, which is the bottleneck in the overall flow performance, there is an effect that the performance of the entire shaping process can be improved.

さらに、本発明によれば、アノードの耳下部切削もしく
は研磨によって、耳下部と導体との接触抵抗が減少し、
接触不良アノード件数の減少以外に全接触抵抗を平均し
て減少させることができる効果がある。
Further, according to the present invention, the contact resistance between the lower ear and the conductor is reduced by cutting or polishing the lower ear of the anode,
In addition to reducing the number of anodes with poor contact, there is an effect that the total contact resistance can be reduced on average.

さらに本発明において、断面形状矯正段階、単重量測定
段階、厚み測定段階および再加工段階におけるアノード
の搬送をウオーキングコンベアにより水平支持状態で行
なえば、各段階でのアノードの扱いが容易になると共に
各段階での位置決めが確実にできることから、整形能力
を更に高めることができる効果がある。
Furthermore, in the present invention, if the anode is transported in a horizontally supported state by a walking conveyor during the cross-sectional shape correction stage, single weight measurement stage, thickness measurement stage, and reprocessing stage, handling of the anode at each stage becomes easy and each Since positioning can be performed reliably in stages, there is an effect that the shaping ability can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アノードの形状を説明するための平面図、第
2図は、本発明に係る方法に用いる整形システムの一実
施例を示す説明図、第3図は、断面形状矯正段階のウオ
ーキングコンベアの動作説明図、第4図は、再加工段階
のウオーキングコンベアの動作説明図である。 1・・・受入れ工程、3・・・断面形状矯正段階、4・
・・単重量測定段階、5・・・厚み重量測定段階、6・
・不良アノードの排除段階、8・・・不良アノードの排
出工程、9,10・・耳加工段−階、12・・・整形終
了後のアノードの排出工程、WCI 、 WC2,WC
3・・ウオーキングコンベア。 特許出願人  日本鉱業株式会社 日鉱エンジニアリング株式会社
FIG. 1 is a plan view for explaining the shape of the anode, FIG. 2 is an explanatory diagram showing an embodiment of the shaping system used in the method according to the present invention, and FIG. 3 is a walking diagram of the cross-sectional shape correction step. FIG. 4 is an explanatory diagram of the operation of the walking conveyor in the reprocessing stage. 1...Acceptance process, 3...Cross-sectional shape correction stage, 4.
...Single weight measurement step, 5...Thickness weight measurement step, 6.
- Step of removing defective anodes, 8... Step of discharging defective anodes, 9, 10... Step of processing ears, 12... Step of discharging anodes after shaping, WCI, WC2, WC
3. Walking conveyor. Patent applicant Nippon Mining Co., Ltd. Nikko Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)  電解用金属アノードを搬入する受入れ工程と
、整形終了後のアノードを搬出する搬出工程と、の間に
、少くとも必要な整形工程及び不良アノードの排出工程
を行なわしめるようにしたアノード整形方法において、
前記整形工程は、少くともアノードを水平支持状態に保
持しつつ、アノードの断面形状を矯正する段階およびア
ノードの耳の下部を切削あるいは研磨する段階から成る
ことを特徴とするアノード整形方法。
(1) Anode shaping in which at least the necessary shaping process and defective anode discharge process are performed between the receiving process for carrying in the electrolytic metal anode and the carrying out process for carrying out the anode after shaping. In the method,
An anode shaping method characterized in that the shaping step comprises at least the steps of correcting the cross-sectional shape of the anode while holding the anode in a horizontally supported state, and cutting or polishing the lower part of the ear of the anode.
(2)  前記整形工程は、アノードの曲り、反りおよ
び捻れを矯正し、あるいは更に断面形状を整えるだめの
プレスによる断面形状矯正段階1各アノードの重量を測
る単重量測定段階、該アノードの厚みを測る厚み測定段
階、上記単重量測定段階で重量不2合格あるいは厚み測
定段階で厚み不合格となった不良アノードをワト除する
不良アノードの排除段階乞アノードの耳の下部を自動回
転工具によって切削あるいは研磨する再加工段階から成
り、前記不良アノードの排除段階によって排除された不
良アノードは、艮品アノードと別途に前記不良アノード
の排出工程から排出される特許請求の範囲第1項記載に
よるアノード整形方法。
(2) The shaping process includes straightening the cross-sectional shape using a press to correct bending, warping, and twisting of the anode, or further adjusting the cross-sectional shape.Step 1: Single weight measurement step of measuring the weight of each anode, and measuring the thickness of the anode. Thickness measurement step, removal step of removing defective anodes that have failed in weight in the single weight measurement step or failed in thickness in the thickness measurement step.The lower part of the ear of the anode is cut or The anode shaping method according to claim 1, comprising a reprocessing step of polishing, and the defective anode removed in the defective anode removing step is discharged from the defective anode discharging step separately from the finished anode. .
(3)前記mr面形状矯正設階、単重量測定段階、厚み
測定段階、および耳加工段1vKおけるアノードの搬送
をウオーキングコンベアにより水平支持状態で行なうよ
うにした特許請求の範囲第2項記載によるアノード峯形
方法。
(3) According to claim 2, the anode is transported in the MR surface shape correction stage, the single weight measurement stage, the thickness measurement stage, and the edge processing stage 1vK in a horizontally supported state by a walking conveyor. Anode Minegata method.
JP58007438A 1983-01-21 1983-01-21 Anode shaping method Granted JPS59133387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007438A JPS59133387A (en) 1983-01-21 1983-01-21 Anode shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007438A JPS59133387A (en) 1983-01-21 1983-01-21 Anode shaping method

Publications (2)

Publication Number Publication Date
JPS59133387A true JPS59133387A (en) 1984-07-31
JPS6221076B2 JPS6221076B2 (en) 1987-05-11

Family

ID=11665860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007438A Granted JPS59133387A (en) 1983-01-21 1983-01-21 Anode shaping method

Country Status (1)

Country Link
JP (1) JPS59133387A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173285A (en) * 1983-03-23 1984-10-01 Nippon Mining Co Ltd Detection and exclusion of inferior anode and apparatus therefor
JP2010174268A (en) * 2009-01-27 2010-08-12 Pan Pacific Copper Co Ltd Device and method for verticality inspection of anode plate for electrolytic refining
JP2015007284A (en) * 2013-06-24 2015-01-15 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy Method and device for preparing anode cast
EP2803434A4 (en) * 2011-12-26 2015-11-04 Jiangxi Nerin Equipment Co Ltd Device and method for machining anode plate for electrolysis
CN106345849A (en) * 2016-08-31 2017-01-25 三门三友科技股份有限公司 Anode copper plate shaping device
JP2019039079A (en) * 2018-11-28 2019-03-14 パンパシフィック・カッパー株式会社 Polishing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100902A (en) * 1977-02-15 1978-09-02 Sumitomo Metal Mining Co Apparatus for adjusting anode shape
JPS5452681A (en) * 1977-10-05 1979-04-25 Mitsubishi Metal Corp Continuous reformation apparatus for electrolytic anode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100902A (en) * 1977-02-15 1978-09-02 Sumitomo Metal Mining Co Apparatus for adjusting anode shape
JPS5452681A (en) * 1977-10-05 1979-04-25 Mitsubishi Metal Corp Continuous reformation apparatus for electrolytic anode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173285A (en) * 1983-03-23 1984-10-01 Nippon Mining Co Ltd Detection and exclusion of inferior anode and apparatus therefor
JPS6219516B2 (en) * 1983-03-23 1987-04-28 Nippon Kogyo Kk
JP2010174268A (en) * 2009-01-27 2010-08-12 Pan Pacific Copper Co Ltd Device and method for verticality inspection of anode plate for electrolytic refining
EP2803434A4 (en) * 2011-12-26 2015-11-04 Jiangxi Nerin Equipment Co Ltd Device and method for machining anode plate for electrolysis
US10252353B2 (en) 2011-12-26 2019-04-09 Jiangxi Nerin Equipment Co., Ltd. Apparatus and method for processing anode plate for electrolysis
JP2015007284A (en) * 2013-06-24 2015-01-15 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy Method and device for preparing anode cast
CN106345849A (en) * 2016-08-31 2017-01-25 三门三友科技股份有限公司 Anode copper plate shaping device
JP2019039079A (en) * 2018-11-28 2019-03-14 パンパシフィック・カッパー株式会社 Polishing device

Also Published As

Publication number Publication date
JPS6221076B2 (en) 1987-05-11

Similar Documents

Publication Publication Date Title
CN106271671A (en) A kind of header box production method and the header box production line of enforcement the method
CN108526226B (en) Step-by-step cooling bed rolled piece alignment device
JPS59133387A (en) Anode shaping method
CN210146482U (en) Automatic detection and sorting device for Brinell hardness of bar
CN114473371B (en) Preparation method of blade material on shearing machine and shearing test equipment
US20100058567A1 (en) High Capacity Anode Preparation Apparatus
CN112338117B (en) Method for manufacturing titanium alloy lower cross arm and used die
JP2012111002A (en) Method and device for scrapping steel cut piece
JPS6219516B2 (en)
CN214030495U (en) Billet blanking conveying trough
CN218059257U (en) Copper electrolysis anode plate shaping unit
US6350355B1 (en) Starting cathodes made of copper band for copper electrolysis and a method for the production thereof
CN205274605U (en) Automatic turning device of packing ring
CN206654702U (en) A kind of guider of boist truss
CN207414981U (en) A kind of double roller stick feed device
JPS6219517B2 (en)
JP5050670B2 (en) Method for producing copper seed plate
JPS59133388A (en) Method and device for edge working of anode
CN210647850U (en) Metal plate leveling jig
CN109877184A (en) A method of improving steel band camber defect
CN216503418U (en) Automatic uncoiling, cutting, bending and welding production line for coil stock
CN220658817U (en) Automatic production line for robot bending
CN219313937U (en) Anti-collision device
CN220093734U (en) Composite line for automatic production of front corner column and rear corner column
CN218087321U (en) Automobile body part circulation system