JPS59131600A - Production of compound semiconductor single crystal having high decomposition pressure - Google Patents

Production of compound semiconductor single crystal having high decomposition pressure

Info

Publication number
JPS59131600A
JPS59131600A JP640983A JP640983A JPS59131600A JP S59131600 A JPS59131600 A JP S59131600A JP 640983 A JP640983 A JP 640983A JP 640983 A JP640983 A JP 640983A JP S59131600 A JPS59131600 A JP S59131600A
Authority
JP
Japan
Prior art keywords
pressure
inert gas
compound semiconductor
single crystal
high decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP640983A
Other languages
Japanese (ja)
Inventor
Masakatsu Kojima
児島 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP640983A priority Critical patent/JPS59131600A/en
Publication of JPS59131600A publication Critical patent/JPS59131600A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce a single crystal of a compound semiconductor having high decomposition pressure, in high yield and workability, by detecting the pressure in the bomb for supplying an inert gas and in the closed vessel, and controlling the feeding or discharging flow rate of the inert gas according to the detected data. CONSTITUTION:An inert gas is supplied from the bomb 15 to the closed vessel 1 in the growth of a compound semiconductor crystal having high decomposition pressure, e.g. GaP, etc. The pressure of the inert gas is controlled to keep the output level of the pressure sensor A36 at a constant level. The pressure in the vessel 1 is detected constantly during the pulling of the crystal by the pressure sensor B34, and the difference of the output signals of both sensors 34 and 36 is converted to an electrical signal by the device C37. When the pressure difference exceeds the preset level, the solenoid valve V1 (25) of the bypass discharge line 26 is opened and the inert gas is discharged from the system little by little through the needle valve V2 (27). As an alternative method, the solenoid valve V3 (31) of the bypass feed line 30 is opened, and the inert gas is supplied to the vessel 1 through the needle valve V4 (32). The lowering of the yield of a single crystal caused by the pressure fluctuation in the vessel can be prevented by this process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はGaP 、 GaAs * InP等の高分解
圧化合物半導体単結晶の製造方法に関し、特にGaP 
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing single crystals of high decomposition pressure compound semiconductors such as GaP, GaAs*InP, etc.
.

GaAa単結晶の製造方法に係る。The present invention relates to a method for producing a GaAa single crystal.

〔発明の技術的背景〕[Technical background of the invention]

GaP * GaAs等の単結晶の製造に用いられてい
る従来の高分解圧化合物半導体単結晶育成装置を第1図
を参照して説明する。
A conventional high-resolution-pressure compound semiconductor single crystal growth apparatus used for manufacturing single crystals such as GaP*GaAs will be described with reference to FIG.

図中1は耐圧性の密閉容器であシ、この密閉容器1下部
からは支持軸2が回転自在に挿入されておシ、この支持
軸2上にはカーボンヒータ3が支持され、内部の石英ル
ツ?4を保護している。また、前記密閉容器1下部から
は電極5゜5が挿入されておυ、前記カーデンルツゴ3
を凹むように配設された円筒状のカーボンヒータ6に接
続されている。このカーボンヒータ6の外周には保温筒
7が配設されている。一方、前記密閉容器1上部からは
引上軸8が回転自在に挿入されておシ、この引上軸8の
下端には種結晶9が保持されている。また、前記密閉容
器1の側面には前記石英ルツボ4内を観察するだめのの
ぞき窓10が設けられている。更に、前記密閉容器1の
側面には配管11が連結されている。この配管11の他
端側は2本の分岐配管12a 、12bに分岐され、一
方の分岐配管12aには供給弁I3を介して供給管14
が連結され、かつこの供給管14の他端は不活性ガスボ
ンベ15と連結されている。まだ、他方の分岐配管12
bには排出弁16を介して排出管17が連結されている
In the figure, reference numeral 1 denotes a pressure-resistant airtight container. A support shaft 2 is rotatably inserted from the bottom of this airtight container 1. A carbon heater 3 is supported on this support shaft 2, and the quartz inside Ruth? 4 is protected. Further, an electrode 5°5 is inserted from the bottom of the sealed container 1, and
It is connected to a cylindrical carbon heater 6 which is arranged so as to be recessed. A heat insulating tube 7 is disposed around the outer periphery of the carbon heater 6. On the other hand, a pulling shaft 8 is rotatably inserted into the upper part of the closed container 1, and a seed crystal 9 is held at the lower end of the pulling shaft 8. Further, a viewing window 10 for observing the inside of the quartz crucible 4 is provided on the side surface of the sealed container 1. Furthermore, a pipe 11 is connected to the side surface of the closed container 1. The other end of this pipe 11 is branched into two branch pipes 12a and 12b, and one branch pipe 12a is connected to a supply pipe 14 via a supply valve I3.
and the other end of this supply pipe 14 is connected to an inert gas cylinder 15. Still, the other branch pipe 12
A discharge pipe 17 is connected to b via a discharge valve 16.

上述した育成装置を用いた高分解圧化合物半導体単結晶
の製造は以下のようにして行なわれる。
Production of a high decomposition pressure compound semiconductor single crystal using the above-mentioned growth apparatus is carried out as follows.

まず、石英ルツボ4に化合物半導体及びB206を含む
原料を入れた後、不活性ガスボンベ15から加圧不活性
ガスを供給し、カーボンヒーク6に通電して前記原料を
溶融させ、石英ルツボ4内に化合物半導体融液18とそ
の表面を覆うB2O3融液19を形成する。このB20
’3融液19は化合物半導体融液18からの分解揮発を
抑える作用を有する。つづいて、引上軸8下端の種結晶
9を前記化合物半導体融液18に浸し、支持軸2及び引
上軸8を逆方向に回転しながら引上軸8を引上げること
によシ高分解圧化合物半導体単結晶を製造する。
First, after putting raw materials including a compound semiconductor and B206 into the quartz crucible 4, pressurized inert gas is supplied from the inert gas cylinder 15, and electricity is applied to the carbon heat 6 to melt the raw materials, and the compound semiconductor and B206 are put into the quartz crucible 4. A semiconductor melt 18 and a B2O3 melt 19 covering the surface thereof are formed. This B20
'3 melt 19 has the effect of suppressing decomposition and volatilization from compound semiconductor melt 18. Subsequently, the seed crystal 9 at the lower end of the pulling shaft 8 is immersed in the compound semiconductor melt 18, and the pulling shaft 8 is pulled up while rotating the support shaft 2 and the pulling shaft 8 in opposite directions to achieve high decomposition. Manufacture a pressure compound semiconductor single crystal.

〔背景技術の問題点〕[Problems with background technology]

上述した従来の高分解圧化合物半導体単結晶育成装置に
おいては高分解圧成分(Pr As等)の分解揮発防止
のだめ加圧不活性ガスに対して耐圧性の密閉容器1が必
要不可欠である。したがって、実際の単結晶育成中にお
いては容器体積が一定であシ、圧力と温度とが比例して
変化する。ところで、一般的に高分解圧化合物半導体単
結晶は育成速度一定のもとてプログラムに従って温度を
制御することにょシ直径制御を行なって製造される。し
かし、上述した理由にょシ直径制御のために温度を変化
させると圧力が変化する。まだ、結晶の成長に伴なって
熱環境が変化するため、これに伴って圧力も変化する。
In the above-described conventional high decomposition pressure compound semiconductor single crystal growth apparatus, a closed container 1 that is pressure resistant to pressurized inert gas is indispensable in order to prevent decomposition and volatilization of high decomposition pressure components (PrAs, etc.). Therefore, during actual single crystal growth, the volume of the container remains constant, and the pressure and temperature change proportionally. By the way, high decomposition pressure compound semiconductor single crystals are generally manufactured by controlling the temperature and controlling the diameter according to a program with a constant growth rate. However, for the reasons mentioned above, changing the temperature to control the diameter changes the pressure. However, as the thermal environment changes as the crystal grows, the pressure also changes accordingly.

こうした圧力の変動の結果、結晶界面の温度をプログラ
ム通電に制御することが困難となシ、多結晶化及び双晶
化を招き、化合物半導体単結晶の歩留シを低下させる原
因となっていた。また、圧力の変動によって結晶の直径
制御のだめの温度プログラムの再現性が悪化する原因と
もなっていた。
As a result of these pressure fluctuations, it is difficult to control the temperature at the crystal interface in a programmed energization manner, leading to polycrystalization and twinning, which causes a decrease in the yield of compound semiconductor single crystals. . In addition, pressure fluctuations also caused deterioration in the reproducibility of the temperature program used to control the crystal diameter.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであシ、密閉容
器内の圧力変動を抑制することによシ、単結晶の歩留シ
を向上させるとともに温度プログラムの再現性を良好に
し、単結晶育成操作を容易にし得る高分解圧化合物半導
体単結晶の製造方法を提供しようとするものである。
The present invention has been made in view of the above circumstances. By suppressing pressure fluctuations in a closed container, the present invention improves the yield of single crystals and improves the reproducibility of temperature programs. The present invention aims to provide a method for producing a high decomposition pressure compound semiconductor single crystal that can be easily grown.

〔発明の概要〕[Summary of the invention]

本発明の高分解圧化合物半導体単結晶の製造方法はボン
ベ及び密閉容器内の圧力を例えば圧力センサにより検知
し、両者の圧力差が所定値(例えばボンベ圧力の1係)
以上になっへときに、不活性ガスの供給量又は排出量を
調整することを特徴とするものである。
In the method for producing a high decomposition pressure compound semiconductor single crystal of the present invention, the pressure inside the cylinder and the closed container is detected by, for example, a pressure sensor, and the pressure difference between the two is a predetermined value (for example, 1 factor of the cylinder pressure).
When the above conditions are reached, the amount of inert gas supplied or discharged is adjusted.

このようにして密閉容器内の圧力変動を抑制することが
でき、単−晶の歩留シを向上させるとともに単結晶育成
操作を容易にすることができる。
In this way, pressure fluctuations within the closed container can be suppressed, improving the yield of single crystals and facilitating single crystal growth operations.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図を参照して説明する。な
お、第1図図示の従来の育成装置と同一の部材には同一
番号を付して説明を省略する0− 密閉容器1の側面には配管20が連結されておシ、この
配管20の他端は2本の分岐配管21 a 、 :)1
 bに分岐されているとともに′前記密閉容器1の側面
の連結部と分岐部との間に枝管22が形成゛された形状
になっている。この枝管22には排出弁(vout)2
3を介して主排出管24が連結されている。また、前記
一方の分岐配管21aは電磁弁(Vl) 25を介して
バイパス排出管26に連結されているとともに、このバ
イパス排出管26は前記主排出管24に連結されている
。なお、前記電磁弁(v、)j5後段のパイ・ぐス排出
管26にはニードル弁(v2)27が介装されている。
Hereinafter, embodiments of the present invention will be described with reference to FIG. Note that the same members as those in the conventional growth apparatus shown in FIG. The end has two branch pipes 21a, :)1
b, and a branch pipe 22 is formed between the connection part on the side surface of the closed container 1 and the branch part. This branch pipe 22 has a discharge valve (vout) 2.
A main discharge pipe 24 is connected via 3. Further, the one branch pipe 21a is connected to a bypass discharge pipe 26 via a solenoid valve (Vl) 25, and this bypass discharge pipe 26 is connected to the main discharge pipe 24. It should be noted that a needle valve (v2) 27 is interposed in the gas discharge pipe 26 downstream of the electromagnetic valve (v,)j5.

前記他方の分岐配管21bには供給弁(’vtn ) 
z sを介して主供給管29が連結され、かつこの主供
給管29の他端は不活性ガスボンベ15に連結されてい
る。また、分岐配管21bと主供給管29にはパイA’
ス供給管30が連結され、このパイ・等ス供給管30に
は主供給管29との連結部側から電磁弁(v3)31及
びニードル弁(V4)J2が順次介装されている。更に
、前記分岐配管21bからは検出配管33が分岐して圧
力センサ(B) a 4と接続し、前記主供給管29か
らは検出配管35が分岐して圧力センサ(A) s e
と接続している。これら圧力センサ(、A) s 6及
び圧力センサ(B) s 4は両者の出力差を電気信号
に変換する変換器37に接続されておシ、この変換器3
7はその電気信号を前記電磁弁(V、)25及び電磁弁
(■3)31に出力するようになっている。
A supply valve ('vtn) is provided in the other branch pipe 21b.
A main supply pipe 29 is connected via zs, and the other end of this main supply pipe 29 is connected to the inert gas cylinder 15. In addition, the branch pipe 21b and the main supply pipe 29 are provided with pi A'
A solenoid valve (V3) 31 and a needle valve (V4) J2 are interposed in this pi/iso supply pipe 30 in this order from the connecting portion with the main supply pipe 29. Further, a detection pipe 33 branches from the branch pipe 21b and connects to the pressure sensor (B) a 4, and a detection pipe 35 branches from the main supply pipe 29 and connects to the pressure sensor (A) s e
is connected to. These pressure sensor (A) s 6 and pressure sensor (B) s 4 are connected to a converter 37 that converts the output difference between them into an electrical signal.
7 outputs the electric signal to the solenoid valve (V, ) 25 and solenoid valve (3) 31.

上述した育成装置において、不活性ガスは通常ボンベ1
5から主供給管29、供給弁(Vin)28、分岐配管
21b及び配管20を経由して密閉容器1内へ供給され
、密閉容器1内から配管20.枝管22、排出弁(Vo
ut ) 23及び排出管24を経由して外部へ排出さ
れる。
In the above-mentioned growth apparatus, the inert gas is usually in cylinder 1.
5 into the closed container 1 via the main supply pipe 29, supply valve (Vin) 28, branch pipe 21b and pipe 20, and from inside the closed container 1 to the pipe 20. Branch pipe 22, discharge valve (Vo
ut ) 23 and discharge pipe 24 to the outside.

上述した育成装置を用いて、以下のような条件でGaP
単結晶を製造した。
Using the above-mentioned growth apparatus, GaP was grown under the following conditions.
A single crystal was produced.

まず、石英ルツぎ4内にGaP多結晶2kg及びB2O
3をチャージした後、ボンベ15の圧力を1000 p
si (70,21kg7cm2)に設定し、カーボン
ヒータ6に通電して前記GaP多結晶を溶融させた。次
に、引上軸8下端の種結晶9をGaP融液18に浸し、
種結晶回転数10〜15rpm、ルツボ回転数3〜5r
pm、引上速度9〜15 mf’kiの条件で重量1.
5 kg、直径52±2瓢のGaP単結晶を引上げた。
First, 2 kg of GaP polycrystal and B2O were placed in the quartz mill 4.
After charging 3, increase the pressure of cylinder 15 to 1000p.
si (70.21 kg, 7 cm2), and the carbon heater 6 was energized to melt the GaP polycrystal. Next, the seed crystal 9 at the lower end of the pulling shaft 8 is immersed in the GaP melt 18,
Seed crystal rotation speed 10-15rpm, crucible rotation speed 3-5r
pm, pulling speed 9-15 mf'ki, weight 1.
A GaP single crystal weighing 5 kg and having a diameter of 52±2 gourds was pulled.

この際、密閉容器1内の圧力変動がボンベ圧力1000
 psi (70,21kg/crn2)の±1チ以下
、すなわち±10 psi (0,7021kg/cm
2)となるように以下のようにして圧力調整を行なった
0 ボンベ15から供給される不活性ガスの圧力を1000
 psi (70,21kvz2)に設定し、  −圧
力センサ゛(A) s eの出力値を一定値XAに保つ
At this time, the pressure fluctuation inside the closed container 1 is equal to the cylinder pressure 1000.
less than ±1 inch of psi (70,21kg/crn2), i.e. ±10 psi (0,7021kg/cm
2) The pressure was adjusted as follows so that the pressure of the inert gas supplied from the cylinder 15 was adjusted to 1000.
psi (70, 21kvz2), and - maintain the output value of the pressure sensor ゛(A)se at a constant value XA.

結晶引上げ中の密閉容器I内の圧力は圧力センサ(B)
 s 4によシ常時検出し、圧力センサ(B)34の出
力値XBと圧力センサ(A) s eの出力値XAとの
差を変換器(C)37によって電気信号に変換する。こ
こで、上記出力値の差、XB−XAが+10ps+ (
+0.7021kg/crn2)に対応する値となった
とき、バイパス排出管26の電磁弁(vl)25を開く
ことによシ、不活性ガスをニードル弁(■2)27全通
して微少量ずつ外部へ排出し、xB −XA : 0と
なると電磁弁(vl)25を自動的に閉じる。また、x
B−xAが−10psi (−0,7021kvcrn
2)に対応する値となったとき、バイパス供給管30の
電磁弁(V3)3zを開き、不活性ガスをニードル弁(
v4)32を通しで一微少量ずつ密閉容器1内へ供給し
、xB  xA= Qとなると電磁弁(v3)31を自
動的に閉じる。
The pressure inside the sealed container I during crystal pulling is measured by a pressure sensor (B).
The difference between the output value XB of the pressure sensor (B) 34 and the output value XA of the pressure sensor (A) s e is constantly detected by the converter (C) 37. Here, the difference between the above output values, XB-XA, is +10 ps+ (
+0.7021kg/crn2), by opening the solenoid valve (vl) 25 of the bypass discharge pipe 26, the inert gas is passed through the needle valve (■2) 27 little by little. The solenoid valve (vl) 25 is automatically closed when xB-XA:0 is discharged to the outside. Also, x
B-xA is -10psi (-0,7021kvcrn
When the value corresponding to 2) is reached, the solenoid valve (V3) 3z of the bypass supply pipe 30 is opened and the inert gas is supplied to the needle valve (
v4) 32 into the sealed container 1, and when xB xA=Q, the solenoid valve (v3) 31 is automatically closed.

しかして、上記方法によれば、密閉容器1内における圧
力変動によって結晶界面の温度がプログラムされた値か
らはずれるのを防止するこ。
According to the above method, it is possible to prevent the temperature of the crystal interface from deviating from the programmed value due to pressure fluctuations within the closed container 1.

とができるので、引上げ途中における結晶の多結晶化及
び双晶化を防止することができる。事実、他の条件は同
一として密閉容器1内の圧力調整を行なわない従来の方
法でGaP単結晶を製造した場合、密閉容器1内の圧力
変動は50〜100psi(3,511〜7.021 
kvcm  )であわ、この圧力変動によるGaP単結
晶の歩留シ低下度は10%であったのに対し、本発明方
法の場合、密閉容器1内の圧力変動はl Q psi(
0,7021kg/cm  )以内であわ、この圧力変
動によってGaP単結晶の歩留りが低下することはなか
った。   ” また、圧力変動を抑制することができるので、結晶の直
径制御のだめの温度プログラムの再現性が良好となυ、
単結晶育成操作が容易となった。
Therefore, it is possible to prevent polycrystalization and twinning of crystals during the pulling process. In fact, if a GaP single crystal is produced by the conventional method without adjusting the pressure inside the closed container 1, all other conditions being the same, the pressure fluctuation inside the closed container 1 will be 50 to 100 psi (3,511 to 7.021 psi).
kvcm), and the rate of decrease in yield of GaP single crystals due to this pressure fluctuation was 10%, whereas in the case of the method of the present invention, the pressure fluctuation inside the closed container 1 was l Q psi(
The yield of GaP single crystals did not decrease due to this pressure fluctuation. ” In addition, since pressure fluctuations can be suppressed, the reproducibility of the temperature program for controlling the crystal diameter is improved.
Single crystal growth operations have become easier.

なお、上記実施例では不活性ガスの供給量又は排出量を
調整する際のボンベと密閉容器内との圧力差をボンベ圧
力の1%に設定したが、前記圧力差は単結晶の歩留シに
影響を及はさない範囲内で任意に設定できる。
In the above example, the pressure difference between the cylinder and the inside of the closed container was set to 1% of the cylinder pressure when adjusting the supply or discharge amount of inert gas, but the pressure difference is determined by the single crystal yield system. It can be set arbitrarily within a range that does not affect.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、単結晶の歩留シを向
上させるとともに単結晶育成操作を容易にし得る高分解
圧化合物半導体単結晶の製造方法を提供できるものであ
る。
As detailed above, according to the present invention, it is possible to provide a method for producing a high decomposition pressure compound semiconductor single crystal, which can improve the single crystal yield and facilitate the single crystal growth operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高分解圧化合物半導体単結晶育成装置を
一部断面で示す構成図、第2図は本発明の実施例におい
て使用される高分解圧化合物半導体単結晶育成装置を一
部断面で示す構成図である。 1・・・密閉容器、2・・・支持軸、3・・・カー?ン
ルツが、4・・・石英ルツデ、5・・・電極、6・・・
カーデンヒータ、7・・・保温筒、8・・・引上軸、9
・・・種結晶、10・・・のぞき窓、15・・・不活性
ガスボンペ、18・・・化合物半導体(GaP )融液
、I9・・・B2O5融液、20・・・配管、21a、
21b・・・分岐配管、22・・・枝管、23・・・排
出弁、24・・・主排出管、25.31・・・電磁弁、
26・・・バイパス排−出管、2′7,32・・・ニー
ドル弁、28・・・供給弁、29主供給管、3o・・・
バイパス供給管、33.35・・・検出配管、34.3
6・・・圧力センサ、37・・・変換器。
FIG. 1 is a partially cross-sectional block diagram of a conventional high-resolution-pressure compound semiconductor single crystal growth apparatus, and FIG. 2 is a partial cross-section of a high-resolution-pressure compound semiconductor single-crystal growth apparatus used in an embodiment of the present invention. FIG. 1... Airtight container, 2... Support shaft, 3... Car? 4...quartz glass, 5...electrode, 6...
Carden heater, 7... Heat insulation cylinder, 8... Pulling shaft, 9
... Seed crystal, 10... Peephole, 15... Inert gas cylinder, 18... Compound semiconductor (GaP) melt, I9... B2O5 melt, 20... Piping, 21a,
21b... Branch pipe, 22... Branch pipe, 23... Discharge valve, 24... Main discharge pipe, 25.31... Solenoid valve,
26... Bypass discharge pipe, 2'7, 32... Needle valve, 28... Supply valve, 29 Main supply pipe, 3o...
Bypass supply pipe, 33.35...Detection pipe, 34.3
6...Pressure sensor, 37...Converter.

Claims (1)

【特許請求の範囲】[Claims] 不活性ガス?ンペから加圧不活性ガスを密閉容器内へ供
給し、前記密閉容器内に支持されだルツボ内の高分解圧
化合物半導体融液に種結晶を浸して、酌記ルツデ及び種
結晶を回転しながら種結晶を引上げることによシ高分解
圧化合物半導体単結晶を製造する方法において、前記デ
ンペ及び密閉容器内の圧力を検知し、両者の圧力差が所
定値以上又は以下になったときに、不活性ガスの供給量
又は排出量を調整することを特徴とする高分解圧化合物
半導体単結晶の製造方法。
Inert gas? A pressurized inert gas is supplied into the sealed container from the container, and the seed crystal is immersed in the high decomposition pressure compound semiconductor melt in the crucible supported in the sealed container, and the cup crucible and the seed crystal are rotated. In a method for producing a high decomposition pressure compound semiconductor single crystal by pulling up a seed crystal while detecting the pressure inside the container and the closed container, when the pressure difference between the two becomes more than or less than a predetermined value, A method for producing a high decomposition pressure compound semiconductor single crystal, which comprises adjusting the amount of inert gas supplied or discharged.
JP640983A 1983-01-18 1983-01-18 Production of compound semiconductor single crystal having high decomposition pressure Pending JPS59131600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP640983A JPS59131600A (en) 1983-01-18 1983-01-18 Production of compound semiconductor single crystal having high decomposition pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP640983A JPS59131600A (en) 1983-01-18 1983-01-18 Production of compound semiconductor single crystal having high decomposition pressure

Publications (1)

Publication Number Publication Date
JPS59131600A true JPS59131600A (en) 1984-07-28

Family

ID=11637567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP640983A Pending JPS59131600A (en) 1983-01-18 1983-01-18 Production of compound semiconductor single crystal having high decomposition pressure

Country Status (1)

Country Link
JP (1) JPS59131600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117191A (en) * 1984-11-12 1986-06-04 Toshiba Ceramics Co Ltd Device for preparing silicon single crystal
US4678534A (en) * 1984-06-08 1987-07-07 Sumitomo Electric Industries, Ltd. Method for growing a single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678534A (en) * 1984-06-08 1987-07-07 Sumitomo Electric Industries, Ltd. Method for growing a single crystal
JPS61117191A (en) * 1984-11-12 1986-06-04 Toshiba Ceramics Co Ltd Device for preparing silicon single crystal

Similar Documents

Publication Publication Date Title
US5242531A (en) Continuous liquid silicon recharging process in czochralski crucible pulling
US5462010A (en) Apparatus for supplying granular raw material for a semiconductor single crystal pulling apparatus
KR100441357B1 (en) Single Crystal Pulling Method and Apparatus for its Implementation
US6623801B2 (en) Method of producing high-purity polycrystalline silicon
EP0056572A2 (en) Method and apparatus for manufacturing single crystals
EP0141495B1 (en) A method for pulling a single crystal
KR950004788B1 (en) System for controlling apparatus for growing tubular crystalline bodies
US20040173140A1 (en) Apparatus and method for balanced pressure growth of Group III-V monocrystalline semiconductor compounds
JPS59131600A (en) Production of compound semiconductor single crystal having high decomposition pressure
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
US5840115A (en) Single crystal growth method
CN217418862U (en) Continuous straight pulling single crystal device
JPH069290A (en) Method for growing compound semiconductor single crystal
JPH03215383A (en) Raw material-supplying device
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPS6011297A (en) Method and device for controlling growth of crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
CN118600535A (en) Enhanced temperature control method and system for SiC single crystal growth furnace
JPH09142997A (en) Production of gaas single crystal
JPS59116189A (en) Method for controlling shape of single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPS5826096A (en) Manufacturing apparatus for single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPS61117191A (en) Device for preparing silicon single crystal
JPS6036393A (en) Production of gaas single crystal