JPS5913245B2 - Method for reducing nitrogen oxides in exhaust gas - Google Patents

Method for reducing nitrogen oxides in exhaust gas

Info

Publication number
JPS5913245B2
JPS5913245B2 JP53045123A JP4512378A JPS5913245B2 JP S5913245 B2 JPS5913245 B2 JP S5913245B2 JP 53045123 A JP53045123 A JP 53045123A JP 4512378 A JP4512378 A JP 4512378A JP S5913245 B2 JPS5913245 B2 JP S5913245B2
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion
temperature
nox
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53045123A
Other languages
Japanese (ja)
Other versions
JPS54136573A (en
Inventor
喜久男 徳永
信明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP53045123A priority Critical patent/JPS5913245B2/en
Publication of JPS54136573A publication Critical patent/JPS54136573A/en
Publication of JPS5913245B2 publication Critical patent/JPS5913245B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 ボイラ等の燃焼排ガス中の窒素酸化物(NoX)の低減
法としては、周知のように大別して1)燃焼法の改善に
よる低減法、2)炉内高温脱硝法、3)乾式触媒脱硝法
、4)湿式吸収処理法等の方法が現在各方面で開発研究
中であるが、いずれの方法も経済性、脱硝性能、運転安
定性等の点で問題がないとは言えない。
[Detailed Description of the Invention] As is well known, methods for reducing nitrogen oxides (NoX) in combustion exhaust gas from boilers, etc. can be roughly divided into 1) reduction methods by improving combustion methods, 2) in-furnace high-temperature denitrification methods, Methods such as 3) dry catalytic denitrification method and 4) wet absorption treatment method are currently under development and research in various fields, but none of these methods have any problems in terms of economic efficiency, denitrification performance, operational stability, etc. I can not say.

本発明は上記分類に従えば1)燃焼法の改善と、2・)
炉内高温脱硝法との組み合せに属し、簡便かつ効果的に
排ガス中のNOxを高度に低減する方法を提供するもの
である。
According to the above classification, the present invention provides 1) improvement of combustion method, and 2.)
This method is a combination with the in-furnace high-temperature denitrification method, and provides a simple and effective method for highly reducing NOx in exhaust gas.

以下本発明の具体的実施例を示すフローシートである第
1図をもとに説明する。
The following description will be made with reference to FIG. 1, which is a flow sheet showing a specific embodiment of the present invention.

第1図において1は通常の発電用ないし蒸気発生用ボイ
ラであり、火炉1a、熱交換器1b。
In FIG. 1, numeral 1 denotes a normal boiler for power generation or steam generation, including a furnace 1a and a heat exchanger 1b.

1c、空気予熱器2及び煙突3を有し、4は燃焼用空気
、5は燃料の供給ライン、6は主燃料の5〜10係の燃
料を投入するラインである。
1c, an air preheater 2, and a chimney 3, 4 is a supply line for combustion air, 5 is a fuel supply line, and 6 is a line for feeding 5 to 10 units of main fuel.

火炉1aに於て発生する窒素酸化物(NOx、NOを主
成分とし少量のN02を含む)は大気汚染公害、特に光
化学スモッグの元凶的物質であり、煙突3より大気中へ
放出される前に何らかの方法で無公害化し除去する必要
がある。
Nitrogen oxides (NOx, mainly composed of NO and including a small amount of N02) generated in the furnace 1a are the main cause of air pollution, especially photochemical smog, and are It is necessary to make it non-polluting and remove it in some way.

本発明ではまず、火炉1aでの主燃焼後の排ガス中の残
存酸素(通常1〜2体積パーセント)に対し燃料過剰と
なるよう、ライン6より石油系燃料を投入して排ガス中
のNOxをN2あるいはHCN、NH3等に転換する。
In the present invention, first, petroleum-based fuel is injected from line 6 to reduce NOx in the exhaust gas to N2 so that the fuel is in excess of the residual oxygen (usually 1 to 2 volume percent) in the exhaust gas after main combustion in the furnace 1a. Alternatively, it is converted to HCN, NH3, etc.

ここで石油系燃料とは1,000〜1,500℃におい
て、酸素と化合して反応熱を発生するメタン。
Here, the petroleum-based fuel is methane that combines with oxygen to generate reaction heat at 1,000 to 1,500°C.

エタン、プロパン、灯油を始め、アルコール類。Alcohols, including ethane, propane, and kerosene.

アルデヒド類等通常燃料として使用されるもの、又その
可能性があるものならばどんなものでも良い。
Any fuel that is commonly used as a fuel, such as aldehydes, or has the potential to be used as a fuel, may be used.

こうして火炉1aで発生したNOxの80〜95係はN
2.HCN、NH3等に転換される訳であるが、この状
態での排ガスは相当量の一酸化炭素、炭化水素などの未
燃分を含んでおり、これらを完全燃焼消去するために、
更に酸素(実用的には空気)を成る程度高温度域(90
0℃以上)で、残留酸素濃度が少なくとも0.5〜2体
積パーセント以上になるように投入する必要がある。
In this way, the number 80 to 95 of NOx generated in the furnace 1a is N
2. It is converted into HCN, NH3, etc., but the exhaust gas in this state contains a considerable amount of unburned substances such as carbon monoxide and hydrocarbons, and in order to completely burn them out,
Furthermore, oxygen (practically air) is present in a high temperature range (90°C).
(0°C or higher), and the residual oxygen concentration must be at least 0.5 to 2% by volume.

しかしこの様な通常の投入では、これによりHCN、N
H3等の窒素化合物が、再びNOxに転換し、総合的な
脱硝率はたかだか40〜50優にとどまってしまう不都
合がある。
However, with such normal input, this results in HCN, N
There is a problem in that nitrogen compounds such as H3 are converted back to NOx, and the overall denitrification rate remains at about 40 to 50 points.

そこでまず通常の酸素投入の前、900℃〜1,200
℃の温度域に空気あるいは燃焼排ガス(通常酸素含有量
:1〜3体積パーセント)を微少量投入し、まだ燃料過
剰の状態で、少量の酸素添加効果によってHCN、NH
3の大部分をN。
Therefore, first, before adding normal oxygen,
A very small amount of air or combustion exhaust gas (usually oxygen content: 1 to 3 percent by volume) is injected into the temperature range of ℃, and while there is still excess fuel, HCN and NH are produced by the effect of adding a small amount of oxygen.
Most of 3 is N.

に、少量をNOに転換した後、その後流に空気を未燃分
は消去しかつ残存酸素濃度二0.5〜3体積パーセント
になる様に通常の酸素投入を行う。
After converting a small amount to NO, the unburned air is removed from the air in its wake, and normal oxygen is introduced so that the residual oxygen concentration is 20.5 to 3 percent by volume.

この様にして燃焼方法の改善の一種によって総合脱硝率
は70〜75優に向上したが、排出ガス中の窒素酸化物
を極力抑制しようという要望に対しては、未だ不十分で
あった。
Although the overall denitrification rate has been improved to well over 70 to 75 by improving the combustion method in this way, it is still insufficient to meet the demand for suppressing nitrogen oxides in exhaust gas as much as possible.

又本発明者らは燃焼方法の改善と同時に、高温排ガス中
にアンモニア等の薬剤を投入する脱硝法を、別途開発中
であった。
In addition to improving the combustion method, the present inventors were also separately developing a denitrification method in which a chemical such as ammonia was introduced into the high-temperature exhaust gas.

本発明者らはより高度な脱硝法の研究を鋭意進める中で
、前述の燃焼方法の改善法の後流、900〜1100℃
の温度域(残存酸素濃度0.5〜3体積パーセント)に
、残存NOxに対して0.5〜3倍モルのアンモニアを
添加する事、即ち燃焼方法の改善と炉内高温脱硝法との
組合せの相乗効果により、更に高い総合脱硝率が得られ
る事を見い出しく後述実施例参照)、本発明に至った訳
である。
While the present inventors are earnestly conducting research on more advanced denitrification methods, the downstream temperature of the above-mentioned improved combustion method was
Adding 0.5 to 3 times the mole of ammonia to the residual NOx in the temperature range (residual oxygen concentration 0.5 to 3 volume percent), that is, a combination of improving the combustion method and in-furnace high temperature denitrification method. It was discovered that an even higher overall denitrification rate could be obtained due to the synergistic effect of the above (see Examples below), leading to the present invention.

この事は次の様に理解できる。This can be understood as follows.

即ち前述の燃焼方法改善法での反応の中間生成物である
NH3゜HCNと未燃分は2段階酸素投入過程で■、■
式により、特に0式を優先させて分解する訳であるが、
反応時間が十分でない領域では、少量のHC。
In other words, NH3°HCN, which is an intermediate product of the reaction in the combustion method improvement method mentioned above, and unburned matter are mixed with ■ and ■ during the two-stage oxygen injection process.
Depending on the formula, the 0 formula is given priority in decomposition, but
Small amounts of HC in areas where reaction time is not sufficient.

CO等の未然分が残留する。Unexpected amounts such as CO remain.

これらが次のNH3投入工程での■、■式に貢献して、
これが未燃分が共存しない領域にNH3を単独に添加し
た場合(従来の無触媒NH3添加脱硝法)に比して脱硝
率が向上する。
These contribute to formulas ■ and ■ in the next NH3 injection process,
This improves the denitrification rate compared to the case where NH3 is added alone in a region where unburned matter does not coexist (conventional non-catalytic NH3 addition denitrification method).

この様にして燃焼方法の改善と炉内高温無触媒HN3添
加脱硝法との組合せによる効果が現れることになる。
In this way, the effects of the combination of the improvement of the combustion method and the in-furnace high-temperature non-catalytic HN3 addition denitrification method will be realized.

NH3,HCN+02→NOx、H2Oなど ■NH3
,HCN+02→N2 、 H2Oなど ■4NO+4
NH3+02→4N2+6H20■NO+2HCN+2
02→3/2N2+H20+2CO2■ 第1図で、9は排ガス再循環用のファン、10はその排
ガスを炉内へ供給するライン、7は残留未燃分を除去す
る空気の投入ライン、8は残存NOに対して0.5〜3
倍モルのNH3投入ラインである。
NH3, HCN+02 → NOx, H2O, etc. ■NH3
, HCN+02→N2, H2O, etc. ■4NO+4
NH3+02→4N2+6H20■NO+2HCN+2
02→3/2N2+H20+2CO2■ In Figure 1, 9 is a fan for exhaust gas recirculation, 10 is a line that supplies the exhaust gas into the furnace, 7 is an air input line to remove residual unburned matter, and 8 is a residual NO 0.5-3 for
This is a double molar NH3 input line.

NOx、未燃分を除去され清浄となった排ガスは炉を出
た後、空気予熱器2、煙突3を経て大気中に放出される
After leaving the furnace, the clean exhaust gas from which NOx and unburned components have been removed passes through the air preheater 2 and the chimney 3 and is released into the atmosphere.

この様な方法、即ち燃焼方法の改善法と炉内高温アンモ
ニア添加脱硝法の組合せによる本発明の方法は、各々単
独の場合の脱硝率、前者ニア0係、後者:40〜70L
1)を単に掛合わせた場合の脱硝率 :82〜91優に比して、その相乗的効果も加わり、燃
焼方法の改善法と炉内高温アンモニア添加脱硝法(NH
3/NOxモル比=1.0と2.0の場合)との組合せ
による実験結果の総合脱硝率の最高値はNH3/NOx
モル比=1.0の場合が85係、NH3/NOxモル比
=20の場合が96係(第3図の曲線D)、曲線E))
と効果的で、工業的にも簡便かつ低コストの高度脱硝法
として有用である。
Such a method, that is, the method of the present invention based on a combination of the combustion method improvement method and the in-furnace high-temperature ammonia addition denitrification method, has a denitrification rate of each alone, the former near 0 factor, the latter 40 to 70 L.
Compared to the simple multiplication of 1), the denitrification rate is 82-91, the synergistic effect is added, and the improvement of the combustion method and the in-furnace high-temperature ammonia addition denitrification method (NH
3/NOx molar ratio = 1.0 and 2.0).
When the molar ratio = 1.0, the coefficient is 85, and when the NH3/NOx molar ratio is 20, the coefficient is 96 (curve D in Figure 3, curve E))
It is effective and industrially useful as a simple and low-cost advanced denitrification method.

又本発明の方法は一般的な燃焼装置、例えば石炭及びガ
ス等の燃焼装置、ゴム焼却装置、パルプ回収ボイラ等に
も同様に有効に適用できる事は云うまでもない。
It goes without saying that the method of the present invention can be equally effectively applied to general combustion equipment, such as coal and gas combustion equipment, rubber incineration equipment, pulp recovery boilers, and the like.

実施例 第2図に示す様な試験炉(煙道内径80儂、排ガス量1
.000 N m/Hr )を用いて試験を行った。
Example: A test furnace as shown in Fig. 2 (inner diameter of flue 80 degrees, exhaust gas amount 1
.. 000 N m/Hr).

第2図で101は燃料用C重油、102は燃焼用空気の
供給ライン、103は燃焼用火炉であり、104は石油
系燃料(本試験ではプロパンガスを使用した)、105
は燃焼排ガス(通常酸素含有量:1〜3体積パーセント
)又は空気、106は空気、107はアンモニアの供給
ライン、109は煙突である。
In Fig. 2, 101 is C heavy oil for fuel, 102 is a combustion air supply line, 103 is a combustion furnace, 104 is petroleum fuel (propane gas was used in this test), 105
106 is air, 107 is an ammonia supply line, and 109 is a chimney.

排ガス計測は煙道108の点で行い、全ての実験に於て
この点での残留酸素濃度を3.0係になる様に設定した
Exhaust gas measurement was performed at the flue 108, and the residual oxygen concentration at this point was set to be 3.0 in all experiments.

又火炉103における主燃焼後の酸素濃度は1.0係、
ライン104よりのプロパン供給量は燃焼熱量基準で、
ライン101よりの主燃料供給量の10係とした。
In addition, the oxygen concentration after main combustion in the furnace 103 is 1.0%,
The amount of propane supplied from line 104 is based on the heat of combustion.
10 of the main fuel supply amount from line 101.

ライン104,105,106,107より何らの供給
を行わない場合、即ち主燃焼のみの場合のNOx値は1
50I]1)Illであり、ライン104よりプロパン
、ライン105より少量の空気(全排ガス中の酸素濃度
にして0.01〜0.5係)、ライン106より多量の
空気を供給した場合のNOx値は44.llI)mであ
った。
When no supply is performed from lines 104, 105, 106, and 107, that is, when only main combustion is performed, the NOx value is 1.
NOx when propane is supplied from line 104, a small amount of air (0.01 to 0.5 times the oxygen concentration in the total exhaust gas) is supplied from line 105, and a large amount of air is supplied from line 106. The value is 44. llI)m.

又ライン104.’105より何ら供給を行わず、ライ
ン106より空気、ライン107よりアンモニアをモル
比(NH3/N0x)””2で供給した場合のNOx値
は45.ρ四であった。
Also line 104. When air is supplied from line 106 and ammonia is supplied from line 107 at a molar ratio (NH3/N0x) of 2 without any supply from '105, the NOx value is 45. It was ρ4.

これらライン104,106よりの供給とあわせ、本発
明の主眼点であるライン105よりの少量の酸素、ライ
ン107よりのアンモニアを供給した場合の結果を第3
図に示す。
In addition to the supplies from these lines 104 and 106, the results when a small amount of oxygen is supplied from line 105 and ammonia from line 107, which is the main focus of the present invention, are shown in the third table.
As shown in the figure.

なおライン104,105゜106 、107よりの供
給点の排ガス温度はそれぞれ1300℃、1100℃、
1000℃、950℃であり、いずれの場合も点107
においてCO2NH3等の未燃分は認められなかった。
The exhaust gas temperatures at the supply points from lines 104, 105, 106 and 107 are 1300°C, 1100°C, respectively.
1000℃, 950℃, in both cases point 107
No unburned substances such as CO2NH3 were observed.

第3図に於て、曲線A)は燃焼後の高温排ガスに石油系
、燃料を添加しその後流で酸素を2段階に加えて未燃分
を消去するという燃焼方法の改善による脱硝法の実験結
果であり、点B)1点C)は通常燃焼後の排ガスにNH
3を添加するという炉内高温無触媒NH3添加脱硝法の
実験結果で、点B)がNH3/NOxモル比が1.0の
場合、点C)がNH3/NOxモル比が2.0の場合で
ある。
In Figure 3, curve A) is an experiment in a denitrification method using an improved combustion method in which petroleum-based fuel is added to high-temperature exhaust gas after combustion, and oxygen is added in two stages downstream to eliminate unburned matter. The results are as follows: Points B) and 1C) normally contain NH in the exhaust gas after combustion.
In the experimental results of the in-furnace high-temperature non-catalytic NH3 addition denitrification method, point B) is when the NH3/NOx molar ratio is 1.0, and point C) is when the NH3/NOx molar ratio is 2.0. It is.

又、曲線B/)、σ)は両者の脱硝法の組み合せ効果を
■式により求めた計算上の脱硝率の結果であり、曲線D
)、E)は燃焼後の高温排ガスに石油系燃料を添加し、
その後流で少量の酸素を投入した後にNH3を添加する
という、燃焼方法の改善と高温無触媒脱硝法との組み合
せでの実験結果で、曲線D)がNH3/NOxモル比が
1,0の場合、曲線E)がNH3/NOxモル比が2.
0の場合である。
In addition, curves B/) and σ) are the results of the calculated NOx removal rate calculated using the formula (■) for the combined effect of both NOx removal methods, and curve D
), E) adds petroleum-based fuel to high-temperature exhaust gas after combustion,
Curve D) is the case when the NH3/NOx molar ratio is 1.0. This is an experimental result of a combination of an improved combustion method and a high-temperature non-catalytic denitrification method, in which NH3 is added after a small amount of oxygen is introduced in the downstream stream. , curve E) when the NH3/NOx molar ratio is 2.
This is the case of 0.

この様に、ライン105よりの供給ガス中の酸素量が全
排ガス量に対して0.5%以下になる様に投入した後、
ライン106より多量の空気を投入し、その後流(ライ
ン107)よりNH3を投入する両者の脱硝法の組合せ
は効果的で、より高い脱硝率が得られることが判る。
In this way, after supplying the gas so that the amount of oxygen in the gas supplied from line 105 is 0.5% or less with respect to the total amount of exhaust gas,
It can be seen that the combination of both denitrification methods, in which a large amount of air is introduced through line 106 and NH3 is introduced from its downstream side (line 107), is effective and a higher denitrification rate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一具体的実施例を示すフローシート。 第2図は本発明の有用性を示す実験の装置フローシート
、第3図は第2図の装置を用℃・て得られた実験結果例
FIG. 1 is a flow sheet showing a specific embodiment of the present invention. Figure 2 is an apparatus flow sheet for an experiment demonstrating the usefulness of the present invention, and Figure 3 is an example of experimental results obtained using the apparatus shown in Figure 2.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼後の排ガス温度が1000℃乃至1500℃の
高温部領域に石油系燃料を添加し、その後流の900℃
乃至1200℃の温度域に酸素濃度が0.5体積パーセ
ント以下になるよう少量の燃焼排ガスおよび/又は空気
を添加し、次に未燃分を除去するに十分な空気を添加す
る2段階の酸素添加工程と、更にその後流の900℃乃
至1100℃の温度域にアンモニアを添加する工程を含
むことを特徴とする排ガス中の窒素酸化物低減法。
1 Petroleum-based fuel is added to the high temperature region where the exhaust gas temperature after combustion is 1000℃ to 1500℃, and the temperature of the exhaust gas after combustion is 900℃.
A two-stage oxygen process in which a small amount of flue gas and/or air is added to the temperature range from 1200°C to 0.5 volume percent or less to reduce the oxygen concentration to 0.5 volume percent or less, and then sufficient air is added to remove unburned substances. A method for reducing nitrogen oxides in exhaust gas, comprising an addition step and a further step of adding ammonia downstream thereof in a temperature range of 900° C. to 1100° C.
JP53045123A 1978-04-17 1978-04-17 Method for reducing nitrogen oxides in exhaust gas Expired JPS5913245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53045123A JPS5913245B2 (en) 1978-04-17 1978-04-17 Method for reducing nitrogen oxides in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53045123A JPS5913245B2 (en) 1978-04-17 1978-04-17 Method for reducing nitrogen oxides in exhaust gas

Publications (2)

Publication Number Publication Date
JPS54136573A JPS54136573A (en) 1979-10-23
JPS5913245B2 true JPS5913245B2 (en) 1984-03-28

Family

ID=12710482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53045123A Expired JPS5913245B2 (en) 1978-04-17 1978-04-17 Method for reducing nitrogen oxides in exhaust gas

Country Status (1)

Country Link
JP (1) JPS5913245B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417258B2 (en) * 2010-06-01 2014-02-12 バブコック日立株式会社 Combustion device with spray nozzle

Also Published As

Publication number Publication date
JPS54136573A (en) 1979-10-23

Similar Documents

Publication Publication Date Title
RU2502883C2 (en) Method of processing nox components and electric power generation system
US5224334A (en) Low NOx cogeneration process and system
JP6207498B2 (en) Method for reducing nitrogen oxides and sulfur oxides in exhaust gas from an internal combustion engine
US20060029534A1 (en) Process for treating ammonia-containing exhaust gases
JPS63178829A (en) Method and apparatus for recovering ammonia during separation of nitrogen oxides from waste gas
JPH03503735A (en) Two-stage boiler injection method and device for the purpose of reducing nitrogen oxides
WO1991010504A1 (en) PROCESS FOR REMOVING NOx EMISSIONS FROM COMBUSTION EFFLUENTS
JPH05500848A (en) Power plants and methods of renovating existing power plants
JP2015068345A (en) Method of exhaust gas treatment for gas turbine system and exhaust gas treatment assembly
KR101139575B1 (en) The de-nox system and the method for exhaust gas at low temperature
CA2830559C (en) Cogeneration power plant
JPS5913245B2 (en) Method for reducing nitrogen oxides in exhaust gas
JPS5858132B2 (en) Method for reducing nitrogen oxides in exhaust gas
JPS5934245B2 (en) Low NOx combustion method
JPS5819928B2 (en) Nitrogen oxide reduction combustion method
CN112495160B (en) Device and method for tail gas nitrogen oxide removal process of sulfur recovery device
CN106582226A (en) Boiler denitration process taking ammonia-containing waste gas as denitration agent
KR101096317B1 (en) The removal system and the method of air pollutants from exhaust gas by using the catalytic converter
JPS5833019A (en) Method of reducing nitrogen oxides in combustion exhaust gas
JP2582139B2 (en) NOx reduction treatment method for coal gasified fuel
JPS5827974B2 (en) Treatment method for nitrogen oxides in exhaust gas
US5264195A (en) Method of reducing oxides of nitrogen using alkanolamine compounds
JPS58128126A (en) Method for introducing reducing agent
JPH0461917A (en) Exhaust gas treatment apparatus
JPS5925618B2 (en) Method for reducing nitrogen oxides in exhaust gas