JPS59132690A - Cryogenic supporting structure - Google Patents

Cryogenic supporting structure

Info

Publication number
JPS59132690A
JPS59132690A JP58006622A JP662283A JPS59132690A JP S59132690 A JPS59132690 A JP S59132690A JP 58006622 A JP58006622 A JP 58006622A JP 662283 A JP662283 A JP 662283A JP S59132690 A JPS59132690 A JP S59132690A
Authority
JP
Japan
Prior art keywords
cryogenic
pipe
support structure
pin
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58006622A
Other languages
Japanese (ja)
Inventor
Ichiro Takano
一郎 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58006622A priority Critical patent/JPS59132690A/en
Publication of JPS59132690A publication Critical patent/JPS59132690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce the amount of heat permeation and thus enable to lighten and form compactly the structure by adopting a supporting structure of the combination of a sliding structure with a pin structure. CONSTITUTION:A bobbin 2 around which a superconductive coil 1 is wound is fixed to a pipe 6 by the supporting structure 7, and further supported by an inner bath 4 through the supporting structure consisting of the pipe 6 and a supporting part 5. The supporting part 5 is composed of bearings 8, a supporting rod 9, a pin 10, a pin hole 11 provided at the tip of the supporting rod 9, and a pin mounting part 12 fixed to the inner bath 4. The strain due to the electromagnetic force between the coils absorbed by the very small rotation of the pin rod 9 around the pin 10, which electromotive force is therefore not transmitted to the inner bath 4. Besides, welding strain and heat shrinkage strain are absorbed by this supporting structure, and thus the coil bobbin 2 and the inner bath 4 become independent with respect to strains of each other.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は極低温支持構造に関するものである。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to cryogenic support structures.

〔従来技術とその問題点〕[Prior art and its problems]

一般に、極低温領域で使用される超電導コイルの支持構
造は、超電導コイルの応用機器の種類、応用の際の設計
方針等により、次の2種の場合により異なってくる。ひ
とつは、超電導コイル間に働く電磁力を、極低温外(常
温空間)に伝える必要がなく、極低温領域にて電磁力を
支持し、超電導コイルの自重のみを支持する場合、もう
ひとつは、超電導コイルに働く電磁力(超電導コイル間
の電磁力、超電導コイルと外部印加磁界との相互作用に
より生じる電磁力を含む)及び自重を極低温外に伝達し
、支持する場合である。
Generally, the support structure of a superconducting coil used in a cryogenic region differs depending on the type of equipment to which the superconducting coil is applied, the design policy for application, etc. in the following two cases. One is that the electromagnetic force acting between the superconducting coils does not need to be transmitted outside the cryogenic temperature (normal temperature space), and the electromagnetic force is supported in the cryogenic region, and only the weight of the superconducting coil is supported.The other is, This is a case where the electromagnetic force acting on the superconducting coil (including the electromagnetic force between the superconducting coils and the electromagnetic force generated by the interaction between the superconducting coil and an externally applied magnetic field) and its own weight are transmitted to the cryogenic environment and supported.

本発明は前者の場合を対象とするものである。The present invention is directed to the former case.

第1図に従来の実施例を示す。この図において、超電導
コイル1は巻枠2に巻線され、支持構造3を洩して、極
低温容器の内槽4に支持される。支持構造3と巻枠2あ
るいは内槽4とはボルト5止めされている。
FIG. 1 shows a conventional embodiment. In this figure, a superconducting coil 1 is wound on a winding frame 2, leaks through a support structure 3, and is supported in an inner tank 4 of a cryogenic container. The support structure 3 and the winding frame 2 or the inner tank 4 are fixed with bolts 5.

このような従来の実施例には次のような問題点があった
。まず、超電導コイル1間に吸引力又は反発力の如き電
磁力が作用する。この電磁力は巻枠2のみで支持されれ
ば問題はないが、本実施例によれば支持構造3を通して
、内槽4にも電磁力の一部が分担され、内槽4は歪む。
Such conventional embodiments have the following problems. First, an electromagnetic force such as an attractive force or a repulsive force acts between the superconducting coils 1 . There is no problem if this electromagnetic force is supported only by the winding frame 2, but according to this embodiment, a part of the electromagnetic force is also shared by the inner tank 4 through the support structure 3, causing the inner tank 4 to become distorted.

さらに、従来の実施例では、内槽4の製造特に生じる溶
接歪、常温かつ極低温までの冷却時の熱収縮歪等により
生じる応力を吸収することが出来ない。従って、この実
施例においては、巻枠2、支持構造3、内槽4には十分
な機械的強度を持たせる必要がある。
Further, in the conventional embodiments, it is not possible to absorb stress caused by welding distortion caused during manufacture of the inner tank 4, heat shrinkage distortion during cooling from room temperature to extremely low temperature, etc. Therefore, in this embodiment, the winding frame 2, support structure 3, and inner tank 4 must have sufficient mechanical strength.

このために、巻枠2、支持構造2、内槽4の肉厚、  
・直径等の形状が大きくなり、重量増、製造コスト増に
つながる。特に、内槽4は、超電導コイル1を囲んでい
るだめに、肉厚増加による重量増は著しい。又、内槽4
を肉厚とすれば、その加工自体も難しくなり、これも製
造コスト増とつ々がる。
For this purpose, the wall thickness of the winding frame 2, support structure 2, and inner tank 4,
- The diameter and other shapes become larger, leading to increased weight and manufacturing costs. In particular, since the inner tank 4 surrounds the superconducting coil 1, the weight increases significantly due to the increased wall thickness. Also, inner tank 4
If the thickness is increased, the processing itself becomes difficult, which also increases the manufacturing cost.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の実施例で述べた、電磁力による歪、溶
接歪と熱収縮歪を機械的メカニズムにより吸収すること
の出来る支持構造を与えることにより、軽量でコンパク
ト、シかも低廉な超電導極低温機器を提供することにあ
る。
The present invention provides a support structure capable of absorbing the electromagnetic force distortion, welding distortion, and heat shrinkage distortion described in the conventional embodiment by a mechanical mechanism, thereby producing a lightweight, compact, and inexpensive superconducting electrode. Our goal is to provide low temperature equipment.

〔発明の概要〕[Summary of the invention]

電磁力による歪と溶接歪・熱収縮歪力を吸収するために
、摺動構造とピン構造を組み合わせた支持構造を採用す
る。
In order to absorb distortion caused by electromagnetic force, welding distortion, and heat shrinkage distortion, a support structure that combines a sliding structure and a pin structure is adopted.

〔発明の効果〕〔Effect of the invention〕

熱侵入量が少く、かつ軽量・コンパクト・低廉な超電導
極低温機器を提供することができる。
It is possible to provide a superconducting cryogenic device that has a small amount of heat intrusion and is lightweight, compact, and inexpensive.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の実施例を示す。従来の実施例と同様、
超電導コイル1は巻枠2に1憩されている。巻枠2は、
支持構造7によりパイプ(摺動基盤部)6に固着され、
さらにパイプ(摺動基盤部)6と支持部5よりなる本発
明の支持構造を通して内槽4に支持される。本発明の支
持構造の詳細を第3図に示す。この図において支持部5
はベアリング8(摺動部)、支持棒9、ピン10、支持
棒9の先端に設けられたピン穴11及び内槽4に固着さ
れたピン取付部12よりなる。
FIG. 3 shows an embodiment of the present invention. Similar to the conventional embodiment,
A superconducting coil 1 is inserted into a winding frame 2. The winding frame 2 is
It is fixed to the pipe (sliding base part) 6 by the support structure 7,
Furthermore, it is supported by the inner tank 4 through the support structure of the present invention consisting of a pipe (sliding base part) 6 and a support part 5. Details of the support structure of the present invention are shown in FIG. In this figure, the support part 5
consists of a bearing 8 (sliding part), a support rod 9, a pin 10, a pin hole 11 provided at the tip of the support rod 9, and a pin attachment portion 12 fixed to the inner tank 4.

本発明においては、コイル間の電磁力による歪はピン棒
9がピン10を中心に微小回転することにより吸収され
、この電磁力が内槽4に伝達されることはない。又、溶
接歪、熱収縮歪も本発明における支持構造により吸収さ
れ、コイル巻枠2と内槽4は互いの歪に関して独立とな
る。しかも、超電導コイル及び巻枠の自重を支持するこ
とがでさる。
In the present invention, distortion due to electromagnetic force between the coils is absorbed by minute rotation of pin rod 9 around pin 10, and this electromagnetic force is not transmitted to inner tank 4. Further, welding strain and heat shrinkage strain are also absorbed by the support structure of the present invention, and the coil winding frame 2 and inner tank 4 become independent with respect to each other's strain. Furthermore, it is possible to support the weight of the superconducting coil and the winding frame.

〔発明の他の実施例〕[Other embodiments of the invention]

第4図に本発明の第2番目の実施例を示す。この場合、
内槽4内は、本発明による支持構造を用いて超電導コイ
ルが支持されていてもよいし、又超電導コイルを含まな
い極低温応用機器が収納されていてもよい。第4図の実
施例で(叶、内槽4の熱収縮歪が本発明の支持構造によ
り吸収される。
FIG. 4 shows a second embodiment of the invention. in this case,
Inside the inner tank 4, a superconducting coil may be supported using the support structure according to the present invention, or cryogenic application equipment not including a superconducting coil may be housed. In the embodiment shown in FIG. 4, the heat shrinkage strain of the inner tank 4 is absorbed by the support structure of the present invention.

同図で内槽4は支持具13を通してパイプ(摺動基盤部
)6に固定され、さらに、本発明のパイプ(摺動基盤部
)6と支持部よりなる本発明の支持構造を通して、極低
温容器外槽14に支持される。
In the same figure, the inner tank 4 is fixed to a pipe (sliding base part) 6 through a support 13, and furthermore, the inner tank 4 is fixed to a pipe (sliding base part) 6 through a support 13, and is further heated to a cryogenic temperature through the support structure of the present invention, which is composed of the pipe (sliding base part) 6 of the present invention and a support part. It is supported by the container outer tank 14.

本支持構造により内槽4の熱収縮歪が吸収されることは
、本発明の実施例第2図、第3図において説明したのと
同様である。
The fact that the heat shrinkage strain of the inner tank 4 is absorbed by this support structure is the same as that described in FIGS. 2 and 3 of the embodiment of the present invention.

次に本発明の第3番目の実施例を第5図に示す。Next, a third embodiment of the present invention is shown in FIG.

本実施例では、第4図とは異り第3図のピン構造10.
11.12が極低温容器内$4側に装備されている。さ
らに、パイプ(摺動基盤部)6の両端が外槽脚部15の
基盤16寸で伸びており、このパイブ(摺動基盤部)6
により、内槽4及び内槽4内に収納された超電導コイル
あるいはコイル以外の極低温機器の自重が支持される構
造と外っている。
In this embodiment, the pin structure 10 in FIG. 3 is different from that in FIG. 4.
11 and 12 are installed on the $4 side of the cryogenic container. Furthermore, both ends of the pipe (sliding base part) 6 extend at 16 dimensions of the base of the outer tank leg part 15, and this pipe (sliding base part) 6
Therefore, the structure differs from that in which the weight of the inner tank 4 and the superconducting coils or cryogenic equipment other than the coils housed in the inner tank 4 can be supported.

第4図、第5図に示した支持構造によれば、溶接歪、熱
収縮歪を吸収できるだけなく、極低温から常温までの冷
却径路が長くなるために、常温からの伝導による熱侵入
も軽減され、内槽4内に貯えられる冷媒(例えば液体ヘ
リウム)の蒸発量も少くなる。特にこの効果は第5図に
示した支持構造において著しい。又、第5図の実施例に
おいては、パイプ(摺動基盤部)6の一部又は全部を冷
媒の注入管、蒸発ガス回収管、計測用リード線のガイド
管等に兼用することができる。この場合、装置全体がコ
ンパクトとなる。
The support structure shown in Figures 4 and 5 can not only absorb welding strain and thermal shrinkage strain, but also reduce heat intrusion from room temperature due to conduction because the cooling path from extremely low temperatures to room temperature is longer. As a result, the amount of evaporation of the refrigerant (for example, liquid helium) stored in the inner tank 4 also decreases. This effect is particularly remarkable in the support structure shown in FIG. Further, in the embodiment shown in FIG. 5, part or all of the pipe (sliding base portion) 6 can be used as a refrigerant injection pipe, an evaporated gas recovery pipe, a guide pipe for measurement lead wires, etc. In this case, the entire device becomes compact.

さらに、詳細に本発明の実施例を述べると以下の様にな
る。
Further, embodiments of the present invention will be described in detail as follows.

(1)第2図の実施例において、内槽4にパイプ(摺動
部)6が固着される構造であっても良い。、とれは、第
4図の実施例においても同様である。
(1) In the embodiment shown in FIG. 2, the pipe (sliding part) 6 may be fixed to the inner tank 4. , and the deviations are the same in the embodiment shown in FIG.

(2)第3図では、ボルト・ナツトによりピン構造を構
成しているが、−軸の囲りに自由に回転が許されうるい
わゆるピン構造であればいかなる構成を用いてもよい。
(2) In FIG. 3, the pin structure is made up of bolts and nuts, but any so-called pin structure that can be freely rotated around the -axis may be used.

(3)第3図では摺動部8にベアリングを採用している
が、これも一方向に任意に摺動しうる構造であればいか
なる構造であってもよい。
(3) In FIG. 3, a bearing is used for the sliding portion 8, but any structure may be used as long as it can slide freely in one direction.

(4)第2図、第4図ではバイブロを摺動基盤としてい
たが、上述の3項に記した如く、摺動部8と適合しうる
摺動基盤であればいかなる構造であってもよい。又、パ
イプ6は特に円環たるを碧しない。円環の一部であって
もよい。
(4) In Figures 2 and 4, a vibro is used as the sliding base, but as described in item 3 above, any sliding base that is compatible with the sliding part 8 may be used. . Also, the pipe 6 does not have a particularly blue ring. It may be part of a ring.

以上述べた如く、本発明はその要旨を逸脱せずに種々の
変形応用が可能である。
As described above, the present invention can be modified and applied in various ways without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の実施例を示す断面図、第2図は本発明に
よる実施例を示す断面図、第3図は本発明による実施例
の詳細を示す断面図、第4図は本発明の変形例を示す断
面図、第5図は本発明の変形例を示す断面図である。 1・・・超電導コイル、 2・・・コイル巻枠、 3・・・支持構造、 4・・・極低温容器内槽、 5・・・支持部。 6・・・パイプ(摺動基盤部)、 7・・・支持構造、 8・・・ベアリング(摺動部)、 9・・・支持棒、 10・・・ボルト争ナツト(ピン)、 11・・・ボルト穴(ピン穴)、 12・・・ピン取付部、 13・・・支持構造、 14・・・極低温容器外槽、 15・・・極低温容器外槽脚部、 16・・・極低温容器外槽脚部基盤。 代理人弁理士 則j斤憲佑(はが1名)第  1  図 ta>     <b) L/:I 第  2  図 (aン                      
           (bン第3図 特開口a59−132690  (4)第5図
Fig. 1 is a sectional view showing a conventional embodiment, Fig. 2 is a sectional view showing an embodiment according to the present invention, Fig. 3 is a sectional view showing details of an embodiment according to the present invention, and Fig. 4 is a sectional view showing the embodiment according to the present invention. FIG. 5 is a sectional view showing a modification of the present invention. DESCRIPTION OF SYMBOLS 1... Superconducting coil, 2... Coil winding frame, 3... Support structure, 4... Cryogenic container inner tank, 5... Support part. 6... Pipe (sliding base part), 7... Support structure, 8... Bearing (sliding part), 9... Support rod, 10... Bolt nut (pin), 11. ...Bolt hole (pin hole), 12... Pin attachment part, 13... Support structure, 14... Cryogenic container outer tank, 15... Cryogenic container outer tank leg, 16... Cryogenic container outer tank leg base. Representative Patent Attorney Norij Kensuke Kato (1 person) Figure 1 ta><b) L/:I Figure 2 (a)
(b) Figure 3 Special opening a59-132690 (4) Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)超電導コイル間の電磁力によシ生じる歪、溶接歪
、熱収縮歪等を吸収すべく、摺動基盤部と、この基盤部
に沿って摺動することの可能な摺動部及び、この摺動部
が、基盤部の略々垂直断面内にて回転するためのピン構
造を有したることを特徴とする極低温支持構造。
(1) A sliding base part, a sliding part that can slide along this base part, and A cryogenic support structure, characterized in that the sliding part has a pin structure for rotating within a substantially vertical cross section of the base part.
(2)−個又は複数個の超電導コイルを極低温容器内槽
に支持したることを特徴とする特許請求の範囲第1項記
載の極低温支持構造。
(2) A cryogenic support structure according to claim 1, characterized in that one or more superconducting coils are supported in an inner tank of a cryogenic container.
(3)−個又は複数個の極低温容器内槽を共通の極低温
容器外槽に支持したることを特徴とする特許請求の範囲
第1項記載の極低温支持構造。
(3) The cryogenic support structure according to claim 1, wherein one or more cryogenic container inner tanks are supported by a common cryogenic container outer tank.
(4)極低温容器内槽にその摺動部を有し、かつ、この
摺動部が、・6・って摺動すべき摺動基盤の両端もしく
は片端が、極低温容器外槽に特に設けられた脚部の常温
基盤に固着せられることにより、内槽及びその収納物の
自重を支持したることを特徴とする特許請求の範囲第3
項m己載の極低温支持構造。
(4) The sliding part is located in the inner tank of the cryogenic container, and both ends or one end of the sliding base on which the sliding part is to be slid is located in the outer tank of the cryogenic container. Claim 3, characterized in that the inner tank and its contents are supported by their own weight by being fixed to the normal temperature base of the provided legs.
Cryogenic support structure mounted on the item M.
(5)摺動基盤部の一部又は全部がパイプで構成され、
このパイプをして、内借内の冷媒(例えば液体ヘリウム
)や、極低温容器の内借と外槽との間に挿入される輻射
シールド板の冷媒(例えば液体窒素又はヘリウムガス)
の注入管、蒸発ガス回収管及び針側リード線のガイド管
等の各種冷却配管を兼用したるか、もしくは、このパイ
プ内に各種冷却配管を内蔵したることを特徴とする特許
請求の範囲第2項若しくは第3項記載の極低温支持構造
(5) Part or all of the sliding base part is composed of a pipe,
Through this pipe, the refrigerant inside the chamber (e.g. liquid helium) or the refrigerant (e.g. liquid nitrogen or helium gas) in the radiation shield plate inserted between the inner chamber and the outer tank of the cryogenic container
Claim No. 1, characterized in that various cooling pipes such as an injection pipe, an evaporated gas recovery pipe, and a guide pipe for a needle-side lead wire are also used, or various cooling pipes are built into this pipe. The cryogenic support structure according to item 2 or 3.
JP58006622A 1983-01-20 1983-01-20 Cryogenic supporting structure Pending JPS59132690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006622A JPS59132690A (en) 1983-01-20 1983-01-20 Cryogenic supporting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006622A JPS59132690A (en) 1983-01-20 1983-01-20 Cryogenic supporting structure

Publications (1)

Publication Number Publication Date
JPS59132690A true JPS59132690A (en) 1984-07-30

Family

ID=11643454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006622A Pending JPS59132690A (en) 1983-01-20 1983-01-20 Cryogenic supporting structure

Country Status (1)

Country Link
JP (1) JPS59132690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538501B1 (en) * 2022-09-06 2023-06-01 주식회사 이글엑스코리아 Total heat exchanger with air purification and sterilization function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538501B1 (en) * 2022-09-06 2023-06-01 주식회사 이글엑스코리아 Total heat exchanger with air purification and sterilization function

Similar Documents

Publication Publication Date Title
JP3663266B2 (en) Open magnetic resonance imaging magnet
JPH0265204A (en) Superconductive magnet for magnetic resonance not using extremely low temperature agent
JPH0284936A (en) Low heat conductance apparatus for radiation shield body of magnet for magnetic resonance
US5045826A (en) Actively shielded magnetic resonance magnet without cryogens
JPH0286105A (en) Cable suspension device for cylindrical very low temperature vessel
US5034713A (en) Radial support system for a MR magnet
JPH04226005A (en) Mr magnet longitudinal support system
US4707676A (en) Superconducting magnet
US6323749B1 (en) MRI with superconducting coil
JPS6118349A (en) Rotor of superconductive rotary electric machine
JPH0559566B2 (en)
JPH0272605A (en) Quench protective superconductive magnet coil
JPS59132690A (en) Cryogenic supporting structure
JPH04237105A (en) Superconducting electromagnet
EP0460601B1 (en) Superconducting magnet apparatus having circulating path for coolant
JPH10172796A (en) Superconducting wiggler having dually structured beam chamber
JP2744672B2 (en) Superconducting magnet device
JPH0442511A (en) Superconducting magnet
JPS58184775A (en) Heat insulating container for superconductive magnet
JPH07335399A (en) Superconductive accelerating cavity
JPS603555Y2 (en) superconducting coil
JPH01241807A (en) Thermal insulation supporting device for superconductive coil
JPH07130530A (en) Superconducting magnet device
JPH01205576A (en) Cryostat
JPH11340532A (en) Superconducting magnet equipment