JPS59132665A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59132665A
JPS59132665A JP827183A JP827183A JPS59132665A JP S59132665 A JPS59132665 A JP S59132665A JP 827183 A JP827183 A JP 827183A JP 827183 A JP827183 A JP 827183A JP S59132665 A JPS59132665 A JP S59132665A
Authority
JP
Japan
Prior art keywords
region
type
semiconductor
emitter region
type emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP827183A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hisamoto
好明 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP827183A priority Critical patent/JPS59132665A/en
Publication of JPS59132665A publication Critical patent/JPS59132665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To shorten the turn-off time by re-combining the carrier injection from the first semiconductor region and thus reducing the carrier injection to the center of the forth semiconductor region by a method wherein a high concentration region of the second conductivity type is formed between the first and second semiconductor regions and by corresponding the fourth semiconductor region. CONSTITUTION:A window is formed through an Si oxide film 13, and an island form n<+> type high concentration region 20 of the second conductivity type in island form is formed by diffusing an n type impurity. Next, the n<+> type high concentration region 20 is deeply diffused, and one surface of the Si oxide insulation film 13 formed by diffusion is removed, and the first semiconductor p type emitter region 11 is formed by diffusing boron, etc. to the surface after removal. Then, a window is formed through the thermal oxide film 13, and an n type impurity is diffused, thus forming the forth semiconductor n type emitter region 14. In this manner, the n<+> type high concentration region 20 is formed partially between an n type base region and a p type emitter region 11 so as to stride over them. Since the region 20 is provided by corresponding the n type emitter region 14, the current concentration to the center of the n type emitter region 14 becomes less, and the thermal destruction of a GTO can be eliminated.

Description

【発明の詳細な説明】 本発明は半導体装置に関し、荷にグートタンオフサイリ
スク(以下GTOと称する)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and relates to a goods container (hereinafter referred to as GTO).

GTOはゲート・カソード間を逆バイアスし、順方向電
流(アノード電流)を遮断することができ、通常のサイ
リスクに比べると伝流可成が不安であり、且つ小型@瀘
にでき、更にゲート条件を適切に選べばスイッチング時
間を著しく小さくできるので高周波動作が出来るという
利点をゼしている。またもう一つのスイッチング素子で
あるトランジスタと比較すると、GTOはノ一方向1且
止電圧、サージ電流耐量を通常のサイリスク程度に大き
くできる点で優れている。即ちGi′Oは通常のサイリ
スクとトランジスタの長所を兼ね備えたスイッチング素
子である。最近、GTOは省エネルギーを目的とするモ
ータコントロール用として使用されその生産は急激に壇
加することが予想されている。特にGTOは中小容重か
ら大答重と適用範囲が広く、将来のスイッチングデバイ
スの主力製品になりつつある。ここでは時に中小谷ff
120Aから太番= 300AクラスのGTOについて
説明する。
GTO can reverse bias between the gate and cathode and cut off forward current (anode current).Compared to normal SIRISK, GTO is less stable in terms of conduction, can be made smaller, and has a lower gate condition. If selected appropriately, the switching time can be significantly reduced, giving the advantage of high frequency operation. In addition, compared to a transistor, which is another switching element, the GTO is superior in that the one-way stop voltage and surge current withstand capacity can be increased to about the same level as normal silicate. That is, Gi'O is a switching element that has both the usual silicon risk and the advantages of a transistor. Recently, GTO has been used for motor control for the purpose of energy saving, and its production is expected to rapidly increase. In particular, GTO has a wide range of applications, ranging from small and medium capacity to large capacity, and is becoming the main product of future switching devices. Here sometimes Nakakotani ff
GTOs of the 120A to 300A class will be explained.

GTOのオンオフ機構はゲートに逆バイアスを印那する
ことによって、ゲート電極の方にアノード電流を引き抜
くことができ、オン電流はカソード電極近傍かり次第に
除去される。その除去される一定41m1中カソードの
中央部に一退したアノード電流が導通を続ける、かかる
導通領域の面積が極端に小さく、且つターンオフ時間が
長い’5J合、その領域への電流集中により素子の熱破
壊が生じる欠点を有している。またGTOけn 形ベー
スIA域とP形ベース領域に蓄積されたキャリアを10
μ8程度の速い時間でゲート電極から排出しなければな
らないためにキャリアの再結合を利用する方法として、
高濃度のライフタイムキラーである金拡散を実施するこ
とが行なわれる。しかしライフタイムキラーの拡散はG
TOのゲートターンオフは促進するが、同時に保持電流
を太きくシ、且つ順方向電圧降下(VTM)を大きくす
る欠点を有している。ターンオフタイムとVTMにはト
レードオフの関係があるので順方向電圧降下を犬さくし
ない程度の範囲で制御する必要があ/、:) 0従来の
GTOとしてPnPn構造のものについて説明する第1
図(a)〜(g)は従来型のGTOの拡散プロセスを示
す工程別所面図である。第1図(a)に示す高比抵抗n
形シリコン基板(10)に第1図(b)に示すように両
面よりP形不純物を拡散することによって高濃度のP形
エミッタ領域(11)及びP形ベース碩域(12)を形
成する。次に第1図(C)に示すように前記シリコン基
板を熱酸化し、前記熱酸化により生成した酸化シリコン
ノm (13)を周知の写真製版技術でもって窓(14
)を形成し、次にn形不純物たきえばリン等を拡散して
n形エミッタ領域(14)を形成する。前記n形エミッ
タ領域(14)を形成すると同時に酸化シリコン(13
)を2〜3μm形我する。第1図((1)は前記拡散上
1呈が完了したfnPn構造を示す。つき′に第1図L
8)に示すように前記酸化シリコン(13)を公知の写
真製版技術もってチップ周辺部に窓をあけシリコン而を
露出させ、次に硝酸系のシリコンエツチング液でP杉ベ
ース領域(12)及びn形ペース領域(10)の内領域
により形成されるPn接合より深くエツチングしメサ溝
(15)を形成する。さらにP形エミッタ領域(12)
 側よりライフタイムキラーとして、金拡散を施す。次
に第1図(f)に示すように、メサ溝(15)の内壁ニ
パッシベーションガラスを塗布し、このパッシベーショ
ンガラスを焼成炉に入れてガラスパッシベーション膜(
16)を形成する。次に公知の写真製版技術でn形エミ
ッタ領域(14) 、及びP形ペース領域(12)の表
面の酸化シリコン膜(13)を選択的に除去すると共に
P形エミッタ領域(11)の表面の酸化シリコン膜(1
3)も除去する。次に第1図(g)に示すようにシリコ
ンが露出したn形エミッタ領域(14)及びP形ペース
領域(12)上に公知の蒸着法で全面に金属電極たとえ
ばAlを蒸着し、公知の写真製版技術テパターンニング
してカソード電4i(18)、ケート電極(17)を形
成する。次に裏面についても同様の蒸着法でアノード電
! (19)を形成する。次に400〜500℃の加熱
炉に入れシンク−を行ない)’nf’n四層構造からな
る第1図(g)のG ’1’ Oを完成する。
The on-off mechanism of the GTO can draw an anode current toward the gate electrode by applying a reverse bias to the gate, and the on-current is gradually removed near the cathode electrode. The anode current that has receded to the center of the cathode in the constant 41 m1 removed continues to conduct.If the area of this conductive region is extremely small and the turn-off time is long, the current concentration in that region will cause the device to It has the disadvantage of thermal destruction. In addition, the carriers accumulated in the GTO n-type base IA region and the P-type base region are
Since carriers must be discharged from the gate electrode in a fast time of about μ8, carrier recombination is used as a method.
A high concentration lifetime killer gold diffusion is carried out. However, the spread of lifetime killer is G.
Although this accelerates gate turn-off of TO, it also has the disadvantage of increasing the holding current and increasing the forward voltage drop (VTM). There is a trade-off relationship between turn-off time and VTM, so it is necessary to control the forward voltage drop within a range that does not cause it to become too narrow.:) 0First part to explain the PnPn structure as a conventional GTO
Figures (a) to (g) are step-by-step views showing the conventional GTO diffusion process. High specific resistance n shown in Figure 1(a)
As shown in FIG. 1(b), a highly concentrated P-type emitter region (11) and a P-type base region (12) are formed in a silicon substrate (10) by diffusing P-type impurities from both sides. Next, as shown in FIG. 1(C), the silicon substrate is thermally oxidized, and the silicon oxide layer (13) produced by the thermal oxidation is applied to the window (14) using a well-known photolithography technique.
), and then an n-type impurity such as phosphorus is diffused to form an n-type emitter region (14). At the same time as forming the n-type emitter region (14), silicon oxide (13) is formed.
) in the shape of 2 to 3 μm. Figure 1 ((1) shows the fnPn structure in which the above diffusion process has been completed.
As shown in 8), the silicon oxide (13) is etched using a known photolithography technique to open a window around the chip to expose the silicon layer, and then etched with a nitric acid-based silicon etching solution for the Pcedar base region (12) and n. A mesa groove (15) is formed by etching deeper than the Pn junction formed by the inner region of the shaped space region (10). Furthermore, the P-type emitter region (12)
Apply gold diffusion from the side as a lifetime killer. Next, as shown in FIG. 1(f), a passivation glass is applied to the inner wall of the mesa groove (15), and this passivation glass is placed in a firing furnace to form a glass passivation film (
16). Next, the silicon oxide film (13) on the surfaces of the n-type emitter region (14) and the P-type space region (12) is selectively removed using a known photolithography technique, and the silicon oxide film (13) on the surface of the P-type emitter region (11) is removed. Silicon oxide film (1
3) is also removed. Next, as shown in FIG. 1(g), a metal electrode such as Al is deposited on the entire surface of the n-type emitter region (14) and the P-type space region (12) where silicon is exposed by a known vapor deposition method. A cathode electrode 4i (18) and a cathode electrode (17) are formed by photolithography and patterning. Next, apply the same vapor deposition method to the back side to create an anode! (19) is formed. Next, it is placed in a heating furnace at 400 to 500 DEG C. and subjected to sinking to complete G'1'O of FIG. 1(g), which has a 'nf'n four-layer structure.

このような従来のGTOに於ては、オン電流はP形エミ
ッタ領域(11)からカソード電極(18)へと流れる
。このオン状態からオフ状態に移行する1余、n型エミ
ッタ領域(14)のP型ベース領域(12)の近傍から
オン直流が除去されるが、n型エミッタ領域(14)の
中央部では導通を続け、その結果、導通領域の面積がf
li端に小さく、且つターンオフ時間が長い為電流集中
によって素子の熱1波壊が生じると言った欠点をMして
いる。
In such a conventional GTO, on-current flows from the P-type emitter region (11) to the cathode electrode (18). During this transition from the on state to the off state, on-direct current is removed from the vicinity of the P-type base region (12) of the n-type emitter region (14), but conduction occurs in the central part of the n-type emitter region (14). As a result, the area of the conducting region becomes f
The drawback is that the li end is small and the turn-off time is long, so one wave of heat damage to the element occurs due to current concentration.

不発明は上記従来のGTOの欠点を取除くためになされ
たものであり、前記[1の半辱体領域と第2の半導体碩
との間Q4の半等体碩域に対応して第24電型の高濃度
の領域を形成し、第1の半導体領域からのキャリアの住
人を再結合しfJ4の半導体領域中央部へのキャリアの
注入を少なくして、ターンオフ時間を短縮することを目
的とする。
The invention was made in order to eliminate the drawbacks of the conventional GTO, and there is a The purpose is to shorten the turn-off time by forming a region with high concentration of the electric type and recombining the carrier residents from the first semiconductor region to reduce the injection of carriers into the central part of the semiconductor region of fJ4. do.

第2図(a)〜(j)は不発明の一芙流側のGTOの製
造方法を示す工程別所面図である。′第2図(a)に示
す高地抵抗n形シリコン基板(10)に第2図(b)に
示すように両面よりP形不純物を拡散することによって
高濃度のP形ベース領域(12)、P形・領域(12’
)を形成する。次に第2図(C)に示すように前記P形
碩域(12’)をラッピングして途去する。次に第2図
(C)に示すようにFIIJ記シリコン基板を熱酸化し
て、酸化シリコン絶縁膜(13)を形成する。久に第2
図(d)に示すように酸化シリコン絶縁ノ漠(13)を
周知の写真製版技術により窓を形成し、n形不純物、た
とえばリン等を拡散して島状のn−)7杉高濃度領域(
20)を形成する。次に第2図(ill)に示すように
前記n十形高濃度領域(20)を深く拡散し、且つ前記
拡散で形成された酸化シリコン絶縁膜(13)の片面を
除去し、前記酸化シリコン絶縁膜(13)が除去された
表向にボロン弄を拡散してP形エミッタ領域(11)を
形成する。次に前記P形エミッタ領域を深く拡散する。
FIGS. 2(a) to 2(j) are process-by-step diagrams showing a method of manufacturing GTO according to one aspect of the invention. 'By diffusing P-type impurities from both sides of the high resistance n-type silicon substrate (10) shown in FIG. 2(a) as shown in FIG. 2(b), a highly concentrated P-type base region (12), P type/area (12'
) to form. Next, as shown in FIG. 2(C), the P-shaped area (12') is wrapped and removed. Next, as shown in FIG. 2C, the FIIJ silicon substrate is thermally oxidized to form a silicon oxide insulating film (13). Second time in a while
As shown in Figure (d), a window is formed in the silicon oxide insulating layer (13) using a well-known photolithography technique, and an n-type impurity such as phosphorus is diffused into an island-like n-)7 cedar high concentration region. (
20). Next, as shown in FIG. 2 (ill), the nx type high concentration region (20) is deeply diffused, and one side of the silicon oxide insulating film (13) formed by the diffusion is removed, and the silicon oxide A P-type emitter region (11) is formed by diffusing boron on the surface from which the insulating film (13) has been removed. The P-type emitter region is then deeply diffused.

欠に、第2図(f)に示すように熱酸化ノ漠(13)を
周知の写真製版技術でもって窓を形成し、次にn形不純
物たとえばリン等を拡散してn形エミッタ領域(14)
を形成する。、、Ij記n形エミッタ領域(14)を形
成すると同時に酸化シリコンrg (13)が2〜3μ
m形成される。第2図(g) Pi曲前払散工程が光丁
したPnPn四層構造を示す。なお、島状のn−1−4
杉高濃度領域(20)を回帰する8士領域(21)はG
TOの耐圧を床つために設けられる。!g2図(h)か
ら(j)の工程は前記従来のGTOの製造工程と同様の
ため説1ツJを省1@する。
First, as shown in FIG. 2(f), a window is formed using a thermal oxidation layer (13) using a well-known photolithography technique, and then an n-type impurity such as phosphorus is diffused to form an n-type emitter region (13). 14)
form. ,, At the same time as forming the n-type emitter region (14) in Ij, the silicon oxide rg (13) is
m is formed. FIG. 2(g) shows a PnPn four-layer structure in which the Pi pre-dispersion process is completed. In addition, island-like n-1-4
The 8-year-old area (21) that regresses the cedar high concentration area (20) is G
It is provided to increase the pressure resistance of TO. ! g2 The processes shown in Figures (h) to (j) are similar to the manufacturing process of the conventional GTO, so explanation 1J will be omitted.

本発明の一実施例は第2図(j)で明らかのようにn形
ペース領域とP形エミッタ領域間にこれらをまたぐよう
に部分的にn十形高一度領域全形成し、且つn十型高譲
度−領域がn型エミッタ領域(14)に対応してニニ=
れるため、従来のもののようなn型′エミツク領域中央
部への電流果中が少なくなりGTOが熱破壊しなくなっ
た。
As is clear from FIG. 2(j), one embodiment of the present invention is to partially form an n-type high-height region between an n-type pace region and a p-type emitter region so as to straddle them, and Type high yield-region corresponds to n-type emitter region (14) =
As a result, the current flow to the central part of the n-type emitter region, unlike in the conventional case, is reduced, and the GTO is no longer subject to thermal breakdown.

なお、n形エミッタ領域(14)は複数のストライプ状
に形成されその幅は150〜3()0μIn1長さは1
 mm〜2vamX深さは20μmである。またP形ベ
ース領域(12)の深さ40μfnXn形ペース追域(
10)の深さは200μmである。島状のn十形高濃度
領域(20)の厚さは3 Q fim 、 11iは1
00〜300/in1長さば1. mg 〜2 mrx
である。P形エミッタ領域(11)の深さに12Llμ
I11である。
The n-type emitter region (14) is formed in a plurality of stripes, the width of which is 150~3()0μIn1, and the length is 1
mm~2vam×depth is 20 μm. In addition, the depth of the P-type base region (12) is 40μfnXn-type pace tracking area (
The depth of 10) is 200 μm. The thickness of the island-shaped n-domain high concentration region (20) is 3 Q fim , and 11i is 1
00-300/in1 length bar 1. mg ~ 2 mrx
It is. 12Llμ to the depth of the P-type emitter region (11)
It is I11.

n形エミッタ領域(14)は上記ストライプ状のものだ
けに限定されるものではなく、例えば枝状であってもよ
い。
The n-type emitter region (14) is not limited to the above-mentioned stripe shape, but may be branch-like, for example.

以上説明のように、本発す1il−を第1の半導体領域
と第2の半導体領域との間の第4の半導体領域に対応す
る位置に第24電形の晶譲度島状領域を設けたので、タ
ーンオフ時に電流東中による熱破壊が生じない優れた半
導体装置を得ることができるという幼果を有する。
As explained above, the presently produced 1il- is provided with a crystal yield island-like region of the 24th electric type at a position corresponding to the fourth semiconductor region between the first semiconductor region and the second semiconductor region. Therefore, it is possible to obtain an excellent semiconductor device that does not suffer from thermal damage due to current flow during turn-off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は従来のC)Toの製造方法を示
す工程別所面図、第2図(a)〜(j)は本発明の一実
施例の製造方法を示す工程別所面図である。 (10)はn形ベース領域、(11)はP形エミッタ領
域、(12)はP形ベース碩域、(14)はn形エミッ
タ領域、(20)は島状のn十形高濃度領域を示す。 図中同−付″8は同一または相当部分を示す。 代理人葛野 偵− 第1図
FIGS. 1(a) to (g) are step-by-step views showing a conventional manufacturing method for C)To, and FIGS. 2(a) to (j) are process-by-step views showing a manufacturing method according to an embodiment of the present invention. It is a front view. (10) is an n-type base region, (11) is a p-type emitter region, (12) is a p-type base rectangular region, (14) is an n-type emitter region, and (20) is an island-like n-type high concentration region. shows. Reference numeral ``8'' in the figure indicates the same or equivalent part. Agent Kazuno Rei - Figure 1

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型のfJlの半導体領域と、前記%1の半導
体領域とPn接合をなし第2の尋電戯の第2の半導体領
域と、該第2の半導体領域とPn接合をなし第1の導電
型の第3の半導体領域と、前記第3の半導体領域とPn
接合をなし第2の導電型の第4の半導体領域とを1えた
ものにおいて、前記第1の半導体領域と前記第2の半導
体領域との間の前記第4の半導体領域に対応する位置に
第24成形の高濃度島状領域を設けたこと金荷徴とする
半導体装置。
A semiconductor region of fJl of a first conductivity type, a second semiconductor region forming a Pn junction with the %1 semiconductor region, and a second semiconductor region forming a Pn junction with the second semiconductor region; a third semiconductor region having a conductivity type of Pn
a fourth semiconductor region of a second conductivity type that forms a junction, and a fourth semiconductor region that is located between the first semiconductor region and the second semiconductor region and corresponds to the fourth semiconductor region; A semiconductor device characterized by the provision of a high concentration island-like region of 24 molding.
JP827183A 1983-01-19 1983-01-19 Semiconductor device Pending JPS59132665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP827183A JPS59132665A (en) 1983-01-19 1983-01-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP827183A JPS59132665A (en) 1983-01-19 1983-01-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59132665A true JPS59132665A (en) 1984-07-30

Family

ID=11688499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP827183A Pending JPS59132665A (en) 1983-01-19 1983-01-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59132665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241662A2 (en) * 1986-04-12 1987-10-21 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Turn-off thyristor
JPH02214161A (en) * 1989-02-15 1990-08-27 Hitachi Ltd Gate turn-off thyristor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081290A (en) * 1973-11-16 1975-07-01
JPS5610970A (en) * 1979-07-09 1981-02-03 Mitsubishi Electric Corp Thyristor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081290A (en) * 1973-11-16 1975-07-01
JPS5610970A (en) * 1979-07-09 1981-02-03 Mitsubishi Electric Corp Thyristor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241662A2 (en) * 1986-04-12 1987-10-21 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Turn-off thyristor
JPH02214161A (en) * 1989-02-15 1990-08-27 Hitachi Ltd Gate turn-off thyristor

Similar Documents

Publication Publication Date Title
US4450467A (en) Gate turn-off thyristor with selective anode penetrating shorts
US7157785B2 (en) Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices
US6815769B2 (en) Power semiconductor component, IGBT and field-effect transistor
JPH07105496B2 (en) Insulated gate bipolar transistor
JPH05347413A (en) Manufacture of semiconductor device
JP6869376B2 (en) Semiconductor device
JP6089818B2 (en) Semiconductor device and manufacturing method thereof
JPS6046551B2 (en) Semiconductor switching device and its manufacturing method
JPH0693510B2 (en) Insulated gate field effect transistor device
JPS60231363A (en) Manufacture of gate turn-off thyristor
JPS5942989B2 (en) High voltage semiconductor device and its manufacturing method
JPS59132665A (en) Semiconductor device
JPS5912026B2 (en) thyristor
JP2001332728A (en) Igbt
JP2513640B2 (en) Conduction modulation type MOSFET
US3450960A (en) Insulated-gate field effect transistor with nonplanar gate electrode structure for optimizing transconductance
JP2008053610A (en) Insulated-gate bipolar transistor
JPH10270686A (en) Insulated gate bipolar transistor
JPS5936832B2 (en) semiconductor switching element
JPS622781Y2 (en)
JPS621259B2 (en)
JP3157245B2 (en) Semiconductor device and method of manufacturing the same
US3504243A (en) Low saturation voltage transistor with symmetrical structure
JPS61182259A (en) Gate turn-off thyristor
JPS62290179A (en) Gate turn-off thyristor