JPS591293B2 - Polyoxytetramethylene glycol - Google Patents

Polyoxytetramethylene glycol

Info

Publication number
JPS591293B2
JPS591293B2 JP9717975A JP9717975A JPS591293B2 JP S591293 B2 JPS591293 B2 JP S591293B2 JP 9717975 A JP9717975 A JP 9717975A JP 9717975 A JP9717975 A JP 9717975A JP S591293 B2 JPS591293 B2 JP S591293B2
Authority
JP
Japan
Prior art keywords
polymerization
thf
molecular weight
sulfuric acid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9717975A
Other languages
Japanese (ja)
Other versions
JPS5222098A (en
Inventor
憲昭 岡部
俶 近藤
智 前田
裕一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP9717975A priority Critical patent/JPS591293B2/en
Publication of JPS5222098A publication Critical patent/JPS5222098A/en
Publication of JPS591293B2 publication Critical patent/JPS591293B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Description

【発明の詳細な説明】 本発明はポリオキシテトラメチレングリコール(以下P
TQという)の製造方法に関し、さらに詳しくは発煙硫
酸を触媒とするテトラヒドロフランの重合方法の改良に
かゝわるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to polyoxytetramethylene glycol (hereinafter referred to as P
The present invention relates to a method for producing TQ), and more specifically to improving a method for polymerizing tetrahydrofuran using fuming sulfuric acid as a catalyst.

ポリオキシテトラメチレングリコールは、テトラヒドロ
フラン(以下THFという)の開環重合によつて製造さ
れ、その重合触媒としてはプロトン酸、イオンコンプレ
ックス、ルイス酸のほか、ルイス酸に、アルキレンオキ
シド、活性ハロゲン化合物などを加えた系等が有効で、
従来から種々の触媒系が検討されている。しかし上記触
媒の中には、高活性のものゝみならず低活性のものも含
まれ、かつこれらを使用する重合法で得られるPTGは
分子量数百の低分子物から数万以上の高重合体にまで及
んでいる。けれども、ポリウレタン、ポリエーテルエス
テル等、近来とみに注目を沿びている用途向けには、分
子量1000ないし3000程度のものが工業的に重要
で、かようなPTGを製造するためには、フルオロスル
ホン酸、発煙硫酸、無水酢酸−過塩素酸系などプロトン
酸主体の重合触媒が実用化されているに過ぎない。これ
らのうち、フルオロスルホン酸、無水酢酸一過塩素酸を
触媒とする重合方法においては、触媒の使用量が多くか
つ高価なこと、または大量の無水酢酸を必要とすること
など、それぞれ欠陥を有する。また、発煙硫酸を触媒と
する重合方法では、重合条件を変えてもPTGの分子量
は大凡1000前後に止まり、多目的、広範囲の用途に
応じられぬ致命的な欠陥がある。本発明者らは、上記の
実情にかんがみ、従来の触媒系、とくに発煙硫酸単独系
の欠点を是正する有効な工業的触媒の探索を重ねた結果
、本発明を完成した。
Polyoxytetramethylene glycol is produced by ring-opening polymerization of tetrahydrofuran (hereinafter referred to as THF), and its polymerization catalysts include protonic acids, ion complexes, Lewis acids, Lewis acids, alkylene oxides, active halogen compounds, etc. A system that adds , etc. is effective,
Various catalyst systems have been studied so far. However, the above-mentioned catalysts include not only those with high activity but also those with low activity, and PTG obtained by polymerization methods using these catalysts ranges from low molecular weight substances with a molecular weight of several hundred to high molecular weight substances of tens of thousands or more. It even extends to merging. However, for applications such as polyurethane and polyether ester, which have been attracting attention in recent years, molecules with a molecular weight of about 1,000 to 3,000 are industrially important, and in order to produce such PTG, fluorosulfonic acid, fume Only polymerization catalysts based on protonic acids such as sulfuric acid and acetic anhydride-perchloric acid systems have been put into practical use. Among these, polymerization methods using fluorosulfonic acid and acetic anhydride monoperchloric acid as catalysts each have drawbacks, such as the use of a large amount of catalyst and high price, or the need for a large amount of acetic anhydride. . Furthermore, in the polymerization method using fuming sulfuric acid as a catalyst, the molecular weight of PTG remains at around 1000 even if the polymerization conditions are changed, which is a fatal flaw that prevents it from being applicable to a wide variety of purposes. In view of the above-mentioned circumstances, the present inventors have completed the present invention as a result of repeated searches for an effective industrial catalyst that corrects the drawbacks of conventional catalyst systems, particularly oleum-only systems.

すなわち本発明は、トリフルオロメタンスルホン酸と発
煙硫酸とを触媒としてTHFを重合させることにより、
きわめて容易に1000ないし3000又はそれ以上の
分子量をもつPTGを高収率で製造しうる方法である。
本発明に用いるトリフルオロメタンスルホン酸は、それ
自体触媒活性を有し、単独でTHFに作用させても重合
体は得られるが、分子量1000ないし3000程度の
PTGを製造するためには多量のトリフルオロメタンス
ルホン酸を必要とし、少量では高粘度、高重合度のPT
Gとなり、しかも収率も低い。
That is, the present invention involves polymerizing THF using trifluoromethanesulfonic acid and fuming sulfuric acid as catalysts.
This is a method by which PTG having a molecular weight of 1,000 to 3,000 or more can be produced in high yield very easily.
The trifluoromethanesulfonic acid used in the present invention itself has catalytic activity, and a polymer can be obtained even if it is reacted alone with THF, but in order to produce PTG with a molecular weight of about 1000 to 3000, a large amount of trifluoromethane Requires sulfonic acid, resulting in high viscosity and high degree of polymerization in small amounts
G, and the yield is also low.

ところが、発煙硫酸にごく少量のトリフルオロメタンス
ルホン酸を共存させることにより、単独系それぞれの欠
陥を解消し、発煙硫酸単独の場合より収率、分子量を増
大させ、かつPTGの分子量を任意に調節しうるなどの
効果を発揮する。本発明においては、重合温度、時間お
よび発煙硫酸やトリフルオロメタンスルホン酸の使用量
ならびに量比の変更でPTGの分子量は変化するから、
適当な条件の選択により分子量1000ないし3000
又はその以上のものを要求に応じて任意に製造しぅる。
However, by coexisting a small amount of trifluoromethanesulfonic acid with fuming sulfuric acid, the defects of each single system were eliminated, the yield and molecular weight were increased compared to the case of using only fuming sulfuric acid, and the molecular weight of PTG could be adjusted arbitrarily. It has a soothing effect. In the present invention, the molecular weight of PTG changes by changing the polymerization temperature, time, and the amount and ratio of oleum and trifluoromethanesulfonic acid.
Molecular weight 1000 to 3000 by selecting appropriate conditions
Or more can be manufactured at will upon request.

本発明においてトリJャ泣Iロメタンスルホン酸の使用量
は、THFに対して大凡0.1ないし5重量%の範囲で
あり、またトリフルオロメタンスルホン酸と併用する発
煙硫酸は、THFが炭化を起さない程度のSO3濃度の
ものが好ましく、重合条件、操作条件によつても異なる
が、一般には大凡40%以下のものが好適に用いられる
In the present invention, the amount of trifluoromethanesulfonic acid used is approximately 0.1 to 5% by weight based on THF, and the fuming sulfuric acid used in combination with trifluoromethanesulfonic acid is carbonized by THF. It is preferable to have an SO3 concentration of about 40% or less, although it varies depending on the polymerization conditions and operating conditions.

またその使用量もSO3濃度如何によつて大巾に変るが
、THFに対して大凡3ないし60重量%の範囲である
。重合温度を高くすると反応液が着色しやすく、収率も
低下するので−40℃ないし+30℃、好適には−20
℃ないし+20℃で触媒の添加、重合を行うことが望ま
しい。
The amount used varies widely depending on the SO3 concentration, but is generally in the range of 3 to 60% by weight relative to THF. If the polymerization temperature is raised, the reaction solution tends to be colored and the yield decreases, so the polymerization temperature is -40°C to +30°C, preferably -20°C.
It is preferable to add the catalyst and carry out the polymerization at a temperature of 0.degree. C. to +20.degree.

触媒添加の方法は、設定温度で攪拌しながらTHFにト
リフルオロメタンスルホン酸、発煙硫酸の順で滴下する
か、その逆の順で滴下するか、同時に行うか、あるいは
あらかじめトリフルオロメタンスルホン酸を発煙硫酸に
溶解して調製した触媒混液を滴下する方式が採られる。
The catalyst can be added by adding trifluoromethanesulfonic acid and then fuming sulfuric acid dropwise to THF while stirring at a set temperature, or in the reverse order, or at the same time, or adding trifluoromethanesulfonic acid to fuming sulfuric acid in advance. A method is adopted in which a catalyst mixture solution prepared by dissolving the solution is dropped.

触媒滴下時は反応液を冷却して発熱を制御し、設定温度
を維持しつつ30分ないし2時間をかけて行う。滴下終
了後は、設定温度で30分ないし15時間、好適には1
ないし10時間重合を続ける。重合終了後は、反応液に
水を加えて重合を停止させ、加熱して未反応のTHFを
留去し、のち公知の方法に準じて加水分解、水層分離、
THF重合体の精製、乾燥などの工程を経てPTGを得
ることができる。
When dropping the catalyst, the reaction solution is cooled to control heat generation, and the dropwise addition is carried out over 30 minutes to 2 hours while maintaining the set temperature. After dropping, leave at the set temperature for 30 minutes to 15 hours, preferably 1 hour.
Continue polymerization for 10 to 10 hours. After the polymerization is completed, water is added to the reaction solution to stop the polymerization, and unreacted THF is distilled off by heating, followed by hydrolysis, aqueous layer separation, and water layer separation according to known methods.
PTG can be obtained through steps such as purification and drying of the THF polymer.

たとえば重合停止後、加熱して未反応のTHFを留去し
、ひき続き100℃で約2時間加水分解を行う。
For example, after termination of polymerization, unreacted THF is distilled off by heating, followed by hydrolysis at 100° C. for about 2 hours.

重合停止に用いる水の量は、加水分解の条件を考慮して
、反応系内硫酸水中の硫酸濃度が10ないし25重量%
、好適には10ないし15重量%になるよう加えること
が望ましい。加水分解終了後は、反応液を静置してテト
ラヒドロフラン重合体からなる有機層と水層とに成層分
離させ水層は除去する。残りの有機層にベンゼン、トル
エン、n−ブタノール、IsO−ブタノール、ジ・イソ
プロピルエーテルなどPTGを溶解しかつ水に溶解しが
たい有機溶剤を加え、さらに水を加え、よく攪拌したの
ち静置後成層分離させ、水層のみを分離除去する。かよ
うな洗浄分液のくり返し、もしくは他の公知の方法に準
じて溶媒層を精製したのち、溶媒を留去、減圧下に乾燥
すれば純良なPTGが収率よく取得できる。次に本発明
を実施例によりさらに詳細に説明する。
The amount of water used for polymerization termination is determined by considering the hydrolysis conditions, and the sulfuric acid concentration in the sulfuric acid water in the reaction system is 10 to 25% by weight.
, preferably 10 to 15% by weight. After the hydrolysis is completed, the reaction solution is allowed to stand to separate into an organic layer consisting of a tetrahydrofuran polymer and an aqueous layer, and the aqueous layer is removed. To the remaining organic layer, add an organic solvent that dissolves PTG and is difficult to dissolve in water, such as benzene, toluene, n-butanol, IsO-butanol, di-isopropyl ether, etc., then add water, stir well, and leave to stand. Separate the layers and remove only the aqueous layer. After the solvent layer is purified by repeating such washing and separation or by other known methods, the solvent is distilled off and dried under reduced pressure, whereby pure PTG can be obtained in good yield. Next, the present invention will be explained in more detail with reference to Examples.

実施例において特にことわりのないかぎり部および%は
それぞれ重量部、重量%を示す。実施例 1攪拌装置を
有する四頚フラスコにTHFlOO部を仕込み、攪拌し
ながら外部冷却で−3℃ないしO℃に保ち、トリフルオ
ロメタンスルホン酸1.0部、次に30%発煙硫酸13
.3部を計40分を要して滴下した。
In the examples, unless otherwise specified, parts and percentages indicate parts by weight and percentages by weight, respectively. Example 1 Part of THFlOO was charged into a four-necked flask equipped with a stirrer, kept at -3°C to 0°C with external cooling while stirring, and 1.0 part of trifluoromethanesulfonic acid was added, followed by 13 parts of 30% fuming sulfuric acid.
.. Three parts were added dropwise over a total of 40 minutes.

触媒滴下後0℃で5時間THFの重合反応を行つたのち
、水80.5部を加えて重合を停止させた。蒸留管を取
付け、加熱して未反応のTHFを留去し、さらに還流冷
却器に付け替え、100℃で2時間加水分解を行つた。
70ないし80℃まで冷却、静置して水層を分液除去し
、のち有機層にn−ブタノール50部と水25部を加え
、約80℃で攪拌し、再び静置してn−ブタノール層と
水層とに分離させ、水層を分液した。
After dropping the catalyst, a THF polymerization reaction was carried out at 0° C. for 5 hours, and then 80.5 parts of water was added to stop the polymerization. A distillation tube was attached and heated to distill off unreacted THF, and the tube was replaced with a reflux condenser and hydrolysis was carried out at 100° C. for 2 hours.
Cool to 70 to 80°C, leave to stand, separate and remove the aqueous layer, then add 50 parts of n-butanol and 25 parts of water to the organic layer, stir at about 80°C, leave to stand again to remove n-butanol. The layer was separated into an aqueous layer, and the aqueous layer was separated.

以下水25部を加え同様に80℃で撹拌し、静置して水
層を分液する精製操作を3回くり返したのち、有機層中
のn−ブタノールと残存する水を蒸留留去、減圧乾燥を
行つてPTG77.l部を得た。収率、0H価測定によ
つて求めた分子量、色の測定結果は次の通りであつた。
収率 77.1% 分子量(M) 2040 色(APHA) 30 実施例 2〜7 トリフルオロメタンスルホン酸を発煙硫酸に溶解した触
媒混液をTHFに滴下した以外は、実施例1とほ父同様
の操作により、触媒量および量比などを変えてTHFの
重合を行い、下記第1表に示す結果を得た。
Next, 25 parts of water was added, stirred in the same manner at 80°C, left to stand, and the aqueous layer separated. After repeating the purification operation three times, n-butanol and remaining water in the organic layer were distilled off, and the remaining water was distilled off under reduced pressure. After drying, PTG77. 1 portion was obtained. The yield, molecular weight determined by 0H value measurement, and color measurement results were as follows.
Yield: 77.1% Molecular weight (M): 2040 Color (APHA): 30 Examples 2 to 7 The same procedure as in Example 1 was performed, except that a catalyst mixture of trifluoromethanesulfonic acid dissolved in fuming sulfuric acid was added dropwise to THF. THF was polymerized by changing the catalyst amount and quantitative ratio, and the results shown in Table 1 below were obtained.

なお第1表にはトリフルオロメタンスルホン酸を用いな
い発煙硫酸単独での結果も対照として示した。第1表の
結果から、本発明の方法によつて著しい収率の向上と分
子量増大効果をもたらすことが明らかである。
Note that Table 1 also shows the results using fuming sulfuric acid alone without using trifluoromethanesulfonic acid as a control. From the results shown in Table 1, it is clear that the method of the present invention brings about a remarkable improvement in yield and an effect of increasing molecular weight.

Claims (1)

【特許請求の範囲】[Claims] 1 トリフルオロメタンスルホン酸と発煙硫酸とを触媒
としてテトラヒドロフランを重合させることを特徴とす
るポリオキシテトラメチレングリコールの製造方法。
1. A method for producing polyoxytetramethylene glycol, which comprises polymerizing tetrahydrofuran using trifluoromethanesulfonic acid and fuming sulfuric acid as catalysts.
JP9717975A 1975-08-12 1975-08-12 Polyoxytetramethylene glycol Expired JPS591293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9717975A JPS591293B2 (en) 1975-08-12 1975-08-12 Polyoxytetramethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9717975A JPS591293B2 (en) 1975-08-12 1975-08-12 Polyoxytetramethylene glycol

Publications (2)

Publication Number Publication Date
JPS5222098A JPS5222098A (en) 1977-02-19
JPS591293B2 true JPS591293B2 (en) 1984-01-11

Family

ID=14185345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9717975A Expired JPS591293B2 (en) 1975-08-12 1975-08-12 Polyoxytetramethylene glycol

Country Status (1)

Country Link
JP (1) JPS591293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914910B1 (en) * 2001-10-31 2009-08-31 소니 가부시끼 가이샤 Headphone

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931560A (en) * 1982-08-17 1984-02-20 Toyo Takasago Kandenchi Kk Manganese dioxide dry cell and its manufacture
JP4800568B2 (en) * 2002-12-20 2011-10-26 保土谷化学工業株式会社 Process for producing polyether polyol with narrowed molecular weight distribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914910B1 (en) * 2001-10-31 2009-08-31 소니 가부시끼 가이샤 Headphone

Also Published As

Publication number Publication date
JPS5222098A (en) 1977-02-19

Similar Documents

Publication Publication Date Title
JPS591293B2 (en) Polyoxytetramethylene glycol
JPS5883028A (en) Preparation of polytetramethylene glycol
JPH0629317B2 (en) Color improvement method of polyester by oxygen desorption.
Kenyon et al. LXI.—Investigations on the dependence of rotatory power on chemical constitution. Part XXIV. Further experiments on the Walden inversion
JPS6330526A (en) Production of polytetramethylene ether glycol
Furukawa et al. The diethylzinc–l‐α‐amino acid systems as catalysts for the asymmetric‐selection polymerization of propylene oxide
JPH023685A (en) Production of thiophene ether
JP3284031B2 (en) Method for producing polyether glycol
JPS6335623A (en) Production of polytetramethylene ether glycol
JP2019214545A (en) Manufacturing method of terephthalic acid bis(2-hydroxyethyl)
JPH04209627A (en) Polyether polymer having oligooxyethylene side chain
JPH03123752A (en) Production of 4,4'-dihydroxybenzophenone
JP4598229B2 (en) Poly (phosphonoarylacetylene) and chiral sensor using the same
SU134691A1 (en) Method for acylation of alcohols
JP2001525386A (en) Production of 1,3-propanediol esters
US3391193A (en) Purification of methacrylaldehyde
SU366185A1 (en) Method of producing methacrylate esters of aryloxy-substituted benzyl alcohols
JPS6038411B2 (en) Novel method for producing polyoxytetramethylene glycol
JPS58162548A (en) Preparation of 3-methyl-2-cyclopentenone
JPH072728A (en) Isomerization of polycarboxylic acid
JPS5922717B2 (en) Novel organophosphorus compound
US3775473A (en) Method for the oxidation of aryl methyl groups to carboxylic acid groups
JPS591292B2 (en) Method for producing polyoxytetramethylene glycol
JPS6226260A (en) 7,7,8,8-tetracyanoquinodimethan-2,5-ylene-(3-propionic acid) and production thereof
JP2507884B2 (en) Method for producing polyester