JPS59132185A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS59132185A
JPS59132185A JP600883A JP600883A JPS59132185A JP S59132185 A JPS59132185 A JP S59132185A JP 600883 A JP600883 A JP 600883A JP 600883 A JP600883 A JP 600883A JP S59132185 A JPS59132185 A JP S59132185A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
liquid phase
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP600883A
Other languages
Japanese (ja)
Inventor
Masaaki Nidou
正明 仁道
Hideo Kawano
川野 英夫
Koichi Wakita
紘一 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP600883A priority Critical patent/JPS59132185A/en
Publication of JPS59132185A publication Critical patent/JPS59132185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To improve productivity and to enhance a yield rate, by a first liquid phase epitaxial growing process, an etching process, a process, by which a second liquid phase epitaxial growing is performed in the etched region, and a third liquid phase epitaxial growing process. CONSTITUTION:On an N type GaAs substrate 9, the following layers are formed by epitaxial growth: an N type Al0.3Ga0.7As clad layer 1; an N type Al0.1Ga0.9As light guiding layer 2; an Al0.03Ga0.97As active layer 3; and a P type Al0.3Ga0.7As clad layer 4. Then, the semiconductor layers 1-4 are made to remain in stripe shapes by etching. Then, a P type Al0.3Ga0.7As layer 5 and an N type Al0.3Ga0.7 As layer 6 are provided by the epitaxial growth. An oxide layer 14 is formed on the layer 4. Then, a P type Al0.3Ga0.7As layer 7 and a P type GaAs layer 8 are sequentially formed by a liquid phase epitaxial growth.

Description

【発明の詳細な説明】 本発明は埋め込みへテロ構造を有する半導体レーザの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor laser having a buried heterostructure.

一般(こ、半導体レーザにおいて、低発振閾値電流、安
定な基本モード発振を実現するために埋め込み型半導体
レーザが出現している、この半導体レーザの′N造は、
活性層領域が低屈折率物質によって補完的に取囲まイ1
、例えば、G a A s活性層の場合、λ/2 ()
 a A s 層によって包囲されていて、強い光導波
路作用をもたせている。その結果この半導体レーザは低
しきい値で相当の発編出カが得ているが、その一方で活
性層領域と周囲の低屈折率物質との屈折率差が必要以上
に大きくならざるを得す、このためストライプ幅が1μ
m 以内では基本モード発振を行うが、それ以上の広い
ストライプ幅になると高次モードの混入が避けがたくな
っていた、又、ストライプ幅が狭ければ当然のことなが
ら光出力がf、l m W以下に制限されることになる
が、光出力が小さすぎる欠点があった。
In general (in semiconductor lasers, buried type semiconductor lasers have appeared in order to realize low oscillation threshold current and stable fundamental mode oscillation.The structure of this semiconductor laser is as follows.
The active layer region is complementarily surrounded by a low refractive index material.
, for example, in the case of a Ga As active layer, λ/2 ()
It is surrounded by the a A s layer and has a strong optical waveguide effect. As a result, this semiconductor laser has a low threshold and a considerable development power, but on the other hand, the difference in refractive index between the active layer region and the surrounding low refractive index material becomes larger than necessary. Therefore, the stripe width is 1μ
Fundamental mode oscillation occurs within m m, but when the stripe width becomes wider than that, it becomes unavoidable that higher-order modes are mixed in. Also, if the stripe width is narrow, the optical output naturally decreases to f, l m. Although it is limited to W or less, there is a drawback that the optical output is too small.

このような埋め込み型半導体レーザ゛の欠点を改良する
ためζこ、活性層の下に光導波層を設けた光導波路封埋
め込み型半導体レーザが提案されてい伽る。この光導波
路封埋め込み構造においては、活性層と別に光導波層を
設け、活性層の光を光導波層に伝播させることにより大
きな光出力を得ようとするものである。
In order to improve these drawbacks of the buried semiconductor laser, an optical waveguide-enclosed buried semiconductor laser has been proposed in which an optical waveguide layer is provided under the active layer. In this optical waveguide encapsulation structure, an optical waveguide layer is provided separately from the active layer, and the light from the active layer is propagated to the optical waveguide layer to obtain a large optical output.

従来の光導波路封埋め込み型半導体レーザの構プ告及び
製1宥方法について図UMJを用いて説明する。
The construction and manufacturing method of a conventional optical waveguide-sealed embedded semiconductor laser will be explained with reference to FIG. UMJ.

第1図はこの従来の構プ古の一1+j]を示T内′f面
図、第2図(、l)〜(c)は第1図製造工程を示す(
Tfi面図である・。
Figure 1 shows this conventional structure (1+j), and Figures 2 (, l) to (c) show the manufacturing process shown in Figure 1.
This is a Tfi plane view.

先ず、第2図<2)に示すように、n型C+ a A 
s基体9上にn型A4.3 Ga64 As  クラッ
ド層1、n qA l、、G’ao、As光光波波層2
A4゜、83 G ao、g7 A S活性層3、P型
A7o、3Ga。、7Asクラッド層4を第1の液相エ
ピタキシャル成長工程によって順次形成する。次に第2
図(b)ζこ示すように、クラッド1冑4上にストライ
プ状マスクを設けてG a A s基体9に達する深さ
まで選択エツチングを行なって半導体層1.2.3.4
をストライプ状に残す。次にエツチングマスクを除去し
結晶表面の洗浄を行うがクラッド層4表面には、この層
のAI組成比が太きいために空中の酸素等との化学反応
により酸化層11が自然に形成される。その後第2の液
相エビタキンヤル成畏工程を行なってP型Alo3Ga
o7As 層5、n型An(、、Ga、)、tAs層6
を順次設けるが、酸化M11上には結晶が成長しないた
め、酸化層11が選択結晶成長マスクとなり、ストライ
プの両側の領域にのみ半導体層が形成される( 第2 
(c) )。これら半導体層5.6は電流ブロック層で
ある。第2の液相エピタキシャル成長工程後、このレー
ザ結晶を大気にさらすと、n型A 11 o、3 Ga
(、、、、A s層6表面にも自然に酸化膜10が形成
される。この酸化層11を選択的に除去し、P電極12
、n電極13を形成して第1図に示す光導波路封埋め込
み型半導体レーザが完成する。
First, as shown in Figure 2<2), n-type C+ a A
n-type A4.3 Ga64 As cladding layer 1, n qA l, , G'ao, As light wave layer 2 on s substrate 9
A4°, 83 Gao, g7 AS active layer 3, P type A7o, 3Ga. , 7As cladding layer 4 is sequentially formed by a first liquid phase epitaxial growth process. Then the second
Figure (b) ζAs shown, a striped mask is provided on the cladding 1 and the semiconductor layer 1.2.3.4 is selectively etched to a depth that reaches the GaAs substrate 9.
is left in a stripe pattern. Next, the etching mask is removed and the crystal surface is cleaned, but since the AI composition ratio of this layer is high, an oxide layer 11 is naturally formed on the surface of the cladding layer 4 due to a chemical reaction with oxygen in the air, etc. . After that, a second liquid phase phase formation process is performed to form P-type Alo3Ga.
o7As layer 5, n-type An(,,Ga,), tAs layer 6
are sequentially provided, but since no crystal grows on the oxide M11, the oxide layer 11 becomes a selective crystal growth mask, and the semiconductor layer is formed only in the regions on both sides of the stripe (the second
(c) ). These semiconductor layers 5.6 are current blocking layers. After the second liquid phase epitaxial growth step, when this laser crystal is exposed to the atmosphere, n-type A 11 o, 3 Ga
(,,,, An oxide film 10 is naturally formed on the surface of the As layer 6. This oxide layer 11 is selectively removed, and the P electrode 12
, and the n-electrode 13 are formed to complete the optical waveguide-embedded semiconductor laser shown in FIG.

この構造においては、発振光は活性層から光導波層にひ
ろがって伝播するため、活性層内の光強度があまり上が
らず、制光出方でも活性層に光ダメージを与えることな
く動作することができる。
In this structure, the oscillated light spreads and propagates from the active layer to the optical waveguide layer, so the light intensity within the active layer does not increase much, and even if the light is output in a light-controlled manner, it can operate without causing optical damage to the active layer. can.

また、光伝播領域がこの領域よりも屈折率の小さい半導
体層によって取囲まれているため、安定な基本モード発
振が可能である。さらにストライプ状の電流注入領域の
両横ζこ電流ブロック層を形成して低閘伯発振を実現し
ている− しかし、前記酸化j−11上には結晶が成長しないため
、n型A7,3Ga、3? As rs 6がクラッド
層4(こ比べてせり上るようにあるいはせり下るように
成長し、またこのせり上りあるいはせり上りの量を制御
できないため、P電極側の結晶表面に凹凸を生じ、その
結果P電極も凹凸をもったものとな′、る。半導体レー
ザでは活性層に近い側の1イ極(この場合はP電極)を
ヒートシンクに密層させて熱放散を行うが、この型の半
導体レーザでは電極が平坦でないのでこのヒートシンク
の蜜漬が悲く、熱放散の効率が低くなっている。また、
電極の凹凸が一定でないので喚然的(こ素子の温度特注
がばらつくことになり、さらに、P ’749 極側の
結晶表面の凹凸はPEWの形成工程、素子化を困難にし
ており、歩留りの向上を妨けている。
Furthermore, since the light propagation region is surrounded by a semiconductor layer having a lower refractive index than this region, stable fundamental mode oscillation is possible. In addition, current blocking layers are formed on both sides of the striped current injection region to achieve low-frequency oscillation. However, since no crystal grows on the oxide J-11, the n-type A7,3Ga , 3? As rs 6 grows upward or downward relative to the cladding layer 4 (compared to the cladding layer 4), and since the amount of upward or downward growth cannot be controlled, unevenness occurs on the crystal surface on the P electrode side, resulting in The P electrode also has irregularities.In a semiconductor laser, one pole (in this case, the P electrode) close to the active layer is densely layered on a heat sink to dissipate heat, but this type of semiconductor Since the electrodes of lasers are not flat, the heat sink is not flat, and the efficiency of heat dissipation is low.
The unevenness of the electrodes is not constant, which causes problems (the temperature customization of this element varies), and the unevenness of the crystal surface on the P'749 pole side makes the PEW formation process and device fabrication difficult, which reduces the yield. impeding improvement.

本発明の目的は、従来製造方法における上記欠点を除去
し、生産性か蒔く歩留りのよい埋め込み型半導体レーザ
の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a buried semiconductor laser which eliminates the above-mentioned drawbacks of the conventional manufacturing method and has good productivity and yield.

本発明の半導体レーザのケμ造方法は、半導体活性層の
両面上にそれぞれこれと接してこの半導体活性層よりも
屈折率の小さい第1及び第2半導体クラッド層とを少な
(とも有するす導体多M構造を半導体基体上に形成する
第1の液相エピタキシャル成畏工稈と、BIJ記第2半
導体クラッド層より前記半搏体基体に達する深さまで選
択的にエツチングするエツチング工程と、前記エツチン
グ領域に−jJ記半導体活性層よりも屈折率が小さい単
一あるい(は複数個の第3半導体j−を形成する第2の
液相エピタキシャル成長工程と、標準酸化還元電位が負
でその絶対値が1以上である元素を含有した溶液を用い
て前記第2半導体層表面の酸化膜を洗浄して除去する洗
浄工程と、前記第2及び第3半導体層に接して単一また
は複数個の第4半導体層を形成する第3の液相エピタキ
シャル成長工程とを含むことを特徴とする。
The semiconductor laser manufacturing method of the present invention includes first and second semiconductor cladding layers having a lower refractive index than that of the semiconductor active layer on both surfaces of the semiconductor active layer and in contact with the semiconductor active layer. a first liquid phase epitaxial growth process for forming a multi-M structure on a semiconductor substrate; an etching process for selectively etching from a second semiconductor cladding layer of BIJ to a depth reaching the semi-conductive substrate; and the etching region. A second liquid phase epitaxial growth step for forming a single or plural third semiconductors having a refractive index lower than that of the semiconductor active layer, and a second liquid phase epitaxial growth step in which the standard redox potential is negative and its absolute value is a cleaning step of cleaning and removing an oxide film on the surface of the second semiconductor layer using a solution containing one or more elements, and a single or plural fourth semiconductor layer in contact with the second and third semiconductor layers. and a third liquid phase epitaxial growth step for forming a semiconductor layer.

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発す」の−実施例を示す断面図、第4(メン 図(a)〜(転)はこθノ夫施例の製造工程を示す断面
図である。第4 l’AI (a) 〜(c)のIti
’a工程は、W2図(a)、(b)0)説明および% 
2 IA(c)の前半の説明と同様である、但し、房も
2図における酸化層11は第4図1・こニジいて酸化層
14と表している。P 41’A7o、3G’a、7A
 s層5、n4pA11..3Gao、7As @6を
ストライプ領域の両横番このみ形成した後、n型A l
、) 、3Ga、37As)・宥6の成長に使用する溶
液と次の層の成長に使用゛、する溶液の間に置かれた洗
浄溶液によって酸化層14を除去する。
Fig. 3 is a sectional view showing the embodiment of the present invention, and Fig. 4 is a sectional view showing the manufacturing process of this embodiment. Iti of (a) to (c)
'a process is W2 diagram (a), (b) 0) explanation and %
The explanation is the same as the first half of 2 IA(c), except that the oxide layer 11 in FIG. 2 is shown as the oxide layer 14 in FIG. P 41'A7o, 3G'a, 7A
s layer 5, n4pA11. .. After forming 3Gao, 7As@6 on both horizontal sides of the stripe region, n-type Al
, ), 3Ga, 37As). The oxide layer 14 is removed by a cleaning solution placed between the solution used to grow the layers and the solution used to grow the next layer.

この洗浄溶液はP型A A’ 。、3 G a(1,7
’ A 31)ji 5の成長(こ使用する溶液に近似
した組成を有し、標準酸化達元゛醒位(以下E。頃とい
う)が負であるAl、Mg、Be  等の尤紫を含有し
ており、前記酸化層を除去するはたらきを有する。
This cleaning solution is P-type AA'. , 3 Ga(1,7
' A 31) Growth of ji 5 (having a composition similar to the solution used and containing special violet substances such as Al, Mg, and Be whose standard oxidation attainment point (hereinafter referred to as "E") is negative) It has the function of removing the oxide layer.

この後第2の後半の液相エピタキシャル成長によってP
3JAAlo、、 Gao、7As層7、P型G a 
A sA IJ O,3G a 6.7 A 8層7、
P 型GaAs J78の層厚を充分大きくすれはP型
A lo、 3 Ga6.7 As J@ 4とn型A
lo、30a o、、AssGaの間に段差かできてい
てもP型G a A s層8の表面は平坦となる。
After this, by the second latter half of liquid phase epitaxial growth, P
3JAAlo, Gao, 7As layer 7, P type Ga
A sA IJ O, 3G a 6.7 A 8 layer 7,
If the layer thickness of P-type GaAs J78 is made sufficiently large, then P-type A lo, 3 Ga6.7 As J@4 and n-type A
Even if there is a step between AssGa, lo, 30a, and AssGa, the surface of the P-type GaAs layer 8 is flat.

こうして出来上り1こ結晶にP′区極12、n′屯極]
3をソ1りI現して埋め込み型半導体レーザは完成する
In this way, one crystal has 12 P' poles and n' ton poles]
3 is completed to complete the buried semiconductor laser.

この場合典型的な層厚は、n型G a A s 基板9
の段差か0.3μm、n %A 16.3Ga o4 
A s )匈1が1μm。
In this case, the typical layer thickness is the n-type Ga As substrate 9
Step difference: 0.3μm, n%A 16.3Ga o4
A s ) 匈1 is 1 μm.

n 1gjA lo、I Ga 6.g A s )f
42が0.5μm、活性ノ曽3が0.1μm、p型A1
0.3Ga o、7As)74が0.5μm、PiJj
l A 7 o、3 G a o、7 A S 層5が
1.511m、 n WAA!o、sGa 。、7As
 146が1μm、P型A It o、s Ga。、y
 As1tJ7か1μm、  P型GaAs層8が1μ
mとなっている。
n 1gjA lo, I Ga 6. g A s ) f
42 is 0.5 μm, active No. 3 is 0.1 μm, p-type A1
0.3 Ga o, 7 As) 74 is 0.5 μm, PiJj
l A 7 o, 3 G a o, 7 A S Layer 5 is 1.511 m, n WAA! o, sGa. , 7As
146 is 1 μm, P type A It o, s Ga. ,y
As1tJ7 is 1μm, P-type GaAs layer 8 is 1μm.
m.

本発明の製造工程によれは、ストライプ領域の両横(こ
電流ブロック層を形成する際、酸化層14によってP型
A IJo、s Ga O−? As Ha 4上に結
晶が成長するのを防ぎ、また電流ブロック層形成後、洗
浄溶液で酸化層を除去することによって結晶全面に疼 平lにエピタキシャル層を形成することができる。
According to the manufacturing process of the present invention, when forming current blocking layers on both sides of the stripe region, the oxide layer 14 prevents crystal growth on the P-type AIJo, sGaO-?AsHa 4. Furthermore, after forming the current blocking layer, an epitaxial layer can be formed on the entire surface of the crystal by removing the oxide layer with a cleaning solution.

なお、ここで用いた選択結晶成長マスクは自然に形成さ
れた表面酸化層であるが、積極的に形成した表面酸化層
でもよい。また、本実施例に使用さイ9る洗浄溶液中に
含まれるA11Mg、Be等の元素はごく轍病でもその
効果は充分発揮される。
Although the selective crystal growth mask used here is a naturally formed surface oxidation layer, it may also be an actively formed surface oxidation layer. Furthermore, the elements such as A11Mg and Be contained in the cleaning solution used in this example are sufficiently effective even in the case of slight ruts.

また、これらの元素はEo値が小さいほど還元反応が起
こりやすく、その効果は太きいものとなるが、EoIM
が−1より大きい場合は不発明の効果はあまり期待でき
ない。ちなみζこA I! 、 M g 、Beについ
ていえは、Mg (E、=−2,363>が最も・、効
果が大きく、次いでBe(−1,85)、Al(−1,
662)の順となる。
In addition, the smaller the Eo value of these elements, the more likely the reduction reaction occurs, and the greater the effect, but EoIM
When is larger than -1, the effect of non-invention cannot be expected much. Chinami ζko AI! , M g , and Be, Mg (E, = -2,363> has the largest effect, followed by Be (-1,85) and Al (-1,
662).

本発明の実施によれは、レーザ結晶表面が平坦であるた
め、活件層に近い側の電極を平坦に形成でき、この電極
をヒートシンクに’WfRさせて熱放散の効率を向上す
ることができる。また、レーザ結晶表面全面に電極を形
感できるので熱放散の効率の向上はさらに顕著である。
According to the implementation of the present invention, since the laser crystal surface is flat, the electrode near the active layer can be formed flat, and this electrode can be used as a heat sink to improve heat dissipation efficiency. . Furthermore, since the electrodes can be felt over the entire surface of the laser crystal, the improvement in heat dissipation efficiency is even more remarkable.

更に、表面の平坦さは、電極形成工程、電子化を容易に
し製造の歩留を向上できる。
Furthermore, the flatness of the surface facilitates the electrode formation process and digitization, thereby improving the manufacturing yield.

以上詳細に述べたように、本発明の製造方法により、発
振閾値電流が低く、高光出力才で安定な0次モード発振
が可能であり、又熱放散効率のよい+fa l@ 動作
ζこすぐnた半導体レーザを提供することができる。さ
らに、平坦な結晶表向が形成できるため、電極形成、電
子化する際の素子固着が容易になり、歩留りの向上及び
素子固着時の歪発生の除去ができ、信頼性の高い半導体
レーザを得ることができる。
As described in detail above, the manufacturing method of the present invention enables stable zero-order mode oscillation with a low oscillation threshold current and high optical output, and also provides high heat dissipation efficiency. A semiconductor laser can be provided. In addition, since a flat crystal surface can be formed, it becomes easier to form electrodes and fix the device during electrification, which improves yield and eliminates distortion during device fixation, resulting in a highly reliable semiconductor laser. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の埋め込み型半導体レーザの断面図、第2
図(a)〜(C)は第1図のや法を工程順に示したlf
r面図、第3図は本発明の一実施例の1所面図、−第4
図(a)〜(d)は本発明の一実施例の製法を工程順に
示した断面図である。図において、 1.6・−・・・・n型A l o、s Ga o、、
 As層、2−− n FJA lo、t Ga、)、
g As7,41.3°°゛・°°活活性性層4 、 
’5 、7−・・−P型A11o、 Ga o、7As
層、8・・・・・・P型G a A s層、9−− n
 5 G :4A s基板、10−− n 5 A l
 (、,3Gao 、7、AsB1化層、11−− P
 i’d −A lO,3Ga O17As酸化層、1
2・・・・・・P電極、13・・・・−・n電極、14
・・・・・・P型A A 。、3 G a O’、? 
A S表面変成層、である。 第1図 (b”) 第3図 (α)               (C)(d)
Figure 1 is a cross-sectional view of a conventional embedded semiconductor laser;
Figures (a) to (C) show the method in Figure 1 in order of process.
Figure 3 is a top view of one embodiment of the present invention;
Figures (a) to (d) are cross-sectional views showing the manufacturing method of an embodiment of the present invention in the order of steps. In the figure, 1.6... n-type A lo, s Ga o,...
As layer, 2--n FJA lo, tGa,),
g As7, 41.3°°゛・°°active active layer 4,
'5, 7-...-P type A11o, Gao, 7As
Layer, 8... P-type Ga As layer, 9--n
5G: 4A s substrate, 10--n5A l
(,,3Gao,7,AsB1 layer,11--P
i'd -A lO,3GaO17As oxide layer, 1
2...P electrode, 13...-n electrode, 14
...P type AA. , 3 G a O',?
This is an AS surface metamorphic layer. Figure 1 (b”) Figure 3 (α) (C) (d)

Claims (1)

【特許請求の範囲】[Claims] 半導体活性層の両面上にそれぞれこれと接してこの半導
体活性層よりも屈折率の小さい第1及び第2半導体クラ
ッド層とを少なくとも有する半導体多層構造を半導体基
体上に形成する第1の液相エピタキシャル成長工程と、
前記第2半導体クラッド層より前記半導体基体に達する
深さ才で選択的にエツチングするエツチング工程と、前
記エツチング領域に前記半導体活性層よりも屈折率が小
゛、さい単一あるいは複数個の第3半導体層を形成する
第2の液オ;目エピタキシャル成長工程と、標準酸化還
元電位が負でその絶対値が1以上である元素を含有した
溶液を用いて前記第2半導体層表面の酸化膜を洗浄して
除去する洗浄工程と、前記第2及び第3半導体層に接し
て単一または複数個の第4半導体Wを形成する第3の液
相エピタキシャル成長工程とを含むことを特徴とする半
導体レーザの製造方法。
First liquid phase epitaxial growth for forming on a semiconductor substrate a semiconductor multilayer structure having at least first and second semiconductor cladding layers having a lower refractive index than the semiconductor active layer on both sides of the semiconductor active layer and in contact with the semiconductor active layer. process and
an etching step of selectively etching to a depth that reaches the semiconductor substrate from the second semiconductor cladding layer; and a single or plural third etching layer having a refractive index lower than that of the semiconductor active layer in the etching region. cleaning the oxide film on the surface of the second semiconductor layer using a second solution that forms a semiconductor layer; an epitaxial growth process; and a solution containing an element whose standard redox potential is negative and whose absolute value is 1 or more; and a third liquid phase epitaxial growth step of forming a single or plural fourth semiconductors W in contact with the second and third semiconductor layers. Production method.
JP600883A 1983-01-18 1983-01-18 Manufacture of semiconductor laser Pending JPS59132185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP600883A JPS59132185A (en) 1983-01-18 1983-01-18 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP600883A JPS59132185A (en) 1983-01-18 1983-01-18 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59132185A true JPS59132185A (en) 1984-07-30

Family

ID=11626692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP600883A Pending JPS59132185A (en) 1983-01-18 1983-01-18 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59132185A (en)

Similar Documents

Publication Publication Date Title
US4230997A (en) Buried double heterostructure laser device
JPS5940592A (en) Semiconductor laser element
US5781577A (en) Semiconductor laser
US6618416B1 (en) Semiconductor laser
JP2863677B2 (en) Semiconductor laser and method of manufacturing the same
CN114825046B (en) Semiconductor light-emitting structure and preparation method thereof
JPS59132185A (en) Manufacture of semiconductor laser
JPS59119781A (en) Manufacture of semiconductor laser
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
KR0141057B1 (en) A method of manufacturing semiconductor laser
JPS637691A (en) Semiconductor laser device
JP4125937B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6237835B2 (en)
JPH09275239A (en) Semiconductor laser device
JPH0312981A (en) Manufacture of semiconductor laser device
KR100776931B1 (en) Semiconductor laser device and manufacturing method thereof
JPS6361793B2 (en)
JP3722532B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0661582A (en) Manufacture of semiconductor laser device
JPS59125686A (en) Semiconductor laser
JPH07106704A (en) Method of producing semiconductor laser
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPH0157515B2 (en)
JPS6118877B2 (en)
JPS6310583A (en) Semiconductor laser