JPS59132988A - Reduction of dissolved oxygen in condensed water - Google Patents

Reduction of dissolved oxygen in condensed water

Info

Publication number
JPS59132988A
JPS59132988A JP725683A JP725683A JPS59132988A JP S59132988 A JPS59132988 A JP S59132988A JP 725683 A JP725683 A JP 725683A JP 725683 A JP725683 A JP 725683A JP S59132988 A JPS59132988 A JP S59132988A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
activated carbon
condensed water
condensate
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP725683A
Other languages
Japanese (ja)
Inventor
Takashi Omachi
大町 隆
Tanji Nakamuta
中牟田 端士
Takashi Morimoto
敬 森本
Hiroyuki Tsutaya
博之 蔦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP725683A priority Critical patent/JPS59132988A/en
Publication of JPS59132988A publication Critical patent/JPS59132988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To reduce dissolved oxygen in condensed water within a short time, by circulating condensed water, to which hydrazine has been preadded at the upper stream side of an activated carbon-packed column provided in a recirculation line of condensed water, through the activated carbon column, and then starting a deaeration column. CONSTITUTION:A hydrazine solution 16 in a hydrazine tank 15 is injected through an injection pipe 17 and a valve 19 into condensed water at the upper stream side of an activated carbon-packed column 14 by a pump 18. Dissolved oxygen and hydrazine in the condensed water are reacted with each other by bringing them into contact with activated carbon 13 to reduce said dissolved oxygen, and then the treated water is returned through a valve 20 and a recirculation line 11 of condensed water to a condenser 6. The condensed water 7 in which the dissolved oxygen has been reduced is let flow through a pipe 8, a pump 9, a valve 10, the by-pass pipe 21 of the activated carbon-packed column 14 and a valve 22 to perform the by-pass operation of said activated carbon- packed column 14. By this method, dissolved oxygen in the condensed water can be reduced down to 0.003ppm within a short time.

Description

【発明の詳細な説明】 本発明は、火力発電プラントの起動時における復水中の
溶存酸素低減方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing dissolved oxygen in condensate during startup of a thermal power plant.

従来の発電プラントの起動時における復水中の溶存酸素
低減方法を第1図に示す。
Figure 1 shows a conventional method for reducing dissolved oxygen in condensate during startup of a power plant.

第1図において、補給水タンク1に貯留されだ補給水2
は、管3.補給水ポンプ4.弁5を経て復水器6に貯留
される。
In Figure 1, makeup water 2 is stored in makeup water tank 1.
is tube 3. Make-up water pump4. It passes through the valve 5 and is stored in the condenser 6.

復水器6に貯留された復水7は、復水ポンプ8により管
9.弁10と連絡しである復水再循環ライン11.弁1
2を介して復水器乙に循環されるようになっている。
The condensate 7 stored in the condenser 6 is transferred to a pipe 9 by a condensate pump 8. A condensate recirculation line 11 in communication with valve 10. Valve 1
It is designed to be circulated to condenser O via 2.

前記循環中の復水の溶存酸素は、飽和に近い状態で、排
気管13.真空ポンプ14によシ復水器6を真空にする
だけでは溶存酸素の低減は困難で、通常は図示しない脱
気器と組み合せ、との脱気器で真空加熱脱気を行い、脱
気されだ復水を復水器6に戻し減少させている。
The dissolved oxygen in the circulating condensate is nearly saturated in the exhaust pipe 13. It is difficult to reduce dissolved oxygen by simply evacuating the condenser 6 using the vacuum pump 14. Usually, it is combined with a deaerator (not shown), and the deaerator performs vacuum heating deaeration. The condensate is returned to the condenser 6 and reduced.

この工程において、従来の実績では後水中の溶存酸素を
低減させるのに5〜8時間を必要とする。
In this process, according to conventional results, it takes 5 to 8 hours to reduce dissolved oxygen in the afterwater.

本発明の目的は、上記のような欠点を解消しプラント起
動時に短時間で復水中の溶存酸素を低減させる方法を提
供することにある。
An object of the present invention is to provide a method for eliminating the above-mentioned drawbacks and reducing dissolved oxygen in condensate in a short time at the time of plant startup.

すなわち本発明は、発電プラントの運転方法において週
末停止、毎日発停を対象とした起動時の復水中の溶存酸
素を短時間で低減させる方法として、復水再循環ライン
内に活性炭を充填゛した活性炭充填塔及びヒドラジン注
入装置を設け、このヒドラジン注入装置によりヒドラジ
ンを添加した復水をこの活性炭充填塔内に流過させ、該
塔内の活性炭にヒドラジン及び復水中の溶存酸素を吸着
させ、室温付近で下記(1)式の反応を繰り返し行わせ
ることによシ復水の溶存酸素濃度を低減した後、脱気装
置を起動させることを特徴とする復水の溶存酸素低減方
法に関し、本発明方法によれば復水の脱気時間を短縮す
ることができる。
That is, the present invention fills activated carbon in the condensate recirculation line as a method for reducing dissolved oxygen in condensate in a short period of time during startup for weekend shutdowns and daily startup/stop operations in power generation plants. An activated carbon packed tower and a hydrazine injection device are installed, and the hydrazine injection device causes condensate to which hydrazine is added to flow through the activated carbon packed tower, and the activated carbon in the tower adsorbs hydrazine and dissolved oxygen in the condensate. The present invention relates to a method for reducing dissolved oxygen in condensate, which comprises starting a deaerator after reducing the dissolved oxygen concentration in condensate by repeatedly performing the reaction of the following formula (1) in the vicinity. According to the method, the time for degassing condensate can be shortened.

N2H4+ o、、〜→2I(20−1−N2・・−・
−・・(1)第2図は本発明方法の一実施態様例を示す
図である。第2図中、第1図と同一の符号を付したもの
の構造・作用は同一であるので、このものの説明は省略
する。
N2H4+ o,, ~ → 2I (20-1-N2...
- (1) Fig. 2 is a diagram showing an embodiment of the method of the present invention. In FIG. 2, the components designated by the same reference numerals as those in FIG. 1 have the same structure and function, so the explanation of these components will be omitted.

第2図において、ヒドラジンタンク15内に貯留された
ヒドラジン溶液16は、ヒドラジン注入ポンプ18によ
りヒドラジン注入g17゜弁19を経て活性炭充填塔1
4の上流側で前記の復水に注入される。復水中の溶存酸
素とヒドラジンは、活性炭15と接触するととによシ反
応式(1)で示す反応を行ない、復水中の溶存酸素を低
減させたのち、弁20.復水再循環ライン11を経て復
水器乙に戻る。寸だ補給水タンク1の補給水2も、補給
水ポンプ4により管3゜弁5を経た後、上記と同様の経
路を経て溶存酸素が低減され、復水器6へ注入される。
In FIG. 2, the hydrazine solution 16 stored in the hydrazine tank 15 is injected into the activated carbon packed tower 1 through the hydrazine injection g17 valve 19 by the hydrazine injection pump 18.
The condensate is injected into the condensate upstream of 4. When the dissolved oxygen and hydrazine in the condensate come into contact with the activated carbon 15, the reaction shown by reaction formula (1) occurs, and after reducing the dissolved oxygen in the condensate, the valve 20. It returns to the condenser O through the condensate recirculation line 11. The make-up water 2 in the make-up water tank 1 also passes through the pipe 3° valve 5 by the make-up water pump 4, and then is injected into the condenser 6 through the same route as above, with dissolved oxygen being reduced.

溶存酸素が低減された復水7は、管8.復水ポンプ9.
弁10.を経て、復水再循環ライン11と連通された活
性炭充填塔バイパス管21゜弁22を介して活性炭充填
塔14をバイパス運転できる構成となっている。
Condensate 7 with reduced dissolved oxygen is transferred to pipe 8. Condensate pump9.
Valve 10. The activated carbon packed tower 14 can be operated by bypass through the activated carbon packed tower bypass pipe 21 and the valve 22, which are connected to the condensate recirculation line 11.

なお、活性炭16は、上記したように反応式(1)の反
応の触媒として作用し、吸着した溶存酸素とヒドラジン
は該反応によシH20+ N2  として活性炭外へ出
て行ってし21うもので、本発明と同時に出願する「復
水の溶存酸素低減方法」において溶存酸素を吸着させる
活性炭の作用とは異なるものである。
Note that the activated carbon 16 acts as a catalyst for the reaction of reaction formula (1) as described above, and the adsorbed dissolved oxygen and hydrazine exit from the activated carbon as H20 + N2 through this reaction21. This is different from the action of activated carbon, which adsorbs dissolved oxygen, in the "Method for Reducing Dissolved Oxygen in Condensate" filed at the same time as the present invention.

第3図は本発明方法によるヒドラジン添加における溶存
酸素除去試験結果の一例を示す図である。
FIG. 3 is a diagram showing an example of the results of a dissolved oxygen removal test in the addition of hydrazine according to the method of the present invention.

第3図(叶、溶存酸素4.85 ppmをきむ復水を活
性炭充填量2 t 、 5V−5h−” 、  ヒドラ
ジン添加濃度1当量(4,85ppm )の条件で活性
炭充填塔へ送水した場合で、該図から明らかなように溶
存酸素0.005 ppmを含む復水が10.000を
以上採取できることが判る。
Figure 3 shows the case where condensate containing 4.85 ppm of dissolved oxygen is sent to an activated carbon-packed tower under the conditions of activated carbon loading of 2 t, 5V-5h-'', and hydrazine concentration of 1 equivalent (4.85 ppm). As is clear from the figure, more than 10,000 pieces of condensate containing 0.005 ppm of dissolved oxygen can be collected.

このように本発明方法によれば、活性炭中でヒドラジン
と溶存酸素が濃縮・反応・除去を連続的に繰り返し効果
的に水中の溶存酸素が除去されるだめ、従来の発電プラ
ントの起動時における復水中の溶存酸素除去方法に比べ
、短時間で、かつ復水中の溶存酸素を0.003 pp
mまで低減することができる。
As described above, according to the method of the present invention, hydrazine and dissolved oxygen are continuously concentrated, reacted, and removed in activated carbon, and dissolved oxygen in water is effectively removed. Compared to methods for removing dissolved oxygen in water, it takes a shorter time and reduces dissolved oxygen in condensate by 0.003 pp.
It can be reduced to m.

々お、第2図の実施態様例において、り水型6の容量を
20m’、復水循環景を1[]0rn3/時間とし、上
記活性炭充填塔から0.01 ppm以下の脱気された
復水が復水器6へ戻り、希釈されるとして試算すると、
理論的に約80分で0.01ppm以下になシ、これは
上記実験結果から5V−5h’−’ 、活性戻光’R計
2 om”で十分処理できる量である。
In the embodiment shown in FIG. 2, the capacity of the water refill type 6 is 20 m', the condensate circulation is 1[]0rn3/hour, and the degassed condensate of 0.01 ppm or less is discharged from the activated carbon packed tower. Estimated assuming that water returns to condenser 6 and is diluted,
Theoretically, the amount should be 0.01 ppm or less in about 80 minutes, and from the above experimental results, this amount can be sufficiently treated with 5V-5h'-' and active return light 'R total 2 om''.

すなわち本発明方法によれば、従来起動時のクリーンア
ップで溶存酸素を0.01 ppm以下にさげるのに5
〜8時間必要であったが、約80分と非常に短時間で到
達できることを示している。
In other words, according to the method of the present invention, it takes 5.5 ppm to reduce dissolved oxygen to 0.01 ppm or less during cleanup at startup.
This shows that it can be achieved in a very short time of about 80 minutes, although it previously required ~8 hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の復水の溶存酸素低減方法を示す図、第2
図は本発明方法の一実施態様例を示す図、第6図は本発
明方法の効果を確認するだめに行った試験結果を示す図
表である。 □復代理人  内 1)  明 復代理人  萩 原 亮 −や
Figure 1 shows the conventional method for reducing dissolved oxygen in condensate, Figure 2
The figure shows an embodiment of the method of the present invention, and FIG. 6 is a chart showing the results of tests conducted to confirm the effects of the method of the present invention. □ Sub-agents 1) Meifuku agent Ryo Hagiwara -ya

Claims (1)

【特許請求の範囲】[Claims] 火力発電プラントの起動時に復水中の溶存酸素を短時間
で低減させるに際し、あらかじめ復水再循環ラインに配
設された活性炭充填塔の上流側でヒドラジンを添加した
復水を該活性炭塔内に流過させ、復水中の溶存酸素とヒ
ドラジンとを前記活性炭充填塔内の活性炭で吸着9反応
させて、復水中の溶存酸素を低減させたのち、脱気装置
を起動させることを特徴とする復水の溶存酸素低減方法
To reduce dissolved oxygen in condensate in a short time when starting up a thermal power plant, hydrazine-added condensate is flowed into the activated carbon column upstream of an activated carbon-packed column that has been installed in advance in the condensate recirculation line. After the dissolved oxygen and hydrazine in the condensate are adsorbed and reacted with activated carbon in the activated carbon-packed tower to reduce the dissolved oxygen in the condensate, a degassing device is started. Dissolved oxygen reduction method.
JP725683A 1983-01-21 1983-01-21 Reduction of dissolved oxygen in condensed water Pending JPS59132988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP725683A JPS59132988A (en) 1983-01-21 1983-01-21 Reduction of dissolved oxygen in condensed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP725683A JPS59132988A (en) 1983-01-21 1983-01-21 Reduction of dissolved oxygen in condensed water

Publications (1)

Publication Number Publication Date
JPS59132988A true JPS59132988A (en) 1984-07-31

Family

ID=11660944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP725683A Pending JPS59132988A (en) 1983-01-21 1983-01-21 Reduction of dissolved oxygen in condensed water

Country Status (1)

Country Link
JP (1) JPS59132988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214648A2 (en) * 1985-09-11 1987-03-18 The Graver Company Deoxygenation and purification of liquids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214648A2 (en) * 1985-09-11 1987-03-18 The Graver Company Deoxygenation and purification of liquids

Similar Documents

Publication Publication Date Title
JPS59132988A (en) Reduction of dissolved oxygen in condensed water
JP2009121939A (en) Tritium recovery system
JPH11253745A (en) Method and apparatus for recovering ammonia
JP4022026B2 (en) Method and apparatus for reducing dissolved oxygen concentration in nuclear power plant
JPS62255894A (en) Method and device for decontaminating waste gas of fuel cycle of fusion reactor
JP2019098206A (en) Ammonia concentration method and device
JP3700843B2 (en) Methane fermentation method and apparatus
JP3132962B2 (en) Method for producing modified activated carbon
JP4979160B2 (en) Reprocessing method of desulfurization agent
KR102186251B1 (en) method for recycling of desulfurization process water
JPS6226649Y2 (en)
KR100852641B1 (en) Apparatus and method for simultaneous removal of aldehydes and sulfur compounds using bisulfites and oxidation catalyst slurry
CN113231080B (en) Regeneration method of rare earth-based SCR denitration catalyst
JPH09201512A (en) Method for recovering sulfuric acid by exhaust gas desulfurization
JPH11156379A (en) Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound
JPH0124607Y2 (en)
RU2203461C1 (en) Steam generator rinsing method
JP3361338B2 (en) NO2 reducing material and NO2 reducing filter for indoor air purification
JPH07328663A (en) Device for treating ammoniacal nitrogen-containing waste water
JPS6197114A (en) Method for decomposing organic acid in nitric acid solution
JPS56121640A (en) Regeneration for catalyst
JPH09228805A (en) Treatment method for geothermal power generation exhaust gas
JPS6018452B2 (en) How to regenerate adsorbent
JPS58112020A (en) Recovery of gas component
JPS5943233B2 (en) Wastewater treatment equipment containing residual chlorine