JPS59132513A - Method of forming separator in forcibly cooling superconductive conductor - Google Patents

Method of forming separator in forcibly cooling superconductive conductor

Info

Publication number
JPS59132513A
JPS59132513A JP58007105A JP710583A JPS59132513A JP S59132513 A JPS59132513 A JP S59132513A JP 58007105 A JP58007105 A JP 58007105A JP 710583 A JP710583 A JP 710583A JP S59132513 A JPS59132513 A JP S59132513A
Authority
JP
Japan
Prior art keywords
base material
stabilizing base
separator
superconducting wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58007105A
Other languages
Japanese (ja)
Inventor
河野 宰
池野 義光
伸行 定方
優 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58007105A priority Critical patent/JPS59132513A/en
Publication of JPS59132513A publication Critical patent/JPS59132513A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は核融合炉等の超電導マグネットの超電導コイ
ルに使用される超電導線に関し、特に冷fJ1媒体によ
り強制循環冷f、IIさせる型式の超電導線に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting wire used in a superconducting coil of a superconducting magnet such as a nuclear fusion reactor, and particularly to a type of superconducting wire subjected to forced circulation cooling f, II using a cold fJ1 medium.

最近に至り、断面中央に冷却媒体通路を形成したいわゆ
る中空超電導線を用い、冷fJ]媒体通路に超臨界圧ヘ
リウム等の冷却媒体を強制循環させて 。
Recently, a so-called hollow superconducting wire with a cooling medium passage formed in the center of its cross section has been used, and a cooling medium such as supercritical pressure helium is forced to circulate in the cold medium passage.

超電導線をその内側から強制冷却するようにした超電導
コイルが種々提案されている。このような超電導コイル
に使用される中空超電導線としては、例えば第1図に示
すように、中央に冷却媒体通路1を形成した断面矩形状
の銅等の安定化母材2の壁面内に超電導素線3Aが埋め
込まれた型式のもの、あるいは第2図に示すように同じ
く断面矩形状の銅等の安定化母材2の外面に極細多芯超
電導素線3Bが巻付けもしくは撚り合わされた型式のも
の、さらには第3図に示すように′断面矩形状の安定化
母材2の外面に凹溝4が形成されるとともに各凹溝4に
成形超電導素線3Cが嵌合固定された型式のもの等があ
る。
Various superconducting coils have been proposed in which superconducting wires are forcibly cooled from inside. A hollow superconducting wire used in such a superconducting coil is, for example, as shown in FIG. A model in which the strands 3A are embedded, or a model in which the ultrafine multicore superconducting strands 3B are wound or twisted around the outer surface of a stabilizing base material 2 made of copper or the like, which also has a rectangular cross section, as shown in Fig. 2. Furthermore, as shown in FIG. 3, grooves 4 are formed on the outer surface of a stabilizing base material 2 having a rectangular cross section, and molded superconducting wires 3C are fitted and fixed in each groove 4. There are things like that.

このような強制冷却型の超電導線を用いた超電導マグネ
ットにおいては、導体内に冷fJ]媒体が強制循環され
るため各部が均等に冷却され、またコイルがコンバク1
〜でしかも機械的強度が高く、ざらに冷却媒体の使用量
が少なくて済む等の利点を有するが、その反面、超電導
素線に対する冷却が銅等の安定化母材を介しての間接冷
却となっているため、冷却効率が低く、そのため何らか
の原因で超電導素線の一部にヒートスポットが生じて超
電導特性が失われた場合に、その回復が遅れる問題があ
る。
In a superconducting magnet using such a forced cooling type superconducting wire, a cold fJ] medium is forcedly circulated inside the conductor, so each part is cooled evenly, and the coil is
Although it has the advantage of having high mechanical strength and requiring only a small amount of cooling medium, on the other hand, the cooling of the superconducting wire is indirect cooling via a stabilizing base material such as copper. As a result, cooling efficiency is low, and therefore, if a heat spot occurs in a part of the superconducting wire for some reason and the superconducting properties are lost, there is a problem in that recovery is delayed.

一方、第4図に示すように角型筒状体6の内側に多数本
の超電導素線3Bを収容し、その超電導素線間の空隙7
に液体ヘリウム等の冷却媒体を流ずようにしたいわゆる
ハンドルタイプの超電導線も提案されており、この場合
には超電導素線3Bの表面に直接冷却媒体力く接して直
接冷却が行われる。しかしながらこの型式の超電導線に
おいては冷f!I媒体をスムーズに流すことが相当に困
難であり、局部的に冷f;I]ts体の流れが滞って温
度上昇し、ヒートスポットが生じたり、またヒートスポ
ットの回復がすみやかに行われなかったりする欠点があ
る。
On the other hand, as shown in FIG. 4, a large number of superconducting strands 3B are accommodated inside the square cylindrical body 6, and gaps 7 between the superconducting strands 3B are accommodated.
A so-called handle-type superconducting wire has also been proposed in which a cooling medium such as liquid helium is not allowed to flow through the superconducting wire, and in this case, the surface of the superconducting wire 3B is brought into direct contact with the cooling medium for direct cooling. However, in this type of superconducting wire, cold f! It is quite difficult to flow the I medium smoothly, and the flow of the cold body is locally stagnated, the temperature rises, and heat spots occur, and the heat spots do not recover quickly. There are some drawbacks.

そこで本発明者等は、前記中空超電導線の長所と第4図
に示す直接冷却型超電導線の長所とを取入れて、全体的
な冷却効率が高(しかも局部的な安定性も良好で、かつ
大きな電磁力に耐え得る構造とした超電導線を特願昭5
7−45795号において提案している。この提案の超
電導線の一例を第5図に示す。
Therefore, the inventors of the present invention incorporated the advantages of the hollow superconducting wire and the direct cooling type superconducting wire shown in FIG. 4 to achieve high overall cooling efficiency (and good local stability). A special application was made in 1973 for a superconducting wire with a structure that could withstand large electromagnetic forces.
It is proposed in No. 7-45795. An example of this proposed superconducting wire is shown in FIG.

第5図において、銅、銅合金、高純度アルミニウム、ア
ルミニウム合金等の良導電性材料からなる断面矩形状の
中空な安定化母材10の内側には、Nb  Ti合金、
Nb  T;−T a合金等の合金系超電導材料あるい
はNb3Sn、 V3 Ga 、 Nb5G8等の化合
物系超電導材料からなる複数本の超電導素線11が収容
されている。そして安定化母材10の外但゛−は安定化
母材10と同様な材料あるいはステンレスtj4等から
なる適当数のセパレータ12を介して銅、ステンレス>
H、チタン、チタン合f1等からなる断面矩形状の外被
13によって取囲まれ、前記レバレータ12により安定
化Bl材10の外面と外113の内面との間に冷却媒体
流路14が確保されている。さらに前記安定化母材10
には、その外側の冷2JI媒体流路14と内側の空間と
を連通させる丸孔状、長孔状、あるいはスリッl〜状等
の復改の連通路15が形成されている。したがって冷i
Jl媒体流路14を流れるjfl臨界圧ヘリウム等の冷
却媒体は連通路15を流通して安定化母材]Oの内側の
超電導素線11の線間の空隙16に流入し、超電導素線
11に直接冷却媒体が接することになる。そしてこの安
定化母材10の内側の超電導素線11の線間空隙16に
おいても冷却媒体の流れが生じることになる。
In FIG. 5, inside a hollow stabilizing base material 10 with a rectangular cross section made of a highly conductive material such as copper, copper alloy, high purity aluminum, or aluminum alloy, Nb Ti alloy,
A plurality of superconducting strands 11 made of an alloy superconducting material such as NbT;-Ta alloy or a compound superconducting material such as Nb3Sn, V3Ga, Nb5G8, etc. are accommodated. The outer surface of the stabilizing base material 10 is made of copper, stainless steel, etc. through an appropriate number of separators 12 made of the same material as the stabilizing base material 10 or stainless steel.
It is surrounded by an outer cover 13 having a rectangular cross section made of H, titanium, titanium alloy f1, etc., and a cooling medium flow path 14 is secured between the outer surface of the stabilized Bl material 10 and the inner surface of the outer layer 113 by the lever regulator 12. ing. Further, the stabilizing base material 10
A communication passage 15 is formed in the shape of a round hole, a long hole, or a slit shape, which communicates the cold 2JI medium flow path 14 on the outside with the space on the inside. Therefore cold i
A cooling medium such as jfl critical pressure helium flowing through the Jl medium flow path 14 flows through the communication path 15 and flows into the gap 16 between the wires of the superconducting wires 11 inside the stabilizing base material]O. The cooling medium comes into direct contact with the A flow of the cooling medium also occurs in the inter-wire gaps 16 of the superconducting wires 11 inside the stabilizing base material 10.

上記提案の超電導線においては、全体的な冷却は安定化
母材10の外側の冷却媒体流路14を流れる冷却媒体の
定常流によってなされるため従来の中空型超電導線の場
合と同様に均等冷却か行われ、しかも安定化母材10内
の超電導素線11自体にも直接冷f、II媒体か接して
iI接冷却がなされるため冷却効率が高く、なおかつ安
定化母材10の外側の冷却媒体と内側の)θ却媒体とが
連通路15を介して流入、流出して交換されるため従来
の第4図に示プバンドルタイブの直接冷却超電導線の場
合のように内側の冷却媒体が局部的に温度上昇してヒー
トスポットが生じたりその回復が遅れたりり“ることか
極めて少なく、したがってトータルとしての冷却効率が
擾れると同時に定常安定性お。
In the above-proposed superconducting wire, overall cooling is achieved by a steady flow of the cooling medium flowing through the cooling medium channel 14 outside the stabilizing base material 10, so uniform cooling is achieved as in the case of conventional hollow superconducting wires. In addition, the superconducting wire 11 itself inside the stabilizing base material 10 is also directly cooled by the cold f, II medium, so cooling efficiency is high, and the cooling of the outside of the stabilizing base material 10 is improved. Since the medium and the inside θ cooling medium are exchanged by flowing in and out through the communication path 15, the inside cooling medium is It is extremely unlikely that a heat spot will occur due to a localized temperature rise, or that its recovery will be delayed, which will impair the overall cooling efficiency and at the same time reduce steady-state stability.

よび過渡安定性も極めて優れている。また上記提案の超
電導線においては、じよう乱が生じて超電導状態が破れ
、磁束流状態となった時に電流は安定化R1材に分流す
ることになるため安定化母材の部分でも発熱することに
なるが、この安定化母材の発熱も外側の冷却媒体により
冷却されるから、第4図に示す従来のハンドルタイプの
直接冷却方式に比べ、超電導状態をすみやかに回復する
ことができ、さらに上述のように安定化母材の内外の冷
却媒体が連通路を介して流入、流出するため、安定化母
材内の超電導素線の集合構造が、その長手方向に冷fJ
1媒体がスムーズに流れにくい構造例えば編組構造や成
形撚線構造となっていても特に支障はなく、したがって
超電導素線の集合構造についての制約がないためその設
計の自由度が大きく、そしてまた超電導素線が超電導線
′の中′央部弁に配置されるため、マグネット等のコイ
ルに巻いた場合の曲げ歪の影響による超電導素線の特性
・劣化が少なく、しかも超電導素線は外側の安定化母材
によって保護されるため外部からの電磁力により超ml
索線が損(b劣化することが有効に防止される等、従来
の超電導線と比較して格段に優れた特性を有する。
It also has excellent transient stability. In addition, in the superconducting wire proposed above, when disturbance occurs and the superconducting state is broken and a magnetic flux flow state occurs, the current is shunted to the stabilizing R1 material, so heat is generated even in the stabilizing base material. However, since the heat generated by the stabilizing base material is also cooled by the cooling medium on the outside, the superconducting state can be recovered more quickly than with the conventional handle-type direct cooling method shown in Figure 4. As mentioned above, the cooling medium inside and outside the stabilizing base material flows in and out through the communication path, so that the aggregate structure of superconducting wires in the stabilizing base material cools fJ in the longitudinal direction.
1. Even if the medium does not flow smoothly, for example, a braided structure or a formed stranded wire structure, there is no particular problem.Therefore, there is no restriction on the aggregate structure of superconducting wires, so there is a great degree of freedom in its design. Since the strands are placed in the central valve of the superconducting wire, there is little deterioration in the characteristics of the superconducting strands due to the effects of bending strain when wound around a coil such as a magnet. Ultra ml is protected by external electromagnetic force because it is protected by a
It has much superior properties compared to conventional superconducting wires, such as effectively preventing loss (b deterioration) of the cable wires.

なお第5図の超電導線においては、複数の超電導素線1
1からなる超電導素線集合体17A、17Bを2層に重
ね合せて安定化母材10内に収容し、かつ2層の超電導
素線集合体17A、17Bの間にキュプロニッケル等の
高抵抗導電材料からなる薄くチー718を介挿し、各層
の超電導素線集合体1.7A、17Bが直接接触しない
構成とされて、いる。このように構成することにより、
各層間に結合電流が流れて例えばパルス駆動のごとく励
磁速度が什めて速い場合等における超電導特性の低下を
防止することができる。さらに第5図の超り月≦口こお
いては各層の超電導素線集合体17A、17Bと安定化
母材10との間にも前記同様な高抵抗導電材料からなる
薄いテープ19が介挿されており、このテープ19は、
安定化母材1゜を介して両層間に結合電流が流れること
を防止する役割を果たす。但し第5図においては図の簡
単化のため各JS17A、17Bの外面の全面にそれぞ
れテープ19を設けた状態を示しているが、実際には連
通路15からの冷却媒体の流入を妨げないように、適宜
空所を形成しておくのが通常である。
In the superconducting wire shown in FIG. 5, a plurality of superconducting strands 1
1 superconducting wire assemblies 17A and 17B are stacked in two layers and accommodated in the stabilizing base material 10, and a high resistance conductive material such as cupronickel is placed between the two layers of superconducting wire assemblies 17A and 17B. A thin chip 718 made of material is inserted so that the superconducting wire assemblies 1.7A and 17B of each layer do not come into direct contact with each other. By configuring like this,
A coupling current flows between each layer, making it possible to prevent deterioration of superconducting properties when the excitation speed is relatively high, such as in pulse drive. Furthermore, in FIG. 5, a thin tape 19 made of the same high-resistance conductive material is inserted between the superconducting wire aggregates 17A, 17B of each layer and the stabilizing base material 10. This tape 19 is
It serves to prevent a coupling current from flowing between both layers through the stabilizing base material 1°. However, in order to simplify the drawing, in FIG. 5, the tape 19 is shown provided on the entire outer surface of each JS17A and 17B, but in reality, the tape 19 is provided on the entire outer surface of each JS17A and 17B, but in reality, the tape 19 is provided so as not to obstruct the inflow of the cooling medium from the communication path 15. It is usual to form a space as appropriate.

以上の、ように前記提案の超電導線は、従来の超電導線
と比較して冷却効率が良好でしかも安定性に優れ、かつ
また曲げや外力等に対する機械的強度も優れ、核融合の
ほか、各種電気機械、エネルギー貯蔵、各磁気共鳴吸収
、磁気分離等の各種用途、特に大型・高磁界マグネット
用超電導線に最適なものであり、また特に超電導線を多
層に収容して高抵抗お電材料からなるチー718や1つ
を介挿した場合には、各層間の結合電流が高抵抗導電テ
ープにJ−って防止されるため、大電流によるパルス的
な用途に11j寵である。しかしながら本完案者等がさ
らに実用化のための研究をすづ−めたところ、上記提案
の超電導ねにおいては次のような問題があることが判明
した。
As described above, the proposed superconducting wire has better cooling efficiency and stability than conventional superconducting wires, and also has excellent mechanical strength against bending and external forces, and can be used for various purposes in addition to nuclear fusion. It is ideal for various applications such as electrical machinery, energy storage, magnetic resonance absorption, magnetic separation, etc., especially for superconducting wires for large, high-field magnets, and is especially suited for use in high-resistance electrical materials by accommodating superconducting wires in multiple layers. In the case where a conductor 718 or one conductor is inserted, the coupling current between each layer is prevented by the high-resistance conductive tape, so it is suitable for pulse applications using large currents. However, when the authors of the present invention conducted further research for practical application, it was discovered that the above-mentioned proposed superconductor had the following problems.

すなわちこの秤のりfi電導線において安定化母材10
と外被13との間に冷fJ′l媒体流路14をUif保
するためのセパレータ12を設けるための手段としては
、第6図に示すよ−うにセパレータ12として線材状あ
るいは帯状のものを用い、これを安定化母材10の外側
に開放Ijj4旋状1こ誉付けることが考えられていた
。しかしながらこのようにセパレータ12を安定化母材
10の外側に巻付けてなるffl電導線は、これをコイ
ル巻加工のために曲げる際にセパレータ12が締まる傾
向を示し、そのため曲ザづらくなり、特に小径にコイル
巻加工を行うことが困難となって、無理に曲げ加工しよ
うとすれば曲げが不均一となったり、安定化母材に割れ
や座屈が生ずるおそれもあった。
That is, in this scale fi conductive wire, the stabilizing base material 10
As a means for providing a separator 12 for maintaining the cold fJ'l medium flow path 14 between the casing 13 and the jacket 13, as shown in FIG. It has been considered to attach this to the outside of the stabilizing base material 10 in an open Ijj4 spiral shape. However, in the ffl conductive wire in which the separator 12 is wound around the outside of the stabilizing base material 10, the separator 12 tends to tighten when it is bent for coil winding, making it difficult to bend, especially It became difficult to perform coil winding to a small diameter, and if you tried to forcefully bend it, there was a risk that the bending would be uneven, or that the stabilizing base material would crack or buckle.

また、セパレータ12を安定化母材1oに巻付けるので
はなく、安定化母材1oの外面に沿わせる手段も提案さ
れているが、いずれの手段を採っても、安定化母材10
とセパレータ12を密着させることが困難であるという
問題があり、上記安定化母材10とセパレータ12どの
間には間隙が存在することがある。このように安定化母
材1゜とセパレータ12との間に間隙が存在ずろと、上
記外被13を被覆して成型した後においてマグネッ1〜
等に使用するためコイルに巻ぎ通常した際に発生する電
磁力により、安定化母材1oとセパレータ12との間の
上記間隙が安定化母材10及び内層口の動きを許容し、
クエンチが発生する原因となる。
Also, a method has been proposed in which the separator 12 is not wrapped around the stabilizing base material 1o but along the outer surface of the stabilizing base material 1o.
There is a problem in that it is difficult to bring the stabilizing base material 10 and the separator 12 into close contact with each other, and a gap may exist between the stabilizing base material 10 and the separator 12. If there is no gap between the stabilizing base material 1° and the separator 12, the magnets 1-
The above-mentioned gap between the stabilizing base material 1o and the separator 12 allows the movement of the stabilizing base material 10 and the inner layer opening due to the electromagnetic force generated when it is normally wound into a coil for use in, for example,
This causes quench to occur.

そこで本発明者等は、安定化母材10の外面に突条部を
一体的に形成し、その突条部を上記セパレータ12とし
て機能させ、前記冷却媒体流路を確保するという手段を
提案した。すなわち、第7図に示されるように全体とし
てほぼ断面矩形状をなす安定化P14第10の外周の各
面にそれぞれ1条以上の突条部20を長手方向に沿って
一体に形成し、第8図に示されるように、この突条部2
0を外被13と安定化母材10との間の冷却媒体流路1
4を確保するための前記セパレータ12として機能させ
るのである。このようにセパレータの役割を果たす突条
部20を一体に形成した安定化母材10を用いた超電導
線をコイル巻加工のために曲げた場合には、突条部20
の部分が安定化母材10と一体となって挙動し、したが
って別体のセパレータ12を安定化母材10に巻付けた
場合と比較して格段に容易に曲げることができ、また安
定化母材10と突条部20とが一体であることから、外
被13を被覆して成型した後にも安定化母材10とセパ
レータ12との間には間隙が生じない。
Therefore, the present inventors proposed a method of integrally forming a protrusion on the outer surface of the stabilizing base material 10, and making the protrusion function as the separator 12 to secure the cooling medium flow path. . That is, as shown in FIG. 7, one or more protrusions 20 are integrally formed along the longitudinal direction on each surface of the outer periphery of the tenth stabilizing plate 14, which has a substantially rectangular cross section as a whole. As shown in Figure 8, this protrusion 2
0 as the cooling medium flow path 1 between the outer jacket 13 and the stabilizing base material 10
The separator 12 functions as the separator 12 for securing the 4. When a superconducting wire using the stabilizing base material 10 integrally formed with the ridges 20 that functions as a separator is bent for coil winding, the ridges 20
The parts act as one with the stabilizing base material 10, and therefore can be bent much more easily than when a separate separator 12 is wrapped around the stabilizing base material 10. Since the material 10 and the protrusion 20 are integrated, no gap is created between the stabilizing base material 10 and the separator 12 even after the outer sheath 13 is covered and molded.

さらに、本発明者等は以上のように安定化母材10にセ
パレータの役割を果たす突条部20を一体に形成するた
めに以下のような手段を提案した。
Further, the present inventors have proposed the following means for integrally forming the protrusion portion 20 that serves as a separator on the stabilizing base material 10 as described above.

すなわち、第9図(A)に示すように無酸素銅等の良導
電導材料からなるテープ状の素材21をロール圧延等に
より第9図(B)に示すように加工して、その表面に複
数の突条部20を形成し、次いでこれを第9図(、C)
に示すように口型チャンネル状に折曲げ加工し、このよ
うにして得られた口型チャンネル状の素材21の開口側
に、前記同様に突条glj 20を形成した別のテープ
状の素材22を第9図(D)に示すようにかぶせて、全
体を断面矩形状になすのである。
That is, as shown in FIG. 9(A), a tape-shaped material 21 made of a highly conductive material such as oxygen-free copper is processed by roll rolling or the like as shown in FIG. 9(B), and the surface thereof is A plurality of protrusions 20 are formed, and then this is shown in FIG. 9 (,C).
As shown in the figure, another tape-shaped material 22 is bent into a mouth-shaped channel shape, and on the opening side of the mouth-shaped channel-shaped material 21 obtained in this way, protrusions glj 20 are formed in the same manner as described above. As shown in FIG. 9(D), the entire structure is made into a rectangular cross-section.

しかしながら、上記手段のように素材21に圧延等を行
い突条部20を形成するのは、それ自体容易ではなく、
また、本発明者等がざらに実用化するための研究をすす
めたところ、上記手段においては次のような問題がある
ことが判明した。
However, forming the protrusions 20 by rolling the material 21 as in the above method is not easy in itself;
Further, when the present inventors conducted a rough research for practical application, it was found that the above-mentioned means had the following problems.

すなわち、−F記手段によればロール圧延により突条部
20、したがって前記冷N’l媒体通路14が作成され
るが、その場合、前記第9図(B)における突条部20
.20間の谷部において、長手方向にはロールで削った
部分が流れてシワが生じ、また幅方向には削った部分に
対しすの両側から引張力が作用して亀裂が生じ易くなる
That is, according to the means described in -F, the protrusion 20, and hence the cold N'l medium passage 14, is created by roll rolling, but in that case, the protrusion 20 in FIG. 9(B) is created by roll rolling.
.. In the trough between 20 and 20 degrees, the part cut by the roll flows in the longitudinal direction, causing wrinkles, and in the width direction, tensile force acts on the cut part from both sides of the chair, making it easy to crack.

そこで、この発明は上記事情に鑑みてなされたものであ
り、特願昭57−45795号記載の超電導線をさらに
改良し、コイル巻加工を容易にし、かつコイル巻加工を
行う際に安定化母材とセパレータとの間に間隙が生じな
いようにするために、安定化母材とセパレータを一体化
して製造するに際して、容易に加工が行え、加工俊にも
材料の欠陥が生じないようにした強制冷却型超電導線の
セパレータの形成方法を提供することを目的とする。
Therefore, this invention was made in view of the above circumstances, and further improves the superconducting wire described in Japanese Patent Application No. 57-45795, makes coil winding easier, and provides a stabilizing matrix during coil winding. In order to prevent gaps from forming between the material and the separator, the stabilizing base material and the separator are manufactured in an integrated manner so that processing can be easily performed and no defects occur in the material during processing. The present invention aims to provide a method for forming a separator for a forced cooling superconducting wire.

すなわちこの発明は、中、空状をなす断面矩形状の安定
化母材の内側に複数本の超電導素線が収容され、前記安
定化母材とこれを取囲む外被との間にはセパレータが設
けられ、このセパレ1−夕により上記安定化母材の長手
方向に連続する冷却媒体流路が形成され、かつ前記安定
化母材にはその内外を連通ずる連通路が形成されており
、前記冷却媒体yPL路を流れる冷N1媒体が前記連通
路を介して安定化母材内の超電導素線を直接冷却し得る
ように構成した強制冷却型超電導線の前記安定化母材の
外面に突条部が一体に形成されて、その突条部が前記冷
却媒体流路を確保するセパレータとされる強制冷却型超
電導線の当該セパレータを形成するにあたって、上記安
定化母材およびセパレータの素材となる板材自体を山部
と谷部を有して起伏するように成型し、当該山部をその
内側空隙の対向面が接合するよう(こ順次幅方向に絞っ
て行き、その内側対向面を相互に接合させて上記山部を
上記板材からの突条部とすることによりセパレータを形
成するようにしたことを特徴とするものである。
That is, in the present invention, a plurality of superconducting strands are housed inside a stabilizing base material having a rectangular cross section and is hollow, and a separator is provided between the stabilizing base material and an outer sheath surrounding the stabilizing base material. A cooling medium flow path continuous in the longitudinal direction of the stabilizing base material is formed by the separator 1, and a communication path is formed in the stabilizing base material to communicate the inside and outside of the stabilizing base material, The forced cooling type superconducting wire is configured such that the cold N1 medium flowing through the cooling medium yPL path can directly cool the superconducting strands in the stabilizing base material through the communication path. In forming the separator of the forced cooling type superconducting wire in which the striations are integrally formed and the protruding striations serve as the separator for securing the cooling medium flow path, the above-mentioned stabilizing base material and the separator material are used. The board material itself is formed to have undulating peaks and troughs, and the peaks are joined to the opposing surfaces of the inner gap (this is successively narrowed in the width direction, and the inner opposing surfaces are joined to each other). The plate material is characterized in that a separator is formed by joining and using the peak portion as a protrusion from the plate material.

以下この発明のセパレータ形成方法をさらに詳細に説明
する。
The separator forming method of the present invention will be explained in more detail below.

@10図はこの発明のセパレータ形成方法の工程を順次
説明するものである。まず、第10図(a >に示すよ
うに無酸素銅等の良尋電導材料からなる平滑なテープ状
の素材21aを第10図(1))に示すように、山部2
3.23と谷部24.24とを有して(Jは波状に起伏
する板材21bに成型する。この板材211)は、前述
の第9図において示されたロール圧延により突条部20
.20が形成された板材21ど異なり、板材自体が起伏
して山部23.23と谷部24.24が形成されたもの
である。なお、この山部23.23の頂部と谷部24.
24の底部は相互に平行な平面とされている。更に、第
10図(C)に示されるように山123.23の幅方向
の径J ヨヒ山”l(23,23内側の間隙が狭小とな
るように、第10図(b)に示す板材21【1の山部2
3.23を、その幅方向に順次絞って行く。そして最終
的には、第10図(d )に示されるように、山部23
.23の内側の間隙が消滅し、内側面が相互に強固に接
合するようにする。このようにすることにより、山部2
3.23は板材21dから一定間隔をおいて突起する突
起部として、この板材21(d)を上記安定化ff1′
+A10として成型する場合に、冷却媒体流路を確保覆
るセパレータとして機能する。
@Figure 10 sequentially explains the steps of the separator forming method of the present invention. First, as shown in FIG. 10 (a), a smooth tape-shaped material 21a made of a good conductive material such as oxygen-free copper is inserted into the crest 2 as shown in FIG. 10 (1).
3.23 and troughs 24.24 (J is molded into a wavy plate material 21b. This plate material 211) is formed into the protruding portion 20 by rolling as shown in FIG. 9 above.
.. 20 is different from the plate material 21 in which the plate material itself is undulating to form peaks 23.23 and troughs 24.24. In addition, the top of this mountain part 23.23 and the valley part 24.
The bottoms of 24 are mutually parallel planes. Furthermore, as shown in FIG. 10(C), the diameter J in the width direction of the peaks 123. 21 [1 mountain part 2
3.23 is sequentially narrowed down in the width direction. Finally, as shown in FIG. 10(d), the peak 23
.. 23 is eliminated, and the inner surfaces are firmly joined to each other. By doing this, the mountain part 2
3.23 is a protrusion that protrudes from the plate material 21d at a constant interval, and this plate material 21(d) is stabilized by the above-mentioned stabilization ff1'.
When molded as +A10, it functions as a separator that secures and covers the cooling medium flow path.

なあ、以上の各工程は適切なロール設計により圧延ロー
ルにJ:ってbカセットロールによっても行うことか可
能である。
Incidentally, each of the above steps can also be carried out by using a rolling roll or a cassette roll with appropriate roll design.

以上のようにこの発明によれば、強制冷却型超電導線の
安定化母材の外面に、この安定化母材と一体なセパレー
タを形成するにあたって、安定化fil材およびセパレ
ータの素材となる板材自体を山部と谷部を有して起伏す
るように成型し、当該山部をF次幅方向に絞って行きセ
パレータとして機能する突条部を形成するようにしたこ
とにより、レバレータを安定化母材と一体化して形成す
るに際して、素材の加工が容易に行え、また、座屈や龜
裂の発生による破壊を防止することができる。
As described above, according to the present invention, in forming a separator integral with the stabilizing base material on the outer surface of the stabilizing base material of a forced cooling type superconducting wire, the stabilizing fil material and the plate material that is the material of the separator are used. By molding the lever into an undulating shape with peaks and troughs, and narrowing the peaks in the F-th width direction to form protrusions that function as separators, the lever can be stabilized. When formed integrally with a material, the material can be easily processed, and destruction due to buckling or cracking can be prevented.

また、セパレータと安定化母材を一体化したことにより
、コイルに巻いた場合でもセパレータと安定化母材との
間には間隙が生じず、したがって、電磁力が作用しても
線材の動きは生じない。
Furthermore, by integrating the separator and the stabilizing base material, there is no gap between the separator and the stabilizing base material even when the wire is wound around a coil, so even if electromagnetic force is applied, the wire will not move. Does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図まではそれぞれ従来の中空超電導線の
一例を示V断面図、第4図は従来の直接冷却型超電導線
の一例を示す断面図、第5図はこの発明に先行して提案
されている超電導線の一例を示す斜視図、第6図は第5
図の超電導線における安定化母材およびセパレータを示
す斜視図、第7図はこの発明の超電導線に用いられる安
定化母材の一例を示す斜視図、第8図は第7図の安定化
母材を用いた超電導線の一例を示す斜視図、第9図(△
)〜(D)は安定化母材の製造方法の一例明のif3電
導線セパレータの形成方法を示す断面図である。 10・・・安定化母材、 11・・・超電導素線、 1
3・・・外被、 14・・・冷却媒体通路、 15・・
・連通路、20・・・突条部、 23・・・山部、 2
4・・・谷部。 出願人  藤倉電線株式会社 代理人  弁理士 豊田武久 (ほか1名) 73 第1図      第2図 第5図
1 to 3 are V cross-sectional views showing an example of a conventional hollow superconducting wire, FIG. 4 is a cross-sectional view showing an example of a conventional direct cooling superconducting wire, and FIG. 5 is a cross-sectional view showing an example of a conventional directly cooled superconducting wire. A perspective view showing an example of a superconducting wire proposed in
FIG. 7 is a perspective view showing an example of the stabilizing base material used in the superconducting wire of the present invention, and FIG. 8 is a perspective view showing the stabilizing base material and separator in the superconducting wire of the present invention. Figure 9 is a perspective view showing an example of a superconducting wire using
) to (D) are cross-sectional views showing a method of forming an IF3 conductive wire separator as an example of a method of manufacturing a stabilizing base material. 10... Stabilizing base material, 11... Superconducting wire, 1
3... Outer cover, 14... Cooling medium passage, 15...
・Communication path, 20... Protrusion portion, 23... Mountain portion, 2
4...Tanibe. Applicant Fujikura Electric Cable Co., Ltd. Agent Patent Attorney Takehisa Toyota (and one other person) 73 Figure 1 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 中空状をなす断面矩形状の安定化母材の内側に複数本の
超電導素線が収容され、前記安定化母材とこれを取囲む
外被との間にはセパレータが設けられ、このセパレータ
により上記安定化母材の長手方向に連続する冷却媒体流
路が形成され、かつ前記安定化良材にはその内外を連通
する連通路が形成されており、前記冷却媒体流路を流れ
る冷却媒体が前記連通路を介して安定化母材内の超電導
素線を直接冷IJ1シ得るように構成した強制冷却型超
電導線の前記安定化母材の外面に突条部が一体に形成さ
れて、その突条部が前記冷却媒体流路を確保するセパレ
ータとされる強制冷却型超電導線の当該セパレータを形
成するにあたって、上記安定化母材およびセパレータの
素材となる板材自体を山部と谷部を有して起伏するよう
に成型し、当該山部をその内側空隙の対向面が接合する
ように順次幅方向に絞って行き、その内側対向面を相互
に接合させて上記山部を上記板材からの突条部とするこ
とによりセパレータを形成するようにしたことを特徴と
する強制冷却型超電導線のセパレータ形成方法。
A plurality of superconducting strands are housed inside a hollow stabilizing base material with a rectangular cross section, and a separator is provided between the stabilizing base material and an outer sheath surrounding it. A cooling medium flow path continuous in the longitudinal direction of the stabilizing base material is formed, and a communication path communicating between the inside and outside of the stabilizing material is formed, and the cooling medium flowing through the cooling medium flow path is A protrusion is integrally formed on the outer surface of the stabilizing base material of a forced cooling type superconducting wire configured to directly obtain a cold IJ1 injection of the superconducting wire in the stabilizing base material through a communication path. In forming the separator of the forced cooling superconducting wire in which the striations serve as separators for securing the cooling medium flow path, the stabilizing base material and the plate material itself which is the material of the separator have peaks and valleys. The peaks are successively narrowed in the width direction so that the opposing surfaces of the inner voids are joined, and the inner opposing surfaces are joined together to form the peaks into protrusions from the plate material. A method for forming a separator in a forced cooling superconducting wire, characterized in that the separator is formed by forming strips.
JP58007105A 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor Pending JPS59132513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007105A JPS59132513A (en) 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007105A JPS59132513A (en) 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor

Publications (1)

Publication Number Publication Date
JPS59132513A true JPS59132513A (en) 1984-07-30

Family

ID=11656805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007105A Pending JPS59132513A (en) 1983-01-18 1983-01-18 Method of forming separator in forcibly cooling superconductive conductor

Country Status (1)

Country Link
JP (1) JPS59132513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500885A (en) * 1987-10-14 1992-02-13 オックスフォード メディカル リミテッド superconducting structure
WO2004077600A1 (en) * 2003-02-25 2004-09-10 Fujitsu Limited Superconductor transmission line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500885A (en) * 1987-10-14 1992-02-13 オックスフォード メディカル リミテッド superconducting structure
WO2004077600A1 (en) * 2003-02-25 2004-09-10 Fujitsu Limited Superconductor transmission line
CN1317792C (en) * 2003-02-25 2007-05-23 富士通株式会社 Superconductor transmission line
US7263392B2 (en) 2003-02-25 2007-08-28 Fujitsu Limited Superconductor transmission line having slits of less than λ /4

Similar Documents

Publication Publication Date Title
US4568900A (en) Forced-cooled superconductor
JP2023518842A (en) Conductor and coolant schemes for uninsulated superconducting magnets with spiral groove stacks
JP2017533579A (en) Metal assembly including superconductor
US4752654A (en) Intermetallic compound-based, composite superconductor
US6153825A (en) Superconducting current lead
US11257611B2 (en) Superconducting wire rod and superconducting coil
EP0387072A1 (en) Superconducting coil apparatus
JP3541123B2 (en) Superconducting current lead
JPS59132513A (en) Method of forming separator in forcibly cooling superconductive conductor
US4437080A (en) Method and apparatus utilizing crystalline compound superconducting elements having extended strain operating range capabilities without critical current degradation
AU4131496A (en) Variable profile superconducting magnetic coil
JPS59130011A (en) Forcibly cooling superconductive wire
JPS59130012A (en) Forcibly cooling superconductive wire
JPH0131244B2 (en)
JPH0119721B2 (en)
JPS5991604A (en) Forcibly cooled superconductive wire
JPH0250565B2 (en)
JPS59130013A (en) Method of forming separator in forcibly cooling superconductive conductor
JP3120625B2 (en) Oxide superconducting conductor
JP2531820B2 (en) Superconducting coil device
JPS59208811A (en) Superconductive coil
JPH0927416A (en) Superconducting coil and manufacture thereof
JPH063692B2 (en) Forced cooling superconducting wire
JPS61110915A (en) Force-cooled type superconducting wire
JPS6024522B2 (en) superconducting conductor