JPS59132575A - Electrochemical battery - Google Patents

Electrochemical battery

Info

Publication number
JPS59132575A
JPS59132575A JP58195913A JP19591383A JPS59132575A JP S59132575 A JPS59132575 A JP S59132575A JP 58195913 A JP58195913 A JP 58195913A JP 19591383 A JP19591383 A JP 19591383A JP S59132575 A JPS59132575 A JP S59132575A
Authority
JP
Japan
Prior art keywords
components
battery
contact
liquid
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58195913A
Other languages
Japanese (ja)
Inventor
ロジヤ−・ジヨン・ボ−ンズ
デイヴイツド・アシユリイ・テイ−グル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South African Inventions Development Corp
Original Assignee
South African Inventions Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South African Inventions Development Corp filed Critical South African Inventions Development Corp
Publication of JPS59132575A publication Critical patent/JPS59132575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/20Cells with non-aqueous electrolyte with solid electrolyte working at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電気化学的電池、特に2種類以上の反応成分を
有していてその中の少なくとも1油類が電池自体の作動
温度において液体状であるような電気化学的電池に係る
。これらの成分は相互に分離されているが、共に反応し
合って潜在的に好ましくない結果を生じ得る。本発明は
更にこのような反応に起因する潜在的危険性を減少させ
る方法にも係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrochemical cells, particularly electrochemical cells having two or more reactive components, at least one of which is in a liquid state at the operating temperature of the cell itself. Related to batteries. Although these components are separated from each other, they can react together with potentially undesirable results. The invention further relates to a method of reducing the potential risks resulting from such reactions.

本発明の一態様によれば、”電気化学的電池は互に分離
された2種類以上の反応成分を有しておシ、これら成分
は潜在的に望ましくない結果を伴いな得る。前記成分中
小なくとも1種類はマクロ多孔質材料に含浸されている
が又はこのような材料を含んでいるが、これは反応成分
間の接触が起こシ得る1゛つ以上の領域内で前記の反応
生成物を強化及び/又は捕捉し、それによって該反応生
成物の前記成分を相互に分離するという能力を向上させ
るためである。
According to one aspect of the invention, an electrochemical cell has two or more reactive components that are separated from each other, with potentially undesirable consequences. The at least one macroporous material is impregnated with or includes a macroporous material that contains said reaction products in one or more areas where contact between the reaction components can occur. in order to enhance and/or trap the components and thereby improve the ability to separate the components of the reaction product from each other.

本発明によって防止されるべき前述の潜在的危険性は電
池の欠陥、特に何らかの事故によって生じる破損、に起
因して発生する。このような事故の一例としては、電池
が自動車の推進システムの一部を形成している場合の自
動車事故が挙げられる。
The aforementioned potential dangers to be prevented by the present invention arise due to battery defects, especially damage caused by any accident. An example of such an accident is a motor vehicle accident where the battery forms part of the vehicle's propulsion system.

電気化学的電池の反応成分は互に接触すると反応生成物
を形成するが、これら成分は該反応生成物に対し先天的
に不活性である。このような反応生成物は電池の成分を
相互に分離させる役割を果たす。電池にマクロ多孔質材
料を備えるのは、前述の如く、反応成分を互に分離する
該反応生成物の能力を増大させて、電池の欠陥又は事故
による損傷の結果生じる反応成分間の反応に起因した潜
在的に好ま1.<ない結果を減少させるべく、該反応生
成物を強化及び/又は捕捉するためである。
The reactive components of an electrochemical cell form reaction products when they come into contact with each other, and these components are inherently inert to the reaction products. These reaction products serve to separate the components of the battery from each other. Providing the battery with a macroporous material, as described above, increases the ability of the reaction products to separate the reactants from each other, resulting in reactions between the reactants that occur as a result of cell defects or accidental damage. Potentially preferred 1. In order to enhance and/or trap the reaction products in order to reduce the negative consequences.

この多孔質材料は、例えばマクロ多孔性の粒子ボディ、
粒子層又は粒子床などを形成すべく、粒子の即ち繊維状
又は顆粒状の材料であってよい。
This porous material can include, for example, macroporous particle bodies,
It may be a particulate, ie, fibrous or granular material to form a particulate layer or bed or the like.

この場合のマクロ多孔質材料は、毛管作用又はこれと類
似の作用による含浸という意味で電池の液体成分か含浸
されるような材料を意味する。これに対し、ゼオライト
等によシ得られる原子ふるい(atomiぐ 5iey
ea)の如きミクロ多孔質材料は、原子レベル又は分子
レベルでの多孔性を有する材料であって、通常の毛管反
応以外のメカニズムによp含浸される。
Macroporous material in this case means a material that is impregnated with the liquid components of the cell in the sense of impregnation by capillary action or similar action. In contrast, atomic sieves obtained from zeolites etc.
Microporous materials such as ea) are materials with porosity at the atomic or molecular level and are p-impregnated by mechanisms other than the usual capillary reaction.

粒子は互に自由な状態即ち非結合状態にあってよく、相
対的に移動し得る。この場合多孔質材料は電池の作動温
度において反応成分中に層を形成するより該材料と接触
する反応成分の密度とは異なる密度を有していてよく、
該反応成分に占められるス゛ペースの一部を占める。
The particles may be free or unbound to each other and may move relative to each other. In this case, the porous material may have a density different from that of the reactants in contact with the material than to form a layer in the reactants at the operating temperature of the cell;
It occupies part of the space occupied by the reaction components.

従って、例えば成分間の接触が一成分中の高所即ち上方
レベルで生じると予想される場合は、多孔質成分の粒子
の警度を前記成分の密度よシ小さくするとよい。その#
i果これら粒子は前記の上方レベルで前記成分中に浮遊
するベッドを形成する。
Thus, for example, if contact between components is expected to occur at a high or upper level within a component, the particle size of the porous component may be less than the density of said component. the#
These particles form a bed suspended in the component at the upper level.

一方、接触が低部即ち下方レベルで生じると予想され名
湯合は多孔質材料の粒子が当該成分よシ大きい密度を有
し得る。このようにすると粒子はその成分の底部に沈殿
して(ラド又は層を形成する。
On the other hand, if contact is expected to occur at a lower or lower level, the particles of the porous material may have a greater density than the component. In this way, the particles settle to the bottom of the component (forming a rad or layer).

丑ブζ、これら粒子は夫々分離しているが、圧縮iI甲
R剖−によシ互を接触させて固めた密集体にし、これに
前記成分を含浸させてもよい。この場合多孔質材料はこ
れに含浸される反応成分によって占められるスペースを
ほぼ全面的に占拠し1θる。
Although these particles are separated from each other, they may be brought into contact with each other by compression to form a compacted mass, and this may be impregnated with the above-mentioned components. In this case, the porous material almost entirely occupies the space occupied by the reactive component with which it is impregnated.

これに代えて、列えば織物状又はフェルト状の繊維材料
から成る加工品の如き人工物の形の多孔質材料を使用し
てもよい。或いは、この多孔性人工物はスポンジ状構造
を有するもの、例えば焼結粒子ベッド(aintere
d bed of particles)で構成された
もの、であってもよい。!!IIち、この場合の人工物
は焼結したもので心ってよい。
Alternatively, porous materials in the form of man-made objects, such as fabricated articles of fibrous material in the form of woven or felted materials, may also be used. Alternatively, the porous artifact may have a sponge-like structure, such as a sintered particle bed.
d bed of particles). ! ! II. In this case, the artifact may be sintered.

前述の如く、多孔質材料に含浸されるか又は該材料を包
囲してこれにしみ込む電池成分は、少なくとも電池の作
動温度では液体である。従って多孔質材料の多孔度は、
電池の作動温度で該材料と接触する成分が該材料を通し
て自由に拡散し得るよう選択するのが好ましい。
As mentioned above, the battery components that are impregnated into or surrounding and permeating the porous material are liquids, at least at the operating temperature of the battery. Therefore, the porosity of a porous material is
Preferably, the selection is such that the components in contact with the material at the operating temperature of the cell are able to freely diffuse through the material.

通常、当該成分は多孔質材料を包囲し及び/又はこれに
しみ込むようそのゼデイ又はマス全体が該多孔質材料に
含浸されることが多いが、本発明では多くの場合、予想
された特定タイプの損傷が電池忙与えられた時に反応成
分間の接触が生じると予想される電池内の1つ以上の領
域にのみ多孔質材料を具Uaする。
Typically, the component is often impregnated into the porous material in its entirety such that it surrounds and/or infiltrates the porous material, but in the present invention it is often the case that the specific type of The porous material is only applied in one or more areas within the cell where contact between the reacting components is expected to occur if damage is caused to the cell.

電池の反応成分が穏やかに即ち混乱せずに接触し合う場
合はこれら成分間に反応生成物の層が生じて成分を効果
的に分離させると共に成分間のそれ以上の反応を阻止又
は減少させ得る。しかし乍ら、多少とも破頃的な即ち大
きな事故が起こると電池は実質的に破損さ扛、成分はほ
ぼ徹底的に混合される。特に成分がいずれも液体である
とこの現象が著しくなるため、激しく、制御不可能で且
つ破版を伴い得る反応が生じる。
When the reacting components of a cell come into contact with each other in a gentle or non-disturbing manner, a layer of reaction products can form between the components, effectively separating the components and preventing or reducing further reactions between the components. . However, if a more or less catastrophic or major accident occurs, the cell will be substantially destroyed and the components will be almost thoroughly mixed. This phenomenon is particularly pronounced when all of the components are liquids, resulting in violent, uncontrollable reactions that may involve plate failure.

このような場合には成分間に反応生成物層が形成されて
いても、電池に対する事故又は損傷が十分に大きければ
該層が恐らくは繰返し破壊され得るため、成分が再び接
触し合って好ましくない結果を悪化させる可能性がある
In such cases, even though a reaction product layer is formed between the components, if the accident or damage to the cell is large enough, this layer could possibly be repeatedly destroyed, causing the components to come into contact again with undesirable consequences. may worsen.

しかし乍ら本発明では、成分間の接触が起とp且つ反応
生成物が形成される領域日に存在するファイ・々の如き
粒子が前記反応生成物層を強化して、機械的破損が生じ
た場合にその影響を受は難くするよう作用し得る。又は
、多孔質材料が反応生成物を捕捉して不動化させ得る(
顆粒状粒子又はスポンジ状多孔性人工物の場合の如く)
ため、成分を相互に分離する反応生成物の能力が向上す
る。
However, in the present invention, particles such as phi, which are present in the region where contact between the components occurs and reaction products are formed, strengthen the reaction product layer and cause mechanical failure. It can act to make it less susceptible to such effects. Alternatively, porous materials can trap and immobilize reaction products (
(as in the case of granular particles or spongy porous artifacts)
This increases the ability of the reaction products to separate components from each other.

使用する多孔質材料に依ってはこのような強化と捕捉と
を双方共実現することができる。
Depending on the porous material used, both such reinforcement and entrapment can be achieved.

電池の反応成分中2種類は電池作動温度においてe一体
状であってよく、セパレータによシ互に分離されておシ
、双方共このセ・ξレータに接触する。
The two reactive components of the battery may be integral at the battery operating temperature, separated from each other by a separator, and both in contact with the separator.

該セ/6レータの少なくとも片側には、それと同一側の
成分とセパレータとの間の界面に多孔質材料層が具備さ
れる。
At least one side of the separator is provided with a layer of porous material at the interface between the component on that side and the separator.

該層・でレータは固体電解質であってよく、その両側の
成分は夫々アノード材料及び液体電解質材料から成2る
。前記の多孔質材料層は液体電解質と固体電解質との間
の界面に具備してよく、アノード材料はアルカリ金属及
び/又はアルカリ土類金属で構成し得る。また液体電解
質は1種類以上のアルカリ金属及び/又はアルカリ土類
金属ハロゲン化物塩を含む溶融塩電解質であり、多孔質
材料層は非伝導性繊維材料から成る。
The layer may be a solid electrolyte, the components on either side of which consist of an anode material and a liquid electrolyte material, respectively. Said porous material layer may be provided at the interface between the liquid electrolyte and the solid electrolyte, and the anode material may consist of an alkali metal and/or an alkaline earth metal. The liquid electrolyte is also a molten salt electrolyte containing one or more alkali metal and/or alkaline earth metal halide salts, and the porous material layer is comprised of a non-conductive fibrous material.

本発明を適用し得るこの種の電池としては、アノードと
、カソードと、これらアノード及びカソード間の固体電
′M質と、カソード領域内の液体電解質とを含む電池が
挙げられる。この液体電解質はイオン伝導体として機能
し、その他には′電池の反応に関与しないが、活性アノ
ード材料とは激しく反応し得る。
Batteries of this type to which the present invention may be applied include batteries that include an anode, a cathode, a solid electrolyte between the anode and the cathode, and a liquid electrolyte in the cathode region. This liquid electrolyte functions as an ionic conductor and does not otherwise participate in the reactions of the cell, although it can react violently with the active anode material.

このような場合、活性アノード材料は例えば液体ナトリ
ウムであり得、固体′電解質はベータアルミナ(ベータ
ーA1.03)である。電解質は溶融塩化アルミニウム
ナトリウム(NaAlCl4)であって、固体、多孔質
且つ活性のマトリクス状であシ得るカソード材料を包囲
する。
In such a case, the active anode material may be, for example, liquid sodium and the solid electrolyte is beta alumina (Beta A 1.03). The electrolyte is molten sodium aluminum chloride (NaAlCl4) surrounding the cathode material, which can be solid, porous, and active in the form of a matrix.

ベータアルミナ電解質は塩化アルミニウムナトリウムと
ナトリウム即ちアノード材料とを分離するでパレータと
して効果的に作用する。この液体電解質とアノードとは
互に対する反応性か極めて高い物質から成っているため
、電池が損傷した場合に接触し合うようなことがあると
、相互間の混合の程度に応じて危険な反応を生じ得る。
The beta alumina electrolyte effectively acts as a parator, separating the sodium aluminum chloride and the sodium, anode material. The liquid electrolyte and the anode are made of highly reactive substances, so if they come into contact with each other in the event of damage to the battery, they can cause dangerous reactions depending on the degree of mixing between them. can occur.

本発明では、例えば繊維状の構造をもつ前述の如き多孔
物質層を、例えば固体電解質の破壊の如き電池損傷時に
液体電解質がアノード材料と反応し得る、又は反応する
と予測される領域内に具備してよい。このような反応に
より形成された不活性反応生成物は前記の繊維構造体に
よって強化され、液体電解質又は活性アノード材料のい
ずれが一方の浸透を阻止する繊維強化バリヤ(fibr
e −reinforeed barrier)を構成
する。同、液体電解質及びアノード物質は、いずオしか
一方か又は双方が電池作動温度で液体状になる。
In the present invention, a porous material layer as described above, for example having a fibrous structure, is provided in a region where the liquid electrolyte can or is expected to react with the anode material in the event of cell damage, such as destruction of the solid electrolyte. It's fine. The inert reaction products formed by such reactions are reinforced by the fibrous structure described above, and are provided with a fiber-reinforced barrier that prevents the penetration of either the liquid electrolyte or the active anode material.
e-reinfored barrier). Similarly, the liquid electrolyte and the anode material, one or both of which are in a liquid state at cell operating temperatures.

前記繊維構造体は前述の如く固体電解質と液体電解質と
の間の界面に配置し得るが、液体電解質の入ったカソー
ド領域内のスペース全体に亘って配置することも容易に
できる。このような繊維構造体はまた、アノード領域に
例えば領域全体に亘って、又は固体電解質及びアノード
物質間の界面に、具備してもよい。
The fibrous structure can be placed at the interface between the solid electrolyte and the liquid electrolyte as described above, but it can also easily be placed throughout the space within the cathode region containing the liquid electrolyte. Such fibrous structures may also be provided in the anode region, for example over the entire region or at the interface between the solid electrolyte and the anode material.

この種の電池では繊維構造体がKJ述の如く好ましくは
非伝導性であって、セラミック材料、アルミナ、グラス
ファイバ、等から成っているとよい。
In this type of cell, the fibrous structure is preferably non-conductive, as described by KJ, and may be comprised of a ceramic material, alumina, glass fiber, or the like.

例えば焼結された加工物の如く液体電解質に対して多孔
性でめる人工物を含むようなタイプのカソードを有する
電池の場合、本発明では繊維材料を前記人工物の形成前
にカッ、−ド材料中に混入し、それによって焼結プロセ
スとカソード材料の結合とを助長させることもできる。
In the case of a cell having a cathode of the type that includes an artifact that is porous to the liquid electrolyte, such as a sintered workpiece, the invention provides that the fibrous material is heated by heating the fibrous material prior to formation of the artifact. It can also be incorporated into the cathode material, thereby aiding the sintering process and bonding of the cathode material.

本発明は四に、少なくとも一成分が電池作動温度で液体
状でチシ、互に分離されているが潜在的に好ましくない
結果を伴って相互反応し得、その結果不活性反応生成物
を形成するような電気化学的電池の2種類以上の反応成
分が互に接触した時に生起される潜在的危険性を減少さ
せるための方法にも係る。この方法は、11r記反応生
成物を強化及び/又は捕捉し、それによって前記成分を
互に分離する該反応生成物の能力を向上させるべく、少
なくとも1種類の反応成分を含浸した、又はこの反応成
分中に含まれた、マクロ多孔質材料を反応成分間の接触
が起こシ得る1つ以上の領域内に、Ft、8することに
ある。
Fourth, the present invention provides that at least one component is in liquid form at cell operating temperatures, separated from each other but capable of reacting with each other with potentially undesirable consequences, resulting in the formation of inert reaction products. The present invention also relates to a method for reducing the potential hazards created when two or more reactive components of such electrochemical cells come into contact with each other. The process comprises impregnating or impregnating the reaction product with at least one reaction component to enhance and/or trap the reaction product and thereby improve the ability of the reaction product to separate said components from each other. The macroporous material contained in the components is placed in one or more regions where contact between the reactants can occur.

以下添付図面に基づき非限定的具体例をMげて本発明を
よ)詳細に絢、明する。
The present invention will be explained in detail below by way of non-limiting specific examples based on the accompanying drawings.

第1図の符号10は、先ず液体ナトリウム12を250
℃で導入し、その後該液体ナトリウム」二にやr、J:
 p 2 s o℃で液体塩化゛アルミニウムナトリウ
ム14を導入した適切な加熱さ、れた容器全体を示して
いる。
Reference numeral 10 in FIG.
℃ and then the liquid sodium 'Niniyar, J:
The entire suitably heated vessel is shown in which liquid sodium aluminum chloride 14 is introduced at p 2 so °C.

これらの成分は静かに巨つ速度を調節しながら順次導入
1ツ、図1のOt!<2層に分駈させた。
These components were introduced one after another while gently adjusting the speed, and Ot! of Figure 1 was introduced. <Divided into two layers.

この導入操作は容器10を250℃に加熱しておきアル
ザン気流下で行った。ナトリウムと塩化アルミニウムナ
トリウムとけこの温度で速かに発熱反応し、次の反応式 %式%] に従い@1eの如き固体反応生成物を形成するととが判
明した。
This introduction operation was carried out under Alzan air flow while heating the container 10 to 250°C. It has been found that sodium and sodium aluminum chloride undergo a rapid exothermic reaction at this temperature to form a solid reaction product as @1e according to the following reaction formula.

成分を穏かに加えて行くと、層16は許容し得ない温度
上昇を伴うことなくこれら内成分を互に効果的に分離す
るよう形成されることが確認された。
It has been determined that by adding the components slowly, layer 16 is formed to effectively separate the components from each other without unacceptable temperature increases.

この反応生成物によ)構成される固体バリヤは成分間の
反応を451J座に弱めた。また、温度上昇は50℃未
満にfl’J限されることが判明した。
The solid barrier constituted by this reaction product attenuated the reaction between the components by 451 J. Furthermore, it was found that the temperature increase was fl'J limited to less than 50°C.

更に、゛ノ々リヤ16が例えば攪拌などKよp大々的に
破壊されると、激しい反応が生じて@A度が急速に10
00℃まで上昇することが判明した。こ−れは、ナトリ
ウムと塩化アルミニウムナトリウムとを含む電池にこれ
らの成分を広く且つ急速に混合せしめるような大きな損
駆が与えられた場合の内在的危険性を立証するものであ
る。
Furthermore, if the Noriya 16 is destroyed in a large scale, for example by stirring, a violent reaction will occur and the @A degree will rapidly increase to 10 degrees.
It was found that the temperature rose to 00°C. This demonstrates the inherent danger when batteries containing sodium and sodium aluminum chloride are subjected to significant damage that causes these components to mix extensively and rapidly.

第2図には本発明の電気化学的電池全体が符号18で示
されている。
In FIG. 2, the electrochemical cell of the present invention is indicated generally at 18.

この電池はハウジング20をルMえておシ、その中には
溶融ナトリウム22が収容されている。カップ状のベー
タアルミナ固体電解質から成るセパレータ24は一部が
溶融す) IJウム22中に浸漬されておυ、内部に固
体活性カンードマトリクス26を収容している。
The battery includes a housing 20 in which molten sodium 22 is housed. A separator 24 made of a cup-shaped beta-alumina solid electrolyte is immersed in IJum 22 (partly melted) and contains a solid active cand matrix 26 inside.

該マトリクス自体はこのカップ状七ノぐレータ24内で
@融塩化アルミニクムナトリウムの液体電解質28中に
浸(責されている。
The matrix itself is immersed in a liquid electrolyte 28 of fused sodium aluminum chloride within the cup-shaped grate 24 .

ハウジング20はアノード−流コレクタとして機能し、
カソード電流コレ、フタ3oはマトリクス26内番て埋
め込まれていて該マトリクスから上カに突出し、電解質
28を貫通してハウジング2゜上方オで伸長【−ておシ
、32部分で該ハウジング20に対し絶縁されている。
The housing 20 functions as an anode flow collector;
The cathode current cover 3o is embedded within the matrix 26, protrudes upward from the matrix, penetrates the electrolyte 28, and extends 2° above the housing. It is insulated.

↓ 本発明はカップ24の円■をグラファイトフェルト(図
示せず)で被覆し、これに液体電解質28を飽和させた
。カップ24が破壊又は破損すると、ナトリウム22が
該カップ24で構成されたカソード領域内に浸透し、前
述の反応式に従って前記フェルトライニングの液体電解
質と反応する。その結果反応生成物として塩化す) I
Jウムとアルミニウムとが1つの層の形で形成される。
↓ In the present invention, the circle (■) of the cup 24 is covered with graphite felt (not shown), and this is saturated with the liquid electrolyte 28. When cup 24 breaks or breaks, sodium 22 penetrates into the cathode region defined by cup 24 and reacts with the liquid electrolyte of the felt lining according to the reaction equation described above. As a result, it is chlorinated as a reaction product) I
Jum and aluminum are formed in one layer.

この層はカーボンフェルトの繊維で補強された層である
つどのカーゼンファイ7々で強化された反応生成物層は
、カーボンフェルト々で補強されていない同種の層に比
較して、例えば電池に震動又は衝厚が与えられるような
事態に際し、邊かに頑丈で破損し難いことが判明した。
This layer is a fiber-reinforced layer of carbon felt.A reaction product layer reinforced with carbon fibers is less likely to be exposed to vibrations or It has been found that the edges are extremely sturdy and do not easily break when subjected to heavy loads.

本出願人は更に、液体電解質で占められたカソード領域
のスペース全体に前述の如きフェルトを充填する可能性
も追求しているが、特にカソードマトリクス2d上方の
液体寛解質28部分において過放電が早く生じすぎる危
険のあることが判明すれば、電気的絶縁性ファイノン、
例えばセラミックファイノ々、アルミナファイノミ、又
は、グラスファイ/セ等を使用する方が好ましいであろ
う。
The applicant has also explored the possibility of filling the entire space of the cathode region occupied by the liquid electrolyte with felt as described above, but over-discharging occurs more quickly, especially in the part of the liquid electrolyte 28 above the cathode matrix 2d. If it is determined that there is too much risk, electrically insulating phinon,
For example, it would be preferable to use ceramic fins, alumina fins, glass phi/ceil, or the like.

これらの7アイ、2は勿論液体電解質との反応に関し安
定性のおるものを選択する。これらファイバのマット(
mat)又はウール(wool)を使用すると、これら
7アイノンは部分的に融成分28を不動化させるべく作
用し、その結果安定性が向上する。しかし乍ら本出願人
は、この観点からは、ファイノζに代え粒子を例えば液
体電解質を飽和させた粉床などの形で使用プる方が不動
化をより十分に行うことができると思惟する。
Of course, these 7I and 2 are selected to be stable with respect to reaction with the liquid electrolyte. These fiber mats (
When using mat) or wool, these 7-ainons act in part to immobilize the melting component 28, resulting in increased stability. However, from this point of view, the applicant believes that immobilization can be achieved more satisfactorily by using particles in the form of a powder bed saturated with a liquid electrolyte, for example, instead of Phinoζ. .

同様にして、カップ24の外側に7アイノ々で補強され
た反応生成物層を形成することにより液体寛解質28が
アノードのナトリウム22中に浸透するのを防止すべく
、カップ24の外面にライニングを施す場合は、問題の
温度でナトリウムに対し不活性である適切な繊維材料の
層を使用し得る。
Similarly, the outer surface of the cup 24 is lined to prevent liquid solute 28 from penetrating into the anode sodium 22 by forming a layer of reaction product reinforced with seven irons on the outer surface of the cup 24. , a layer of suitable fibrous material which is inert towards sodium at the temperature in question may be used.

とれに代えて、このような繊維材料をアノードのスペー
ス全体に充填してもよい。
Alternatively, the entire space of the anode may be filled with such fibrous material.

第3図にも同様の電池が示されている。指示がない限如
第2図と同じ符号は第2図の電池と同一の部材を表わす
A similar battery is shown in FIG. Unless otherwise indicated, the same reference numerals as in FIG. 2 represent the same parts as in the battery of FIG.

されている。この塩化アルミニウムナトリクム中には活
性物質として5bC1sが溶解されている。この場合も
本発明は第2図の電池の時と同様に使用され得る。
has been done. 5bC1s is dissolved in this sodium aluminum chloride as an active substance. In this case as well, the present invention can be used in the same manner as in the case of the battery of FIG.

本発明の別の目的は、電解質が多孔性カソードマトリク
スに含浸された時に液体ナトリウムたるアノード材料と
塩化アルミニウムナトリウムの如き液体寛解質との間に
好ましくない反応が生じるという危険性(符に第2図の
電池の場合)を減少せしめることにある。
Another object of the present invention is to eliminate the risk of undesirable reactions between the anode material, liquid sodium, and the liquid medicinal material, such as sodium aluminum chloride, when the electrolyte is impregnated into the porous cathode matrix. (in the case of the battery shown in the figure).

現在のところ液体電解質のマド11クスへの含浸度は、
マトリタス拐料に含浸された液体寛解質とナトリウムと
の間に激しい反応を生ぜしむる程太きくはないが、マト
リクスの有効多孔度が増大するとこのマトリクスに含浸
される塩化アルミニウムナトリウムも、マトリクスが破
損した場合にナトリウムとの接触によって生じる反応が
問題となUnるようなレベルまで増大し得る。この現象
の゛予防対策として、同様のファイノ々をマトリクスの
細↑Lに付加して危険を減らしてもよい。この場合ファ
イノ々は、加工及び焼結に先立ち例えばマ) IJよ りス形成用粉末など混合することによシ製造工程中に付
加する。このようなファイ・セの存在は焼結の制御にも
役立ち、且つ後続の作業においてカソードマトリクスの
結合を助は得る。
At present, the degree of impregnation of liquid electrolyte into MAD 11x is as follows:
The sodium aluminum chloride impregnated into the matrix increases as the effective porosity of the matrix increases, although it is not thick enough to cause a violent reaction between the sodium and the liquid solute impregnated in the matrix. In the event of failure, reactions caused by contact with sodium can increase to problematic levels. As a preventive measure against this phenomenon, similar fins may be added to the matrix's narrow ↑L to reduce the danger. In this case, the phyllocarbons are added during the manufacturing process by mixing, for example, a powder for forming a metal layer with an IJ prior to processing and sintering. The presence of such Phi-Se also helps control the sintering and aids in bonding the cathode matrix in subsequent operations.

また、毛管作用によシ含浸される鉱物スポンジの如き多
孔性人工物又は粒子ベッド(場合によっCは焼結された
もの)を前述のファイノ々と同様に、例えばカップ24
の内部及び/又は外部ライニングとして使用するか、又
はアノード領域もしくはカソード領域に全体的に充填し
て使用すると、該カップが破損してアノード領域に液体
電解質が浸透するか、又はカソード領域にアノード物質
が浸透した場合に、反応生成物が前記人工物又はベッド
とカップとの間の界面に層状に捕捉されるととになる。
It is also possible to use porous artifacts such as mineral sponges or particle beds impregnated by capillary action (possibly sintered) in the same manner as in the above-mentioned phyno, e.g. cup 24.
If used as an internal and/or external lining of a cup or used to completely fill an anode or cathode region, the cup may rupture and allow liquid electrolyte to penetrate into the anode region or cause anode material to enter the cathode region. If permeation occurs, the reaction products will be trapped in a layer at the interface between the artifact or bed and the cup.

その結果、反応生成物層は不動化されると共に強化され
、従って液体電解質とアノード′勿買とを分離する能力
が向上する。前記の人工物又はベッドがファイノ々を含
んでいる場合は、反応生成物層の繊維蜂化も実現され得
る。
As a result, the reaction product layer is immobilized and strengthened, thus improving the ability to separate the liquid electrolyte and the anode. If the artefact or bed contains phynos, fiberization of the reaction product layer can also be achieved.

以上添付図面に基づき円筒形電池に関して本発明の電気
化学的電池f:説明してきたか、他の形状例えば偏平状
の電池も本発明によ)容易に製造し得る。
Although the electrochemical cell according to the invention has been described above with reference to a cylindrical cell with reference to the accompanying drawings, cells of other shapes, for example flat cells, can also be readily produced according to the invention.

【図面の簡単な説明】[Brief explanation of drawings]

紀1図は本出願人がテストした電池成分が入っている容
器の側断面図、第2図は本発明の電池の側断面図、第3
図は本発明による別の′電池の側断面図である。 10・・・・・・適切な加熱容器、12,22・・・・
・・液体ナトリウム、14.28・・・・・・液体塩化
アルミニウムナトリウム、16・・・・・・反応生成物
M118・・・・・・電気化学的電池、20・・・・・
・ハウジング、24・・・・・・セノにレータカーツゾ
、26・・・・・・カソードマトリクス、30・・・・
・・カソード電流コレクタ、32・・・山絶縁部位。
Figure 1 is a side sectional view of a container containing battery components tested by the applicant, Figure 2 is a side sectional view of the battery of the present invention, and Figure 3 is a side sectional view of a container containing battery components tested by the applicant.
The figure is a side sectional view of another battery according to the invention. 10... Appropriate heating container, 12, 22...
...Liquid sodium, 14.28...Liquid sodium aluminum chloride, 16...Reaction product M118...Electrochemical cell, 20...
・Housing, 24...Seno to rotator tsuzo, 26...Cathode matrix, 30...
... Cathode current collector, 32... Mountain insulation part.

Claims (1)

【特許請求の範囲】 (1)少なくとも1つが電池の作動温度において液体で
あるような2種類以上の反応成分を含んでおシ、これら
成分が互に分離されておシ、且つ潜在的に好ましくない
結果を伴い乍ら反応し合ってこれら成分に対し不活性で
ある1種類以上の反応生成物を形成し得、これら成分の
中前記の作動温度で液体である前記の少なくとも1種類
の成分がマクロ多孔質材料に含浸されているか又は該材
料を含んでおシ、このマクロ多孔質材料が、前記反応成
分間の接触が起こり得る1つ以上の領域内で前記反応生
成物を強化及び/又は捕捉し、それによって該反応生成
物の前記成分を互に分離する能力を向上させるために具
備されていることを特徴とす右電気化学的電池。 (2)前記の多孔質材料が粒子材料である特許請求の範
囲第1項記載の電池。 (3)前記多孔質材料がこれと接触する反応成分の密度
とは異なる恒度を有し且つ該成分によって占められるス
ペースの一部を占めておシ、そのため電池の作動温度で
該成分中に該多孔質材料の層が形成される特許請求の範
囲第2項記載の′α池。 (4)前記多孔質材料の粒子が互に接触した状態に保持
されている特許請求の範囲第1項に記載の電池。 (5)前記多孔質材料が人工物の形態である特許請求の
範囲第1項に記載の電池。 (6)前記人工物が織物状又はフェルト状の繊維物質か
ら成っている特許請求の範囲第5項に記載の゛電池。 (7)前記人工物が焼結された人工物である特許請求の
範囲第5項に記載の電池。 (8)前記多孔質材料が電池の作動温度で該材料と接触
する成分を該材料を1通して自由に拡散せしめる。よう
な多孔度を有している特許請求の範囲第1項乃至7A7
項のいずれかに記載の電池。 (9)電池の反応成分中2種類が電池の作動温度で液体
状であってセパレータにより互に分離されており、面成
−分共このセパレータに接触しておシ、該セ・ξレータ
の少なくとも片側にはこれと同一側の成分とセパレータ
との間の界面に前記多孔質材料°が一層具備されている
特許請求の範囲第1項乃至第8項のいずれかに記載の′
電池。 (10)前記セ・ぞレータが固体電解質であり、該セパ
レータの両側の成分が夫々にアノード材料及び液体電解
質材料でおる特許請求の範囲第9項にb記載の電池。 (1])前記の層が成体電解質と固体電解質との間の界
面に具備されている特許請求の範囲第10項に記載の電
池。 0渇 アノード材料がアルカリ金属及び/又はアルカリ
土類金属から成っておシ、液体電解質が1種類以上のア
ルカリ金属及び/又はアルカリ土類金属ハロゲン化物填
を會む溶融塩電解質であり、前記の層が非伝導性繊維材
料から成っている特許請求の範囲第10項又は11項に
記載の電池。 ↓ 03)実質的に本明細に記載されておシ且つ例証・され
ている電気化学的電池。 ■ 少なくとも一成分が電池の作動温度で液体状であシ
、互に分離されているが潜在的に好ましくない結果を伴
い乍ら反応し合って不活性反応生成物を形成し得るよう
な電気化学的電池の2種類以上の反応成分が互に接触し
た時に生起される潜在的危険性を減少させるための方法
であって、前記反応生成物を強化及び/又は捕捉し、そ
れによって前記成分を互に分離する該反応生成物の能力
を向上させるべく、少な″くとも1種類の反応成分を含
浸した、又はその反応成分中に含まれた、 マクロ多孔
質材料を反応成分間の接触が起こり得る1つ以上の領域
内に具備することから成る方法。 (15)  少なくとも一成分が電池の作動温度で液体
状であり、互に分離されているが潜在的に好ましくない
結果を伴い乍ら反応し合って不活性反応生成物を形成し
得る電気化学的電池の2種類以上の反応成分が接触した
時に生起される潜在的危険性を減少爆ぜるための方法で
あって、実質的に本明細書に記載及び例証されている方
法。
[Scope of Claims] (1) A method comprising two or more reactive components, at least one of which is a liquid at the operating temperature of the battery, and in which these components are separated from each other and potentially preferred. may react with each other to form one or more reaction products which are inert to these components, at least one of which is liquid at the operating temperature. impregnated with or comprising a macroporous material, the macroporous material enhancing and/or reinforcing the reaction products in one or more regions where contact between the reaction components can occur An electrochemical cell, characterized in that it is equipped to improve the ability to capture and thereby separate the components of the reaction product from each other. (2) The battery according to claim 1, wherein the porous material is a particulate material. (3) the porous material has a density different from the density of the reactant components with which it comes in contact and occupies a portion of the space occupied by the components, so that at the operating temperature of the cell there is a The 'α pond according to claim 2, wherein the layer of porous material is formed. (4) The battery according to claim 1, wherein the particles of the porous material are held in contact with each other. (5) The battery according to claim 1, wherein the porous material is in the form of an artificial object. (6) The battery according to claim 5, wherein the artificial object is made of a textile or felt-like fibrous material. (7) The battery according to claim 5, wherein the artificial object is a sintered artificial object. (8) The porous material allows components that come into contact with the material at cell operating temperatures to freely diffuse through the material. Claims 1 to 7A7 having a porosity such as
The battery described in any of the paragraphs. (9) The two reactive components of the battery are in liquid form at the operating temperature of the battery and are separated from each other by a separator. Claims 1 to 8, wherein at least one side is further provided with the porous material at the interface between the component and the separator on the same side.
battery. (10) The battery according to claim 9(b), wherein the separator is a solid electrolyte, and the components on both sides of the separator are an anode material and a liquid electrolyte material, respectively. (1) The battery according to claim 10, wherein the layer is provided at an interface between a solid electrolyte and a solid electrolyte. The anode material is composed of an alkali metal and/or alkaline earth metal, the liquid electrolyte is a molten salt electrolyte containing one or more alkali metal and/or alkaline earth metal halides, and 12. A battery according to claim 10 or 11, wherein the layer consists of a non-conductive fibrous material. ↓ 03) An electrochemical cell substantially as described and illustrated herein. ■ Electrochemistry in which at least one component is in liquid form at the operating temperature of the cell and is separated from each other but can react with each other to form inert reaction products with potentially undesirable consequences. A method for reducing the potential hazards created when two or more reactive components of a commercial battery come into contact with each other, the method comprising: strengthening and/or trapping said reaction products, thereby making said components mutually A macroporous material impregnated with or included in at least one reaction component, in order to improve the ability of said reaction products to separate into molecules, in which contact between the reaction components can occur. (15) At least one component is in liquid form at the operating temperature of the cell and is separated from one another but does not react with potentially undesirable consequences. A method for reducing the potential hazards created when two or more reactive components of an electrochemical cell come into contact that may together form an inert reaction product, comprising: Methods described and illustrated.
JP58195913A 1982-10-20 1983-10-19 Electrochemical battery Pending JPS59132575A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8229944 1982-10-20
GB8229944 1982-10-20

Publications (1)

Publication Number Publication Date
JPS59132575A true JPS59132575A (en) 1984-07-30

Family

ID=10533716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58195913A Pending JPS59132575A (en) 1982-10-20 1983-10-19 Electrochemical battery

Country Status (6)

Country Link
JP (1) JPS59132575A (en)
CA (1) CA1208283A (en)
DE (1) DE3337991A1 (en)
FR (1) FR2535118A1 (en)
GB (1) GB2132003B (en)
ZA (1) ZA837601B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425859A1 (en) * 1984-07-13 1986-01-16 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD FOR PRODUCING A STORAGE CELL
GB8728394D0 (en) * 1987-12-04 1988-01-13 Lilliwyte Sa Electrochemical cell
GB8730136D0 (en) * 1987-12-24 1988-02-03 Lilliwyte Sa Electrochemical cell
GB9005483D0 (en) * 1990-03-12 1990-05-09 Aabh Patent Holdings Electrochemical cell
DE59509980D1 (en) * 1995-09-28 2002-02-07 Endress Hauser Gmbh Co electronics housing
EP0766072B1 (en) * 1995-09-28 1999-12-22 Endress + Hauser GmbH + Co. Electronic casing

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2115522A5 (en) * 1970-11-23 1972-07-07 Accumulateurs Fixes Sodium-sodium halide cell - using aluminium chloride-sodium halide complexes
GB1456073A (en) * 1974-02-18 1976-11-17 Nat Res Dev Electrolytic cells
US3980496A (en) * 1975-01-29 1976-09-14 Ford Motor Company Energy conversion devices with improved electrode shapes
US3933520A (en) * 1975-04-03 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing electrodes with porous current collector structures and solid reactants for secondary electrochemical cells
US3969138A (en) * 1975-06-09 1976-07-13 Esb Incorporated Sodium-aluminum halide, sulfur battery
US3992222A (en) * 1975-07-15 1976-11-16 The United States Of America As Represented By The United States Energy Research And Development Administration Metallic sulfide additives for positive electrode material within a secondary electrochemical cell
IT1066389B (en) * 1976-01-30 1985-03-04 Ford Motor Co SECONDARY ELECTRIC CELL OR BATTERY WITH WET POLYSULPHIDE ELECTRODE
US3985575A (en) * 1976-01-30 1976-10-12 Ford Motor Company Secondary battery or cell with dual electrode
GB1528672A (en) * 1976-02-18 1978-10-18 Chloride Silent Power Ltd Sodium sulphur cells
DE2616593C2 (en) * 1976-04-14 1985-07-11 Robert Bosch Gmbh, 7000 Stuttgart System for switching between two color television signals
US4069372A (en) * 1976-11-30 1978-01-17 Battelle Development Corporation Electric accumulator with a solid electrolyte
FR2381396A1 (en) * 1977-02-17 1978-09-15 Comp Generale Electricite Electrochemical cell using chalcogenide(s) as positive material - to provide lower working temp. for beta-alumina type cells
AU510873B2 (en) * 1977-03-09 1980-07-17 Lilliwyte Societe Anonyme Sodium-sulphur cell
GB1595765A (en) * 1977-11-30 1981-08-19 Chloride Silent Power Ltd Sodium-sulphur cells
GB2042243B (en) * 1979-02-13 1983-02-16 Chloride Silent Power Ltd Sodium sulphur cells
GB2048557A (en) * 1979-04-23 1980-12-10 Chloride Silent Power Ltd Sodium-sulphur cell
FR2455367A1 (en) * 1979-04-26 1980-11-21 Proge MOLTEN SALT COMPOSITION FOR USE AS ANODIC ELECTROLYTE IN ALKALINE ALUMINUM BATTERIES AND NEGATIVE ALKALINE METAL ELECTRODE
GB2052460B (en) * 1979-05-24 1983-01-12 Chloride Silent Power Ltd Carbon fibre cathode
FR2466107A1 (en) * 1979-08-08 1981-03-27 Comp Generale Electricite Sodium-sulphur cell - with negative active material comprising a rigid porous material impregnated with liq. sodium
SE8008330L (en) * 1979-12-05 1981-06-06 Western Electric Co ELECTROLYTIC CELL
DE3022449A1 (en) * 1980-06-14 1982-01-07 Brown, Boveri & Cie Ag, 6800 Mannheim ELECTROCHEMICAL STORAGE CELL
DE3028836C2 (en) * 1980-07-30 1986-04-17 Brown, Boveri & Cie Ag, 6800 Mannheim Electrochemical storage cell
ZA828603B (en) * 1981-12-10 1983-09-28 South African Inventions Electrochemical cell

Also Published As

Publication number Publication date
DE3337991A1 (en) 1984-04-26
CA1208283A (en) 1986-07-22
FR2535118A1 (en) 1984-04-27
GB8327829D0 (en) 1983-11-16
GB2132003B (en) 1986-05-08
ZA837601B (en) 1984-06-27
GB2132003A (en) 1984-06-27

Similar Documents

Publication Publication Date Title
CA1123901A (en) Electrochemical cell having electrode with zeolite molecular sieve
US4499160A (en) Cathode and electrochemical cell containing same
WO1998021774A1 (en) Porous carbon body with increased wettability by water
JPS59132575A (en) Electrochemical battery
GB2290163A (en) Cathode for high temperature alkali metal/transition metal type cell comprises antimony mixed with nickel/nickel chloride in matrix
JPH0624154B2 (en) Electrochemical cell
US5143802A (en) Electrochemical cell
JPH0586031B2 (en)
CA1176700A (en) Electrochemical cell and an anode structure for an electrochemical cell
US4925749A (en) Electrochemical cell
US5536594A (en) Electrochemical cell
US4944991A (en) Formation of alumina impregnated carbon fiber mats
US4382117A (en) Separator for electrochemical high temperature cell
JPH0588516B2 (en)
JPS6318839B2 (en)
JPH0714602A (en) Absorption mat type lead-acid battery having improved heat transfer
US1377722A (en) Electric accumulator
US4313259A (en) Method for manufacturing an electrochemical cell
US3470030A (en) Method of manufacturing a porous electrode containing a boron compound
EP1018180B1 (en) Lead battery with distributed acid
JPS63250066A (en) Hermetically sealed lead-acid battery
EP0056520B1 (en) Electrochemical cells containing liquid sodium as the anodic material
US4087905A (en) Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell
US3457149A (en) Electrolytic cell and vacuum process for filling pores in its lining
US4555846A (en) Method for the manufacture of an electrochemical storage cell as well as a storage cell produced by this method