JPS59130456A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59130456A
JPS59130456A JP58219509A JP21950983A JPS59130456A JP S59130456 A JPS59130456 A JP S59130456A JP 58219509 A JP58219509 A JP 58219509A JP 21950983 A JP21950983 A JP 21950983A JP S59130456 A JPS59130456 A JP S59130456A
Authority
JP
Japan
Prior art keywords
voltage
substrate
well region
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58219509A
Other languages
Japanese (ja)
Inventor
Yasoji Suzuki
八十二 鈴木
Kiyobumi Ochii
落井 清文
Koji Asahi
朝日 広治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58219509A priority Critical patent/JPS59130456A/en
Publication of JPS59130456A publication Critical patent/JPS59130456A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To enable high speed actions and reduce the consumed power by a method wherein a well region formed necessarily on the substrate of a complementary MOS type integrated circuit is divided, and the device is arranged on on this region by selecting the propriety of impressing a high reverse directional voltage. CONSTITUTION:A plurality of P-channel type MOS transistors TrP's are formed on the substrate 1, and P type well regions 2 and 3 alienated from each other are formed on the substrate 1. A plurality of N-channel type MOS transistors TrN1 and TrN2 are formed on these region 2 and 3 respectively; an MOS element such as a memory cell to which a high reverse directional voltage is not impressed is formed on the region 2, and an MOS element to which the high reverse directional voltage is desired to be impressed is formed on the region 3. Then, one power source voltage VDD used in a main complimentary memory circuit is impressed on the substrate 1, the other power source voltage VSS on the well region 2, and a high power source voltage Vsub higher in the negative direction than the voltage VSS on the well region 3. Such a constitution enables to cause the memory cell of the well region 2 to well perform information memory, and to contrive to speed up the action because the junction capacitance becomes small.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は半導体メモリのデータ読み出し時間を短縮化す
る場合に適した半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device suitable for shortening data read time of a semiconductor memory.

[発明の技術的背景とその問題点] 近年、MO8型半導体を用いた大容量メモリの発展がめ
ざましく、高密度集積化と共に、動作の高速化が大きな
テーマとなっている。MO8型メモリの高速化とは、デ
ータ読み出し時間t ACCを短縮化することであるが
、もともと電圧制御素子であるMOS)ランジスタを用
いたメモリでは。
[Technical background of the invention and its problems] In recent years, the development of large-capacity memories using MO8 type semiconductors has been remarkable, and high-density integration and high-speed operation have become major themes. Increasing the speed of MO8 type memory means shortening the data read time tACC, but this is true for memory that originally uses MOS transistors, which are voltage control elements.

各部回路のあらゆる部分に付随する容量(キャパシタン
ス)を充、放電するだめの伝播遅延時間の総和でtAC
Cが決まるため、浮遊容量をいかに減少させるかが、高
速化のだめの一つのアプローチの手法となる。
tAC is the sum of the propagation delay times for charging and discharging the capacitance associated with all parts of each circuit.
Since C is determined, one approach to increasing speed is how to reduce stray capacitance.

一般に浮遊容量とは、MO8集積回路の場合、大別して
ゲート容量と拡散容量とに分けられる。
Generally, in the case of MO8 integrated circuits, stray capacitance can be broadly divided into gate capacitance and diffusion capacitance.

このうち拡散容量は、PN接合にかかる逆方向電圧の平
方根に逆比例することは周知の通りであり、かかる逆方
向電圧を大きくすれば接合容量は小さくなる。そのため
には、MO8集積回路基板に加える逆方向電圧を高くす
ればよいが、これで問題が解決されるわけではない。即
ち相補MO8型メモリの場合、メモリセルは動作静止時
に記憶情報をスタティックに保持させる必要があり、か
つ消費電流を洩れ電流のみに押えなければならないので
、基板に高い逆方向電圧を加えてMOSトランジスタの
スレッシュホールド電圧Vthを変動させてしまうこと
は許されない。
It is well known that the diffusion capacitance is inversely proportional to the square root of the reverse voltage applied to the PN junction, and as the reverse voltage increases, the junction capacitance decreases. To achieve this, the reverse voltage applied to the MO8 integrated circuit board may be increased, but this does not solve the problem. In other words, in the case of a complementary MO8 type memory, the memory cell needs to statically hold the stored information when it is not operating, and the current consumption must be limited to only leakage current, so a high reverse voltage is applied to the substrate and the MOS transistor is It is not allowed to fluctuate the threshold voltage Vth.

[発明の目的] 本発明は上記事情に鑑みてなされたもので、高速動作及
び低消費電力を可能ならしめた半導体装置を提供するこ
とを目的とする。
[Object of the Invention] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device that enables high-speed operation and low power consumption.

[発明の概要] 本発明は相補MO8型集積回路基板には必然的に形成さ
れるウェル領域を分割し、該領域に、高い逆方向電圧を
加えることが許されるものとそうでないものとを選択し
て配置することにより、高速動作を可能ならしめ、かつ
まだ上記高い逆方向電圧印加を必要時のみ行なうことに
より、消費電力の低減化を可能ならしめた半導体装置を
提供しようとするものである。
[Summary of the Invention] The present invention divides a well region that is inevitably formed on a complementary MO8 type integrated circuit board, and selects regions to which a high reverse voltage is allowed to be applied and regions to which it is not allowed. The present invention aims to provide a semiconductor device that enables high-speed operation by arranging the semiconductor devices in the same manner as described above, and also enables reduction of power consumption by applying the high reverse voltage mentioned above only when necessary. .

[発明の実施例] 以下図面を参照して本発明の一実施例を説明する。図中
1は相補MO8型メモリを構成するN型基板で、この基
板1にPチャネル型MO8トランジスタTrpが多数形
成される。また基板1に相離間するP−well(P型
ウェル)領域2,3を形成する。この領域ン、3にはそ
れぞれ多数のNチャネル型MOSトランジスタTrN1
 、 TrN2が形成されるが、領域2には該領域に高
い逆方向電圧が加えられないメモリセルの如きMO8素
子を形成し、領域3には該領域に高い逆方向電圧を加え
たいMO8素子を形成する。そして基板1には本相補M
OSメモリ回路で用いる一方の電源電圧VDDを印加し
、ウェル領域2には他方の電源電圧VSSを印加し、ウ
ェル領域3にはV8Sより負方向に高い電源電圧Vsu
bを印加するものである。なお第1図において4はP型
拡散層、5はN型拡散層、6はフィールド酸化膜、7は
ゲート酸化膜、8は電極配線層である。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. In the figure, reference numeral 1 denotes an N-type substrate constituting a complementary MO8 type memory, and a large number of P-channel type MO8 transistors Trp are formed on this substrate 1. Further, P-well (P-type well) regions 2 and 3 are formed in the substrate 1 to be separated from each other. In these regions N and 3, a large number of N-channel MOS transistors TrN1 are provided.
, TrN2 is formed, but in region 2 an MO8 element such as a memory cell to which a high reverse voltage cannot be applied is formed, and in region 3 an MO8 element to which a high reverse voltage is to be applied is formed. Form. And on board 1, this complementary M
One power supply voltage VDD used in the OS memory circuit is applied, the other power supply voltage VSS is applied to the well region 2, and the power supply voltage Vsu higher in the negative direction than V8S is applied to the well region 3.
b is applied. In FIG. 1, 4 is a P-type diffusion layer, 5 is an N-type diffusion layer, 6 is a field oxide film, 7 is a gate oxide film, and 8 is an electrode wiring layer.

このような構成にすると、ウェル領域2のメモリセルは
情報記憶が良好に行なえるし、またウェル領域3にはセ
ルアレイの周辺回路例えばアドレステコーダ回路、メモ
リ出力線の電圧センス回路、バッファ回路等のような読
み出し時間tACCの律速部分(ここでtAC(、j)
1大きく律せられる)を配置することによシ、この部分
の接合容量が小となるから、高速動作が可能となる。ま
たP型ウェル領域はN型基板1と比べて不純物濃度が]
0倍以上である。従ってP型ウェル領域内での接合容量
はN型基板1内での接合容量より数倍大となるから、N
型基板よりもP型ウェル領域での接合容量を減少させた
ほうが、t ACC時間の改善効果は犬となるものであ
る。
With this configuration, the memory cells in the well region 2 can store information well, and the well region 3 can also store peripheral circuits of the cell array, such as address decoder circuits, voltage sense circuits for memory output lines, buffer circuits, etc. The rate-limiting part of the readout time tACC such as (where tAC(,j)
1), the junction capacitance of this portion becomes small, and high-speed operation becomes possible. Also, the impurity concentration in the P-type well region is higher than that in the N-type substrate 1]
It is 0 times or more. Therefore, the junction capacitance within the P-type well region is several times larger than the junction capacitance within the N-type substrate 1, so N
If the junction capacitance in the P-type well region is reduced more than in the type substrate, the effect of improving the t ACC time will be greater.

第2図は上記第1図の考え方を相補MO8型メモリのデ
コーダ回路に適用した場合の例である。
FIG. 2 is an example in which the concept of FIG. 1 is applied to a decoder circuit of a complementary MO8 type memory.

出力端Oと接地(Vssに相当)間に直列接続したPチ
ャネル型MO8)ランジスタ110〜lI3の基板電位
は第1図の電圧Vs ubである。出力端0と ′VD
D電位供給端間に並列接続されたNチャネル型MOSト
ランジスタ12. 、122は基板1に形成されるだめ
、基板電位は電圧VDDである。このようにするとトラ
ンジスタ11o〜113の基板ソース、ドレインとの間
の接合容量が、逆方向に高い電圧Vsubの作用で小と
なシ、tACCの短縮化に寄与し得るものである。なお
第2図においてAO””’ A3はアドレス信号、CE
はチップイネーブル信号を示している。
The substrate potential of the P-channel type MO8) transistors 110 to 1I3 connected in series between the output terminal O and the ground (corresponding to Vss) is the voltage Vsub in FIG. Output terminal 0 and 'VD
N-channel MOS transistor 12 connected in parallel between D potential supply terminals. , 122 are formed on the substrate 1, so the substrate potential is the voltage VDD. In this way, the junction capacitance between the substrate sources and drains of the transistors 11o to 113 is reduced by the effect of the high voltage Vsub in the opposite direction, which can contribute to shortening tACC. In Fig. 2, AO""' A3 is the address signal, CE
indicates the chip enable signal.

第3図、第4図は前記電圧Vsubを得るための回路で
、第3図は矩形波を発振する非安定マルチバイブレータ
回路である。この回路はチップイネーブル信号CBが高
レベルである時、矩形波を発振してこれを出力端01か
ら第4図の基板バイアス発生回路の入力端Ilに供給し
、CBが低レベルである時、上記矩形波発振を停止する
。g4図の回路では、インバータ21の入力端に供給さ
れる矩形波パルスの立上シ毎に、出力端02側の正電荷
をダイオードnを介してコンデンサn側へ引込み、矩形
波パルスの立下シ毎に正電荷をダイオード冴を介して放
電させる。この動作を繰返すと、出力端02側には正電
荷がなくなり、出力端02にはVSS(接地)電位より
更に低い電源電圧Vs ubが得られるからこれを第2
図の基板電圧V s u bとして用いるものである。
3 and 4 are circuits for obtaining the voltage Vsub, and FIG. 3 is an unstable multivibrator circuit that oscillates a rectangular wave. When the chip enable signal CB is at a high level, this circuit oscillates a rectangular wave and supplies it from the output terminal 01 to the input terminal Il of the substrate bias generation circuit in FIG. 4, and when CB is at a low level, Stop the above square wave oscillation. In the circuit shown in Fig. g4, each time the square wave pulse supplied to the input terminal of the inverter 21 rises, the positive charge on the output terminal 02 side is drawn into the capacitor n side via the diode n, and the square wave pulse falls. A positive charge is discharged through the diode every time. By repeating this operation, there will be no positive charge on the output terminal 02 side, and a power supply voltage Vs ub, which is lower than the VSS (ground) potential, will be obtained at the output terminal 02.
This is used as the substrate voltage V s u b in the figure.

この電圧Vsubの供給は、第3図のチップイネーブル
信号で制御され、該信号CEが低レベル側にある時は矩
形波発振が止まるから、必要時のみ供給されることKな
る。これによシ動作不要時には第3図の発振回路等は動
作を停止し、従って低消費電力化が可能となるものであ
る。
The supply of this voltage Vsub is controlled by the chip enable signal shown in FIG. 3, and since the rectangular wave oscillation stops when the signal CE is on the low level side, it is supplied only when necessary. As a result, the oscillation circuit shown in FIG. 3 stops operating when it is not required to operate, thereby making it possible to reduce power consumption.

第5図は本発明を相補MO8型メモリの電圧センス回路
に適用した場合の実施例である。この回路は、チップイ
ネーブル信号CBによりトランジスタ311,312を
オン(導通)させ、セル゛γレイのデータ出力線BUS
 、 BO2を1”レベル(VDDレベル)にプリチャ
ージする。なお321,322は高抵抗である。
FIG. 5 shows an embodiment in which the present invention is applied to a voltage sensing circuit of a complementary MO8 type memory. This circuit turns on (conducts) the transistors 311 and 312 by the chip enable signal CB, and connects the data output line BUS of the cell γ-ray.
, BO2 is precharged to 1'' level (VDD level). Note that 321 and 322 are high resistances.

そしてタイミング信号φ3をゲート入力とするトランジ
スタ331.332で31点、32点の寄生容量に出力
線BU8 、 BO2の電圧を供給し、これらの電圧の
いずれかがセルアレイのデータ読出しで変化しだらトラ
ンジスタ詞をタイミング信号φ2でオンさせ、フリップ
フロップ35をトランジスタ謁1,362の作用でいず
れか一方に反転さぜることKより電圧センスを行なう。
Then, transistors 331 and 332, which have the timing signal φ3 as the gate input, supply the voltages of the output lines BU8 and BO2 to the parasitic capacitances at points 31 and 32, and if any of these voltages changes when reading data from the cell array, the transistors Voltage sensing is performed by turning on the voltage with the timing signal φ2 and inverting the flip-flop 35 to either one by the action of the transistors 1 and 362.

その後タイミング信号φ1をゲート入力とするトランジ
スタ37□、372で、フリップフロップあの出力をメ
モリセルに送出し、データの再書き込みを行なう。この
ような回路にあっても、NチャネルMO8)ランジスタ
34,36.,362の基板バイアスとして、前述のV
subが供給されているので、フリップフロップあが高
速動作を行ない、またVsubを基板バイアスとするN
チャネルトランジスタ37□、37□により高速の再書
き込みが行なわれることにより、tACCの短縮化が可
能となる。
Thereafter, the output of the flip-flop is sent to the memory cell by transistors 37□ and 372 whose gates receive the timing signal φ1, and data is rewritten. Even in such a circuit, N-channel MO8) transistors 34, 36 . , 362, the aforementioned V
Since sub is supplied, the flip-flop operates at high speed, and N with Vsub as the substrate bias.
By performing high-speed rewriting using the channel transistors 37□ and 37□, it is possible to shorten tACC.

またこの回路は、トランジスタ331,332がPチャ
ネル型であることにより、タイミング信号φ0.φ2と
同様にφ3もVDD、接地間電圧振幅化できるという利
点が具備されるものである。
Further, in this circuit, since the transistors 331 and 332 are P-channel type, the timing signal φ0. Similar to φ2, φ3 also has the advantage that the voltage between VDD and ground can be varied in amplitude.

第6図は本発明を相補MO8型メモリセルに適用した場
合の実施例である。即ち前記の説明ではメモリセルを構
成するトランジスタに逆方向電圧v、ubを用いるのは
許されないとしたが、これはセル本体41についてであ
り、セル出力を伝達するトランスファ素子としてのNチ
ャネル型MOSトランジスタ42..42□については
、これによるリーク電流を許容できれば、該トランジス
タの基板電極にvsubを印加してもよいことを示した
ものである。
FIG. 6 shows an embodiment in which the present invention is applied to a complementary MO8 type memory cell. That is, in the above explanation, it was said that it was not allowed to use reverse voltages v and ub for the transistors that constitute the memory cell, but this applies to the cell body 41, and the N-channel MOS as a transfer element that transmits the cell output. Transistor 42. .. Regarding 42□, it is shown that vsub may be applied to the substrate electrode of the transistor as long as the leakage current caused by this can be tolerated.

これによってもt ACC短縮の一助となろう第7図は
基板バイアス回路の応用例を示す。この回路は入力端■
1に第3図の01から発揚出力を受け、チップイネーブ
ル信号CEが高レベルにある時電圧Vsubを出力し、
CEが低レベルにある時電圧Vssを出力する回路であ
る。
This will also help shorten tACC. FIG. 7 shows an example of application of the substrate bias circuit. This circuit is the input terminal
1 receives the launch output from 01 in FIG. 3, outputs the voltage Vsub when the chip enable signal CE is at a high level,
This circuit outputs voltage Vss when CE is at a low level.

なお本発明は上記実施例に限られず、例えば第1図のN
型基板をP型基板とする場合にも適用できる。この場合
ウェル領域はN型となるから、これ忙伴ない基板電極の
電圧Vsubを印加するトランジスタはNチャネル型ト
ランジスタとなる。
Note that the present invention is not limited to the above embodiment, and for example, the N
It can also be applied when the type substrate is a P type substrate. In this case, since the well region is of N type, the transistor to which the voltage Vsub of the substrate electrode is applied becomes an N channel transistor.

[発明の効果] 以上説明した如く本発明によれば、回路動作に問題を生
じることなく接合容量を減少化でき、)゛      
−−− 一       データ読み出し時間 t ACCを大巾に短縮でき、また上記接合容量を減少
させるだめの逆方向電圧は時間を選択して与えるので、
回路消費電力を節減し得る半導体装置が提供できるもの
である。
[Effects of the Invention] As explained above, according to the present invention, the junction capacitance can be reduced without causing any problems in circuit operation.
--- 1. The data read time tACC can be greatly shortened, and the reverse voltage needed to reduce the junction capacitance can be selectively applied at a certain time.
A semiconductor device that can reduce circuit power consumption can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明−の一実施例を示す装置断面図、第2図
は同装置の具体例を示す回路図、第3図、第4図は同回
路のVsubを得るだめの回路図、第5図ないし第7図
は本発明の応用例の回路図である。 l・・・N型基板、 2.3・・・P型ウェル領域、 vDD = VSS 、 vsub ””dl電源電圧
CE・・チップイネーブル信号0
Fig. 1 is a sectional view of a device showing an embodiment of the present invention, Fig. 2 is a circuit diagram showing a specific example of the same device, Figs. 3 and 4 are circuit diagrams for obtaining Vsub of the same circuit, 5 to 7 are circuit diagrams of applied examples of the present invention. l...N-type substrate, 2.3...P-type well region, vDD = VSS, vsub ""dl power supply voltage CE...chip enable signal 0

Claims (1)

【特許請求の範囲】 MOS)ランジスタを集積化したMO8集積回路におい
て、該集積回路の一方の電源電圧が印加される第1導電
型の半導体基体と、この基体に形成され前記集積回路の
他方の電源電圧が印加される第2導電型の第1のウェル
領域と、前記基体に前記ウェル領域とは離間して形成さ
れ前記各電源電圧間の範囲をこえる他電圧が印加される
第2導を型の第2のウェル領域と、この領域に時間を選
択して前記他電圧を印加させる手段とを具備し、。 前記他電圧は第2のウェル領域に形成される接合容量が
第1のウェル領域に形成される接合容量より小となる電
圧であり、前記第2のウェル領域には第1のウェル領域
のMOS)ランジスタより高速動作を要求されるMOS
)ランジスタを配置したことを特徴とする半導体装置。
[Claims] In an MO8 integrated circuit in which transistors (MOS) are integrated, a semiconductor substrate of a first conductivity type to which one of the power supply voltages of the integrated circuit is applied, and a semiconductor substrate of a first conductivity type formed on this substrate to which a power supply voltage of one of the integrated circuits is applied a first well region of a second conductivity type to which a power supply voltage is applied; and a second conductor formed in the substrate spaced apart from the well region and to which a voltage exceeding a range between the respective power supply voltages is applied. a second well region of the type, and means for selectively applying the other voltage to the region at a selected time. The other voltage is a voltage at which the junction capacitance formed in the second well region is smaller than the junction capacitance formed in the first well region, and the second well region has a MOS transistor in the first well region. ) MOS that requires higher speed operation than transistors
) A semiconductor device characterized by having a transistor arranged therein.
JP58219509A 1983-11-24 1983-11-24 Semiconductor device Pending JPS59130456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219509A JPS59130456A (en) 1983-11-24 1983-11-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219509A JPS59130456A (en) 1983-11-24 1983-11-24 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13958677A Division JPS5472691A (en) 1977-11-21 1977-11-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59130456A true JPS59130456A (en) 1984-07-27

Family

ID=16736570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219509A Pending JPS59130456A (en) 1983-11-24 1983-11-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59130456A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128684A (en) * 1973-03-14 1974-12-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128684A (en) * 1973-03-14 1974-12-10

Similar Documents

Publication Publication Date Title
JPS6124830B2 (en)
KR930007284B1 (en) Memory device with improved common data line bias arrangement
US4760561A (en) MOS static type RAM having a variable load
JPH07211079A (en) Static ram
US6744680B2 (en) Semiconductor device realized by using partial SOI technology
US6775176B2 (en) Semiconductor memory device having memory cells requiring no refresh operations
JPH07230693A (en) Semiconductor memory
JPH02185793A (en) Semiconductor storage device
US5267192A (en) Semiconductor memory device
US4288706A (en) Noise immunity in input buffer circuit for semiconductor memory
JPH02231760A (en) Semiconductor integrated circuit device
US4280070A (en) Balanced input buffer circuit for semiconductor memory
US4308594A (en) MOS Memory cell
JP3554638B2 (en) Semiconductor circuit
US6310795B1 (en) Semiconductor memory device with data retention characteristic of improved stability
JPS59130456A (en) Semiconductor device
JPS6027118B2 (en) semiconductor memory device
US4122550A (en) Low power random access memory with self-refreshing cells
JP2868789B2 (en) Semiconductor drive circuit
JPS6370558A (en) Semiconductor memory cell
US4028671A (en) Charge coupled storage device multiplexer
US5646895A (en) Semiconductor memory device with bit line potential compensation circuits
JPH0737381A (en) Semiconductor integrated circuit device
JPS5938674B2 (en) Storage device
JPH0152835B2 (en)