JPS59132512A - Method of forming separator in forcibly cooling superconductive conductor - Google Patents

Method of forming separator in forcibly cooling superconductive conductor

Info

Publication number
JPS59132512A
JPS59132512A JP58007104A JP710483A JPS59132512A JP S59132512 A JPS59132512 A JP S59132512A JP 58007104 A JP58007104 A JP 58007104A JP 710483 A JP710483 A JP 710483A JP S59132512 A JPS59132512 A JP S59132512A
Authority
JP
Japan
Prior art keywords
base material
stabilizing base
separator
superconducting
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58007104A
Other languages
Japanese (ja)
Other versions
JPH0250565B2 (en
Inventor
伸行 定方
河野 宰
池野 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58007104A priority Critical patent/JPS59132512A/en
Publication of JPS59132512A publication Critical patent/JPS59132512A/en
Publication of JPH0250565B2 publication Critical patent/JPH0250565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は核融合炉等の超電導マグネットの超電導コイ
ルに使用される超電導線に関し、特に冷却媒体により強
制循環冷却さぜる型式の超電導線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting wire used in a superconducting coil of a superconducting magnet such as a nuclear fusion reactor, and particularly to a type of superconducting wire that is cooled by forced circulation using a cooling medium.

最近に至り、断面中央に冷却媒体通路を形成したいわゆ
る中空超電導線を用い、冷却媒体通路に超臨界圧ヘリウ
ム等の冷却媒体を強制循環させて超電導線をその内側か
ら強制冷却するようにした超電導コイルが種々提案され
ている。このような超電導コイルに使用される中空超電
導線としては、例えば第1図に示すように、中央に冷′
fA媒体通路1を形成した断面矩形状の銅等の安定化母
材2の壁面内に超電容素fi13Aが埋め込まれた型式
のもの、あるいは第2図に示すように同じく断面矩形状
の銅等の安定化母材2の外面に極細多芯超電導素線3B
が巻付けもしくは撚り合わされた型式のもの、さらには
第3図に示すように断面矩形状の安定化母材2の外面に
凹溝4が形成さ7れるとともに各凹溝4に成形超電導索
線3Cが嵌合固定された型式のもの等がある。
Recently, a so-called hollow superconducting wire with a cooling medium passage formed in the center of its cross section has been used, and a cooling medium such as supercritical pressure helium is forced to circulate in the cooling medium passage to forcibly cool the superconducting wire from the inside. Various coils have been proposed. For example, as shown in Figure 1, the hollow superconducting wire used in such a superconducting coil has a cold core in the center.
A type in which a supercapacitor fi13A is embedded in the wall surface of a stabilizing base material 2 made of copper or the like having a rectangular cross section forming the fA medium passage 1, or a type of copper etc. having a rectangular cross section as shown in FIG. Ultra-fine multicore superconducting strands 3B are placed on the outer surface of the stabilizing base material 2.
In addition, as shown in FIG. 3, grooves 4 are formed on the outer surface of the stabilizing base material 2 having a rectangular cross section, and each groove 4 has formed superconducting cables. There are models in which 3C is fitted and fixed.

このような強制冷却型の超電導線を用いた超電導マグネ
ットにおいては、導体内に冷却媒体が強制循環されるた
め各部が均等に冷却され、またコイルがコンバク1〜で
しかもn械的強度が高く、さらに冷却媒体の使用量が少
なくて済む等の利点を有するが、その反面、超電導素線
に対する冷却が銅等の安定化母材を介しての間接冷却と
なっているため、冷却効率が低く、そのため何らかの原
因で超電導素線の一部にと−1〜スポツトが生じて超電
)9特性が失われた場合に、その回復が遅れる問題があ
る。
In a superconducting magnet using such a forced cooling type superconducting wire, a cooling medium is forced to circulate inside the conductor, so each part is evenly cooled, and the coil is compact and has high mechanical strength. Furthermore, it has the advantage of requiring less cooling medium, but on the other hand, since the superconducting strands are cooled indirectly through a stabilizing base material such as copper, the cooling efficiency is low. Therefore, there is a problem in that when -1 to -1 spots occur in a part of the superconducting wire for some reason and the superconducting)9 characteristics are lost, recovery is delayed.

一方、第4図に示づ′ように角型筒状体6の内側に多数
本の超電導素線3Bを収容し、その超電導素線間の空隙
7に液体ヘリウム等の冷却媒体を流すようにしたいわゆ
るバンドルタイプの超電導線も提案されており、この場
合には超電導素″a3Bの表面に直接冷却媒体が接して
直接冷却が行われる。しかしながらこの型式の超電導線
においては冷fJ′l媒体をスムーズに流すことが相当
に困難であり、局部的に冷却媒体の流れが浦って温度上
昇し、ヒートスボッ1〜が生じたり、またヒートスポッ
トの回復がすみやかに行われなかったりする欠点がある
On the other hand, as shown in FIG. 4', a large number of superconducting strands 3B are housed inside a rectangular cylindrical body 6, and a cooling medium such as liquid helium is flowed into the gaps 7 between the superconducting strands. A so-called bundle-type superconducting wire has also been proposed, in which a cooling medium is brought into direct contact with the surface of the superconducting element "a3B, and direct cooling is performed. However, in this type of superconducting wire, a cold fJ'l medium is used. It is quite difficult to flow the cooling medium smoothly, and there are disadvantages in that the flow of the cooling medium is locally blocked and the temperature rises, causing heat spots, and that heat spots cannot be recovered quickly.

そこで本発明者等は、前記中空超電導線の長所と第4図
に示す直接冷却型超電導線の長所とを取入れて、全体的
な冷却効率が高くしかも局部的な安定性も良好で、かつ
大きな電磁力に耐え得る構造とした超電導線を特願[1
857−45795号において提案している。この提案
の起電導線の一例を第5図に示す。
Therefore, the present inventors took advantage of the above-mentioned hollow superconducting wire and the direct cooling type superconducting wire shown in FIG. 4 to achieve a high overall cooling efficiency and good local stability. Patent application for superconducting wire with a structure that can withstand electromagnetic force [1]
No. 857-45795. An example of this proposed electromotive conducting wire is shown in FIG.

第5図において、銅、銅合金、高純度アルミニラ18、
アルミニウム合金等の良導電性材料からなる断面矩形状
の中空な安定化母材10の内側には、Nb  Ti合金
、Nb  Ti  Ta合金等の合金系超電導材料ある
いはNb3Sn、 Va Ga 、 Nb3Ge W(
7)化合物系超電導材料からなる複数本の超電導線11
が収容されている。そして安定化母材1oの外側は安定
化母材10と同様な材料あるいはステンレス14等から
なる適当数のセパレータ12を介して銅、ステンレス鋼
、チタン、チタン合金等からなる断面矩形状の外被13
によって取囲まれ、前記セパレータ12により安定化母
材10の外面と外被13の内面との間に冷却媒体流路1
4が確保されている。ざらに前記安定化母材10には、
その外側の冷却媒体流路14と内側の空間とを連通させ
る丸孔状、長孔状、あるいはスリン1〜状等の複数の連
通路15が形成されている。したがって冷却媒体流路1
4を流れる超臨界圧ヘリウム等の冷却媒体は連通路15
を流通して安定化母材1oの内側の超電導素線11の線
間の空隙16に流入し、超電導JR111に直接冷IJ
I媒体が接することになる。そしてこの安定化Bl 4
310の内側の超電導素線11の線間空隙16において
も冷却媒体の流れが生じることになる。
In Figure 5, copper, copper alloy, high purity aluminium 18,
Inside the hollow stabilizing base material 10 with a rectangular cross section made of a highly conductive material such as an aluminum alloy, an alloy superconducting material such as a Nb Ti alloy, a Nb Ti Ta alloy, or Nb3Sn, Va Ga, Nb3Ge W (
7) Multiple superconducting wires 11 made of compound superconducting material
is accommodated. The outside of the stabilizing base material 1o is covered with a rectangular cross-sectional outer covering made of copper, stainless steel, titanium, titanium alloy, etc., with an appropriate number of separators 12 made of the same material as the stabilizing base material 10 or stainless steel 14, etc. 13
The separator 12 defines a cooling medium flow path 1 between the outer surface of the stabilizing base material 10 and the inner surface of the jacket 13.
4 is guaranteed. Roughly, the stabilizing base material 10 includes:
A plurality of communicating passages 15 are formed in the shape of a round hole, a long hole, or the shape of a sulin 1 to communicate the cooling medium flow path 14 on the outside with the space on the inside. Therefore, the cooling medium flow path 1
A cooling medium such as supercritical helium flowing through the communication path 15
flows into the gap 16 between the superconducting wires 11 inside the stabilizing base material 1o, and directly flows into the superconducting JR111 as a cold IJ.
The I medium will come into contact with it. And this stabilization Bl 4
A flow of the cooling medium also occurs in the inter-wire gaps 16 of the superconducting wires 11 inside the superconducting wires 310.

上記提案の超電導線においては、全体的な冷却は安定化
母材10の外側の冷却媒体流路14を派れる冷fJ′l
媒体の定常流によってなされるため従来の中空型超電導
線の場合と同様に均等冷却が行われ、しかも安定化母材
10内の超電導素線11自体にも直接冷却媒体が接して
直接冷却がなされるため冷却効率が高く、なおかつ安定
化母材10の外側の冷却媒体と内側の冷却媒体とが連通
路15を介して流入、流出して交換されるため従来の第
4図に示すバンドルタイプの直接冷却超電導線の場合の
ように内側の冷iII媒体が局部的に温度上昇してヒー
トスポットが生じたりその回復が遅れたりすることが極
めて少なく、したがってトータルとしての冷却効率が優
れると同時に定常安定性および過渡安定性も極めて優れ
ている。また上記捉業の超電導線においては、じょう乱
が生じて超電導状態が破れ、磁束流状態となった時に電
流は安定化母材に分流することになるため安定化母材の
部分でも発熱することになるが、この安定化母材の発熱
も外側の冷却媒体により冷却されるから、第4図に示す
従来のハンドルタイプの直接冷却方式に比べ、超電導状
態をすみやかに回復することができ、さらに上述のよう
に安定化母材の内外の冷却媒述が連通路を介して流入、
流出するため、安定化母材内の超電導索線の果合構造が
、その長手方向に冷却媒体がスムーズに流れにくい構造
例えば編組構造や成形HA l’!il 4層造となっ
ていても特に支障はなく、したがって超電尋素紗の集合
構造についての制約がないためその設計の自由度が大き
く、そしてまた超電導索線が超電導線の中央部分に配置
されるため、マグネット等のコイルに巻いた場合の曲げ
歪の影響による超電導素線の特性劣化が少なく、しかも
超電導索線は外側の安定化母材によって保護されるため
外部からの電磁力により超電導索線が損傷劣化すること
が有効に防止される等、従来の超電S線と比較して格段
に優れた特性を有する。
In the superconducting wire proposed above, the overall cooling is carried out through the cooling medium flow path 14 outside the stabilizing base material 10.
Since this is done by a steady flow of medium, uniform cooling is performed in the same way as in the case of conventional hollow superconducting wires, and moreover, the superconducting wire 11 itself in the stabilizing base material 10 is also directly cooled as it comes into direct contact with the cooling medium. 4, the cooling efficiency is high, and the cooling medium outside the stabilizing base material 10 and the cooling medium inside the stabilizing base material 10 are exchanged by flowing in and out through the communication path 15. Unlike directly cooled superconducting wires, the temperature of the inner cold III medium increases locally, causing heat spots and delays in recovery, which is extremely rare, resulting in excellent overall cooling efficiency and constant stability. It also has extremely good properties and transient stability. In addition, in the above-mentioned superconducting wire, when disturbance occurs and the superconducting state is broken and a magnetic flux flow state occurs, the current is shunted to the stabilizing base material, so heat is generated even in the stabilizing base material. However, since the heat generated by the stabilizing base material is also cooled by the cooling medium on the outside, the superconducting state can be recovered more quickly than with the conventional handle-type direct cooling method shown in Figure 4. As mentioned above, the coolant inside and outside the stabilizing base material flows through the communication path,
Because of this, the superconducting cables in the stabilizing base material have a joint structure that makes it difficult for the cooling medium to flow smoothly in the longitudinal direction, such as a braided structure or a molded HA l'! There is no particular problem even if it is a four-layer structure, and there is no restriction on the aggregate structure of the superconducting fibers, so there is a large degree of freedom in its design, and the superconducting wire is placed in the center of the superconducting wire. As a result, the properties of the superconducting wire are less likely to deteriorate due to the effects of bending strain when wound around a coil such as a magnet, and since the superconducting wire is protected by the outer stabilizing base material, superconducting wires are protected by external electromagnetic force. It has much superior properties compared to conventional superelectric S wires, such as effectively preventing damage and deterioration of the cable wire.

なお第5図の超電導線においては、複数の超電導素線1
1からなる超電導素線果合体17A、17Bを2層に重
ね合せて安定化母材10内に収容し、かつ2層の超電導
線全体17A、17Bの間にキュプロニッケル等の高抵
抗導電材料からなる薄いチー118を介挿し、各層の超
電導索線集合体17A、17Bが直接接触しない構成と
されている。このように構成することにより、各層間に
結合電流が流れて例えばパルス駆動のごとく励磁速度が
極めて速い補合等における超電導特性の低下を防止する
ことができる。さらに第5図のiB電導線においては各
層の超電導索Fl!集合体17A、17Bと安定化母材
10との間にも前記同様な高抵抗導電材料からなる薄い
テープ19が介挿されており、このテープ19は、安定
化母材10を介して両層間に結合電流が流れることを防
止する役割を果たす。但し第5図においては図の簡単化
のため各層17A、、17Bの外面の全面にそれぞれテ
ープ19を設けた状態を示しているが、実際には連通路
15からの冷i1媒体の流入を妨げないように、適宜空
所を形成しておくのが通常である。
In the superconducting wire shown in FIG. 5, a plurality of superconducting strands 1
The superconducting wire assembly 17A, 17B consisting of 1 is stacked in two layers and housed in the stabilizing base material 10, and between the two layers of superconducting wires 17A, 17B, a high-resistance conductive material such as cupronickel is placed. A thin chi 118 is inserted so that the superconducting cable assemblies 17A and 17B in each layer do not come into direct contact with each other. With this configuration, a coupling current flows between each layer, and it is possible to prevent deterioration of the superconducting properties in cases where the excitation speed is extremely high, such as in pulse drive, for example. Furthermore, in the iB conductive wire shown in FIG. 5, each layer's superconducting wire Fl! A thin tape 19 made of the same high-resistance conductive material as described above is also inserted between the aggregates 17A, 17B and the stabilizing base material 10, and this tape 19 connects the two layers via the stabilizing base material 10. It plays the role of preventing coupling current from flowing to the However, in order to simplify the drawing, in FIG. 5, the tape 19 is shown provided on the entire outer surface of each layer 17A, 17B, but in reality, it prevents the inflow of the cold i1 medium from the communication path 15. It is normal to form spaces as appropriate to prevent this.

以上のように前記提案の超電導線は、従来の超電導線と
比較して冷却効率が良好でしかも安定性に優れ、かつま
た曲げや外力等に対する機械的強度も優れ、核融合のほ
か、各種電気機械、エネルギー貯蔵、核磁気共鳴吸収、
磁気分離等の各種用途、特に大型・高磁界マグネット用
超電導線に最適なものであり、また特に超電導線を多層
に収容して高抵抗1m材料からなるチー718ヤ19を
介挿した場合には、各層間の結合電流が高抵抗導電テー
プによって防止されるため、大電流によるパルス的な用
途に最適である。しかしながら本発明者等がさらに実用
化のための研究をずτめたところ、上記提案の超電導線
においては未だ次のような問題があることが判明した。
As described above, the proposed superconducting wire has better cooling efficiency and stability than conventional superconducting wires, and also has excellent mechanical strength against bending and external forces. mechanical, energy storage, nuclear magnetic resonance absorption,
It is ideal for various uses such as magnetic separation, especially for superconducting wires for large, high-field magnets, and especially when superconducting wires are housed in multiple layers and a Q718Y19 made of a high-resistance 1m material is inserted. Since coupling current between each layer is prevented by the high-resistance conductive tape, it is ideal for pulsed applications with large currents. However, when the present inventors conducted further research for practical application, it was found that the above-proposed superconducting wire still had the following problems.

前述したように、上記提案の超電導線においては、安定
化母材10と外被13との間にセパレータ12が設けら
れ、このセパレータ12により冷か媒体通路14が確保
されているが、この冷却媒体流路14を確保するための
セパレータ12は、第6図に示されるように丸線または
平角線(図においては平角線)を安定化母材10の外側
に開放螺旋状に巻付けて設けられる。しかし、安定化母
材10は図示されるように平角状の断面を持つので、こ
の安定化母材10に上記丸線または平角線を巻付けた場
合にはこの安定化母材10の各エツジ部での浮上がりが
避けられない。そしてこのようにエツジ部におけるセパ
レータ12の浮上がりが存在する状態で安定化母材10
およびセパレータ12を外被13により被覆し、更に、
マグネットを形成するためにコイル状に巻回した場合、
超電導線全体にねじれが生じ、さらに安定化母材10内
部の超電導索線に変形を生じることがある。
As mentioned above, in the proposed superconducting wire, the separator 12 is provided between the stabilizing base material 10 and the jacket 13, and the separator 12 secures the cooling medium passage 14. The separator 12 for securing the medium flow path 14 is provided by winding a round wire or a flat wire (flat wire in the figure) in an open spiral around the outside of the stabilizing base material 10, as shown in FIG. It will be done. However, since the stabilizing base material 10 has a rectangular cross section as shown, when the round wire or rectangular wire is wound around the stabilizing base material 10, each edge of the stabilizing base material 10 Lifting up in some parts is unavoidable. In this way, the stabilizing base material 10 is
and the separator 12 is covered with an outer covering 13, and further,
When wound into a coil to form a magnet,
Twisting may occur in the entire superconducting wire, and furthermore, the superconducting cable inside the stabilizing base material 10 may be deformed.

また、丸線または平角線を安定化母材10の外側に開放
螺旋状に巻付けてセパレータ]2を設ける場合、単に巻
付けるのみでは丸線または平角線を安定化母材10に密
着させるのは困難であり、外被13を被覆して成型した
後においてマグネット等に使用するためコイルに巻き通
電した際に発生する電磁力により、安定化母材10とセ
パレータ12との間の上記間隙が安定化母材10及びそ
の内層材の動きを許容し、クエンチが発生する原因とな
る。
In addition, when the separator] 2 is provided by winding a round wire or a flat wire in an open spiral around the outside of the stabilizing base material 10, it is difficult to bring the round wire or flat wire into close contact with the stabilizing base material 10 by simply winding it. It is difficult to do this, and after the outer sheath 13 is coated and molded, the above-mentioned gap between the stabilizing base material 10 and the separator 12 is reduced due to the electromagnetic force generated when the coil is wound and energized for use in a magnet or the like. This allows the stabilizing base material 10 and its inner layer material to move, causing quench to occur.

したがって、以上の不都合を無(すためには、丸線また
は平角線を安定化母材10の外側に巻付けた後、巻付け
られた丸線等を安定化母材10の外面に向けて押圧し、
密着させる必要がある。しかしながら、そのように丸線
等を安定化母材10の外面に向けて押圧する場合、その
押圧力により安定化母材10が変形し、安定化母材10
内部の超電3?素線が損傷を受けてしまうとtlう不都
合がある。
Therefore, in order to eliminate the above-mentioned inconvenience, after winding a round wire or a rectangular wire around the outside of the stabilizing base material 10, the wrapped round wire, etc. should be directed toward the outside of the stabilizing base material 10. Press,
It needs to be in close contact. However, when pressing a round wire or the like toward the outer surface of the stabilizing base material 10, the stabilizing base material 10 deforms due to the pressing force, and the stabilizing base material 10
Superelectric 3 inside? There is an inconvenience if the strands are damaged.

この発明は以上の事情に鑑みてなされたものであり、前
述の特願昭57−45795号記載の超電導線を製造す
るに際し、安定化母材と外被との間に設けられるセパレ
ータを、安定化母材内部を損傷することなく安定化母材
に密着させて成型することができるようにしたセパレー
タの形成方法を提供することを目的とする。
This invention has been made in view of the above circumstances, and when manufacturing the superconducting wire described in the above-mentioned Japanese Patent Application No. 57-45795, it is possible to stabilize the separator provided between the stabilizing base material and the jacket. An object of the present invention is to provide a method for forming a separator that can be molded in close contact with a stabilized base material without damaging the inside of the stabilized base material.

すなわちこの発明のセパレータ形成方法は、中空状をな
す断面矩形状の安定化母材の内側に複数本の超電導素線
が収容され、前記安定化母材とこれを取囲む外被との間
にはセパレータが配設され、このセパレータにより安定
化母材の長手方向に連続する冷却媒体流路が確保され、
かつ前記安定化母材にはその内外を連通ずる連通路が形
成されており、前記冷却媒体流路を流れる冷却媒体が前
記連通路を介し安定化母材内の超電導素線間の空隙に流
入して超電導素線を直接冷却し得るように構成した強制
冷却型lB電導線の上記セパレータを形成するにあたっ
て、上記セパレータの素材となる中空状のパイプを上記
安定化母材に開放螺旋状に巻付け、その巻付けられたパ
イプを上記安定化母材に対して押圧することにより偏平
状に成型し、同時にその押圧力により、当該パイプを安
定化母材に対して、密着させてセパレータを形成するよ
うにしたことを特徴とするものである。
That is, in the separator forming method of the present invention, a plurality of superconducting strands are housed inside a hollow stabilizing base material having a rectangular cross section, and a plurality of superconducting strands are housed between the stabilizing base material and an outer sheath surrounding it. A separator is provided, and this separator ensures a continuous coolant flow path in the longitudinal direction of the stabilizing base material.
The stabilizing base material is formed with a communicating path that communicates the inside and outside thereof, and the cooling medium flowing through the cooling medium flow path flows into the gap between the superconducting wires in the stabilizing base material through the communicating path. In forming the separator of the forced cooling type IB conducting wire, which is configured to directly cool the superconducting wire, a hollow pipe, which is the material of the separator, is wound in an open spiral around the stabilizing base material. The wrapped pipe is pressed against the stabilizing base material to form a flat shape, and at the same time, the pressing force brings the pipe into close contact with the stabilizing base material to form a separator. It is characterized by the fact that it is made to do so.

以下にこの発明のセパレータの形成方法をさらに詳細に
説明する。
The method for forming a separator of the present invention will be explained in more detail below.

第7図はこの発明のセパレータの形成方法の手順を示す
図である。第7図(A)に示されるように、先ず、安定
化母材10の外面に、中空状のパイプ20を開放螺旋状
に巻付ける。この実施例においては、中空状のパイプ2
0として内側に中空部21を有する断面円形のものが用
いられている。
FIG. 7 is a diagram showing the procedure of a method for forming a separator according to the present invention. As shown in FIG. 7(A), first, a hollow pipe 20 is wound around the outer surface of the stabilizing base material 10 in an open spiral. In this embodiment, a hollow pipe 2
0, which has a circular cross section and has a hollow part 21 inside is used.

次に、以上のように安定化母材10の外面に巻付けられ
たパイプ20を安定化母材10の外面に対して、例えば
圧延ロール等を用いて押圧する。パイプ20は上述した
ように中空状とされていることから、このように押圧さ
れることにより容易に変形し、偏平状に成型される。こ
の場合、中空部21を形成するパイプ20の内側面は、
第7図(B)に示されるように安定化母材10からみて
内方と外方が接合した状態とした方が、後に変形する余
地がなく望ましい。電磁力作用時(通電時)に変形する
と、その分だけ寸法的に余裕が生じワイヤムーブメント
の原因となる。従ってパイプをつぶすのは製造過程で成
されるべきで電磁力の作用時には成されるべぎでない。
Next, the pipe 20 wound around the outer surface of the stabilizing base material 10 as described above is pressed against the outer surface of the stabilizing base material 10 using, for example, a rolling roll. Since the pipe 20 is hollow as described above, it is easily deformed by being pressed in this way and is formed into a flat shape. In this case, the inner surface of the pipe 20 forming the hollow part 21 is
As shown in FIG. 7(B), it is preferable that the inner and outer sides of the stabilizing base material 10 be joined together, since there is no room for deformation later. When deformed when electromagnetic force is applied (when energized), a corresponding dimensional margin is created, causing wire movement. Therefore, crushing the pipe should be done during the manufacturing process and not when electromagnetic force is applied.

そして、この過程においてパイプ20は安定化母材10
の外側面及びエツジ部に対して密着される。また、中空
パイプ20は中空部21を有するため変形抵抗が小さく
、通常の丸線の1/3〜1/20の変形抵抗を持つに過
ぎないので、この中空パイプ20を安定化母材1oに対
して押圧して成型しても、安定化母材10に変形は生じ
ない。
In this process, the pipe 20 is stabilized by the stabilizing base material 10.
The outer surface and edges of the In addition, since the hollow pipe 20 has a hollow portion 21, its deformation resistance is small, and the deformation resistance is only 1/3 to 1/20 of that of a normal round wire, so this hollow pipe 20 is used as the stabilizing base material 1o. Even if the stabilizing base material 10 is pressed and molded, no deformation occurs in the stabilizing base material 10.

したがって、安定化母材10の内部の超電導素線11が
lfl (1を受けるようなこともない。
Therefore, the superconducting wire 11 inside the stabilizing base material 10 will not receive lfl(1).

以上説明したように、この発明によれば、強制冷却型超
電導線のセパレータを形成するにあたって、セパレータ
の素−材として中空状のパイプを用い、その中空状パイ
プを安定化母材に対して巻付けた後、安定化母材に対し
て押圧して成型すると同時に、当該安定化母材に密着す
るようにしてセパレータを形成するようにしたことによ
り、セパレータの安定化母材からの浮上がりが無くなり
、したがって、そのようにして製造した超電導線をマグ
ネット等に使用するためにコイルに巻き、通電しても、
安定化母材及びその内部の超電導素線が電磁力の作用に
より肋きを生じてクエンチが発生するというようなこと
はない。また、特にセパレータの素材として中空状のパ
イプを用いたので、その中空パイプが安定化母材の外面
に密着するように安定化母材に対して押圧しても、中空
パイプ自体が変形しながら安定化母材に密着して、その
押圧力を吸収するので、安定化母材自体の変形は生じず
、安定化母材内部の超電導素線が損傷を受け4ようなこ
とはない。
As explained above, according to the present invention, when forming a separator for a forced cooling superconducting wire, a hollow pipe is used as the material of the separator, and the hollow pipe is wound around a stabilizing base material. After attaching, the separator is formed by pressing against the stabilizing base material, and at the same time, the separator is formed in close contact with the stabilizing base material, thereby preventing the separator from lifting up from the stabilizing base material. Therefore, even if the superconducting wire manufactured in this way is wound into a coil for use in a magnet etc. and energized,
There is no possibility that the stabilizing base material and the superconducting strands therein will be stiffened due to the action of electromagnetic force and that quenching will occur. In addition, since a hollow pipe was used as the material for the separator, even if the hollow pipe was pressed against the stabilizing base material so that it was in close contact with the outer surface of the stabilizing base material, the hollow pipe itself would not deform. Since it is in close contact with the stabilizing base material and absorbing its pressing force, the stabilizing base material itself will not be deformed, and the superconducting wires inside the stabilizing base material will not be damaged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図まではそれぞれ従来の中空超電導線の
一例を示す断面図、第4図は従来の直接冷fJI型超電
導線の一例を示す断面図、第5図はこの発明に先行して
提案されている超電導線の一例を示ず斜視図、第6図は
第5図の超電導線における安定化母材およびセパレータ
を示す斜視図、第7図はこの発明のセパレータ形成方法
の一例を段階的に示す斜視図である。 10・・・安定化母材、 11・・・超電導素線、 1
3・・・外被、 14・・・冷却媒体通路、 15・・
・連通路、20・・・パイプ、 21・・・中空部。 出願人  藤倉電線株式会社 代理人  弁理士 豊田武久 (ほか1名) 第1図   6C 第2図 第7図 (A) (8) 手   続   補   正   書  (方式)%式
% 2、発明の名称 強制冷却型超電導線におけるセパレータの形成方法3、
補正をする者 事件との関係 特許出願人 住 所  東京都江東区木場1丁目5番1号名 称  
(518)藤倉電線株式会社4、代理人 住  所  東京都港区三田3丁目4番18号二葉ビル
803号 電話(153) 65915、゛補正命令の
日付 昭和58年4月26日(発送日) 6、補正の対象 図面 7、補正の内容 70−
1 to 3 are cross-sectional views showing an example of a conventional hollow superconducting wire, FIG. 4 is a cross-sectional view showing an example of a conventional directly cooled fJI superconducting wire, and FIG. 5 is a cross-sectional view showing an example of a conventional directly cooled fJI superconducting wire. 6 is a perspective view showing a stabilizing base material and separator in the superconducting wire of FIG. 5, and FIG. 7 is a perspective view showing an example of the separator forming method of the present invention. It is a perspective view shown step by step. 10... Stabilizing base material, 11... Superconducting wire, 1
3... Outer cover, 14... Cooling medium passage, 15...
・Communication path, 20...pipe, 21...hollow part. Applicant Fujikura Electric Cable Co., Ltd. Agent Patent attorney Takehisa Toyota (and one other person) Figure 1 6C Figure 2 Figure 7 (A) (8) Procedural amendment (Method) % formula % 2. Mandatory name of invention Method for forming separators in cooled superconducting wire 3,
Relationship with the case of the person making the amendment Patent applicant address 1-5-1 Kiba, Koto-ku, Tokyo Name
(518) Fujikura Electric Cable Co., Ltd. 4, Agent address: 803 Futaba Building, 3-4-18 Mita, Minato-ku, Tokyo Telephone: (153) 65915, ゛Date of amendment order: April 26, 1980 (shipment date) 6. Drawings to be corrected 7. Contents of correction 70-

Claims (1)

【特許請求の範囲】 中空状をなす断面矩形状の安定化母材の内側に複数本の
超電導素線が収容され、前記安定化母材とこれを取囲む
外被との間にはセパレータが配設され、このセパレータ
により安定化母材の長手方向に連続する冷却媒体流路が
確保され、かつ前記安定化母材にはその内外を連通する
連通路が形成されており、前記冷却媒体流路を流れる冷
却媒体が前記連通路を介し安定化母材内の超電導素線間
の空隙に流入して超電導素線を直接冷却し得るように構
成した強制冷却型超電S線の上記セパレータを形成する
にあたンて、 上記セパレータの素材となる中空状のパイプを上記安定
化母材に開放へ旋状に巻付け、その巻付けられたパイプ
を上記安定化母材に対して押圧して偏平状に成型し、同
時にその押圧力により当該パイプを安定化母材に対して
密着させてセパレータを形成するようにしたことを特徴
とする強制冷却型超電導線におけるセパレータの形成方
法。
[Scope of Claims] A plurality of superconducting strands are housed inside a hollow stabilizing base material with a rectangular cross section, and a separator is provided between the stabilizing base material and an outer sheath surrounding it. The separator ensures a continuous cooling medium flow path in the longitudinal direction of the stabilizing base material, and the stabilizing base material has a communication path that communicates between the inside and outside of the stabilizing base material, and the cooling medium flow path is formed in the stabilizing base material. The separator of the forced cooling type superconducting S-wire is configured such that the cooling medium flowing through the channel flows into the gap between the superconducting wires in the stabilizing base material through the communication channel to directly cool the superconducting wires. When forming the separator, a hollow pipe, which is the material of the separator, is wound around the stabilizing base material in an open spiral shape, and the wrapped pipe is pressed against the stabilizing base material. 1. A method for forming a separator in a forced cooling superconducting wire, characterized in that the pipe is formed into a flat shape using the compressor, and at the same time the pipe is brought into close contact with a stabilizing base material by the pressing force to form a separator.
JP58007104A 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor Granted JPS59132512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007104A JPS59132512A (en) 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007104A JPS59132512A (en) 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor

Publications (2)

Publication Number Publication Date
JPS59132512A true JPS59132512A (en) 1984-07-30
JPH0250565B2 JPH0250565B2 (en) 1990-11-02

Family

ID=11656775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007104A Granted JPS59132512A (en) 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor

Country Status (1)

Country Link
JP (1) JPS59132512A (en)

Also Published As

Publication number Publication date
JPH0250565B2 (en) 1990-11-02

Similar Documents

Publication Publication Date Title
KR100706494B1 (en) Superconducting cable
US4568900A (en) Forced-cooled superconductor
JP2001244109A (en) High-temperature superconducting coil device
US20050079980A1 (en) Superconducting cable
JP3151159B2 (en) Superconducting current lead
JP2015028912A (en) Superconductive wire rod and superconductive coil using the same
JPH10214713A (en) Superconducting coil
JPH11260162A (en) Superconducting current lead
JPS59132512A (en) Method of forming separator in forcibly cooling superconductive conductor
CN112151218B (en) CORC superconducting cable electrifying conductor
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JPH0131244B2 (en)
JP2002008459A (en) Superconducting cable
JPS5990306A (en) Forcibly cooled superconductive wire
JPS5991604A (en) Forcibly cooled superconductive wire
JPS59130011A (en) Forcibly cooling superconductive wire
JPS59130013A (en) Method of forming separator in forcibly cooling superconductive conductor
JPS59132513A (en) Method of forming separator in forcibly cooling superconductive conductor
JPS59130012A (en) Forcibly cooling superconductive wire
JPS5836442B2 (en) superconducting wire
Nomura et al. Construction of a solenoid magnet with a new aluminium stabilized superconductor
JP2005129966A (en) Amorphous iron core transformer
JPH06260335A (en) High temperature superconducting magnet
JPH063692B2 (en) Forced cooling superconducting wire
JPS6166380A (en) Connecting structure of forcibly cooled superconductive conductor