JPS59129396A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59129396A
JPS59129396A JP251383A JP251383A JPS59129396A JP S59129396 A JPS59129396 A JP S59129396A JP 251383 A JP251383 A JP 251383A JP 251383 A JP251383 A JP 251383A JP S59129396 A JPS59129396 A JP S59129396A
Authority
JP
Japan
Prior art keywords
bottom wall
plate
core
stress
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP251383A
Other languages
Japanese (ja)
Inventor
Sumio Susa
澄男 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP251383A priority Critical patent/JPS59129396A/en
Publication of JPS59129396A publication Critical patent/JPS59129396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/122Fastening; Joining by methods involving deformation of the elements by crimping, caulking or clinching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent a core plate from being cracked by stress corrosion cracking, by providing a gap between a bottom wall of a holding groove of a core plate and a bottom wall of a calking plate, in a heat exchanger comprising a synthetic resin made tank connected by calking to a metallic heat-exchanging core. CONSTITUTION:A radiator comprises a metallic heat-exchanging core part 2, which comprises copper made corrugated fins 2a and brass made tubes 2b, and synthetic resin made tanks 1, 3 which are sealdedly fitted respectively to the upper and lower ends of the core part 2. A predetermined gap is provided between the bottom wall 4b of the holding groove 4d of the core plate 4 and the bottom wall 5b of the calking plate 5. Accordingly, even when the calking plate 5 is calked, a compressive stress is generated at the surface of the bottom wall 4b of the holding groove 4d on the side of a seal ring 6. Namely, since the gap delta is provided between the bottom wall 4b and the bottom wall 5b, the bottom plate 4b subjected to a load at the time of bending working absorbs the bend at the gap delta on the lower side thereof, so that the stress at the surface of the bottom wall 4b is a compressive stress, whereby the core plate is restrained from being cracked by stress corrosion cracking.

Description

【発明の詳細な説明】 本発明は金属性の熱交換コア部に合成樹脂製のタンクを
かしめ作業によって取付けた+Jp交換器に関し、例え
ば自動車用ランエータや自動車用冷房装置のヒークコア
に用い−C々丁適G6のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a +JP exchanger in which a synthetic resin tank is attached to a metal heat exchange core by caulking, and is used, for example, in a heat exchanger for an automobile lanator or a heat exchanger for an automobile cooling system. It is a proper G6.

この種の熱交換器、例えば自動車用ラシェークは第1図
のように構成されている。即ち、ランエータは銅製のコ
ルケートフィン2aと黄fIMのチューブ2bを含む金
属製の熱交換コア部2とその上、下端に密封装着した合
成樹脂製のタンク1゜3とを包含する。上方のタンク1
には冷却水補給D l aと冷却水流入バイブ1bとが
設けてあり、下方タンク3には冷却水流出パイプ3aが
設けであるが、基本的には上、下のタンク1.3は同じ
構造であるから、以下、上方のタンクlについてのみ説
明する。上下を逆にして考えれば以下の説明は下方タン
ク3にも通用できることは了解されたい。
This type of heat exchanger, for example a heat exchanger for automobiles, is constructed as shown in FIG. That is, the lanator includes a metal heat exchange core part 2 including copper corkated fins 2a and yellow FIM tubes 2b, and a synthetic resin tank 1.3 sealed at the upper and lower ends thereof. upper tank 1
is provided with a cooling water supply Dl a and a cooling water inflow pipe 1b, and the lower tank 3 is provided with a cooling water outflow pipe 3a, but basically the upper and lower tanks 1.3 are the same. Since this is the structure, only the upper tank l will be described below. It should be understood that the following explanation can also be applied to the lower tank 3 if considered upside down.

第2図はタンク3をコア部2に密封装着する従来方法を
示している。タンク3は一端開放となっており、この開
放端部をチューブ2bが連結したコアプレー14の保持
a4 d中に挿入することによって密閉空間が形成され
る。その為タンク3の開放端縁の全周に沿ってほぼ四角
形断面の取付は部3Cか設けである。なお、コアプレー
1・4は黄銅製で、チューブ2bの端部に適当な手段、
例えば半IB付、ろう付は等で固着されている。また、
タンク3の端縁取付部3cと溝部4dの底壁4bとの間
にはゴム製O−リングからなる弾性シール材6が設置さ
れる。そして、頂縁につめ部5aを有するほぼり2字形
(図では逆12字形になっているが、反対側では11字
形である。)の断面を持つ鉄板製の絞めプレート5をコ
アプレート4の溝部4Cに係合さ・口、つめ部5aをタ
ンク3の歯縁取付部3cの頂部にて3りめる。その結果
、タンク端縁取付=++ 3 Cの下面で弾性ソール材
6を変形すると共にコアプレート4の溝部4dに堅固に
密封装置されることになる。
FIG. 2 shows a conventional method of sealingly mounting the tank 3 to the core part 2. One end of the tank 3 is open, and a sealed space is formed by inserting this open end into the holding a4d of the core play 14 connected to the tube 2b. Therefore, the tank 3 has a substantially rectangular cross section along the entire circumference of the open end thereof, and is provided in the section 3C. The core plays 1 and 4 are made of brass, and a suitable means is attached to the end of the tube 2b.
For example, it is fixed with semi-IB attachment, brazing, etc. Also,
An elastic sealing material 6 made of a rubber O-ring is installed between the edge attachment portion 3c of the tank 3 and the bottom wall 4b of the groove portion 4d. Then, a tightening plate 5 made of an iron plate having a cross section of approximately a 2-shape (in the figure, it is an inverted 12-shape, but it is an 11-shape on the opposite side) with a claw portion 5a on the top edge is attached to the core plate 4. The pawl portion 5a is engaged with the groove portion 4C, and the pawl portion 5a is inserted at the top of the tooth edge attachment portion 3c of the tank 3. As a result, the elastic sole material 6 is deformed on the lower surface of the tank edge attachment=++3C, and is tightly sealed in the groove 4d of the core plate 4.

ただ、従来のラシェークでは第2図に示すようにコアプ
レーI・4の溝部4dのfllll q 42の高さ1
1か絞め部の高さI(とほぼ等しい為、3ぐめプレー1
・5にてt9めるとコアプレート4の溝部4d底壁4b
のうらシールワンクロと対向する面に引張り応力が生じ
てしまっていた。
However, in the conventional rashek, as shown in Fig. 2, the height of the groove 4d of the core play I・4 is 1.
1 or the height of the constriction part I (is almost equal to
・When t9 is set at 5, the groove 4d of the core plate 4 and the bottom wall 4b
Tensile stress had been generated on the surface facing the inner seal.

以下、第3図を参照しながらこの従来のラソエータに於
ける引張り応力発生のメカニズノ、をより詳しく説明す
る。
Hereinafter, the mechanism of generating tensile stress in this conventional lassoator will be explained in more detail with reference to FIG.

第3図の(イ)は、コアプレート溝部4dの底4bに弾
性シール材6を置き、この溝部4dにタンク端縁取付部
3cを嵌め込み、溝部4dの外面にかしめプレート5を
係合させた段階を示す。このとき、かしめ作業前なので
、当然、溝部4dの底壁4bにはひずみが生していない
In FIG. 3(a), an elastic sealing material 6 is placed on the bottom 4b of the core plate groove 4d, the tank edge attachment part 3c is fitted into this groove 4d, and the caulking plate 5 is engaged with the outer surface of the groove 4d. Show stages. At this time, since the caulking work has not yet been performed, there is naturally no strain in the bottom wall 4b of the groove portion 4d.

第3図の(ロ)の段階で、かしめ作業を開始すると、か
しめプレート5のつめ部5aには斜め荷重F1がかかり
、溝部4dの外方側壁4aがタンクOh′l i&取付
部3cに押し付けられなから下向きの力を受けて変形し
、溝部4d措置壁4bのうちシールリング6側の表面に
圧縮方向のひずみε0が発生する。
When the caulking work is started at the stage (b) in Fig. 3, an oblique load F1 is applied to the pawl portion 5a of the caulking plate 5, and the outer side wall 4a of the groove portion 4d is pressed against the tank Oh'l i & mounting portion 3c. As a result, the groove portion 4d is deformed by receiving a downward force, and a strain ε0 in the compressive direction is generated on the surface of the groove portion 4d and the wall 4b on the seal ring 6 side.

さらにかしめ作業が進行すると、第3図の(ハ)に示す
ように、荷重が完全に垂直方向の荷重に変わり、それが
外方側壁4aを経て溝部底壁4bに伝わる。このとき、
溝部4dの外面はかしめプレート5で拘束されているた
め、溝部底壁4bは弾性シール材6に向って凸条の変形
を行ない、その表面に引張り方向のひずみε1が生じる
As the caulking work further progresses, as shown in FIG. 3(c), the load completely changes to a vertical load, which is transmitted to the groove bottom wall 4b via the outer side wall 4a. At this time,
Since the outer surface of the groove 4d is restrained by the caulking plate 5, the groove bottom wall 4b deforms into a convex strip toward the elastic sealing material 6, and a strain ε1 in the tensile direction is generated on the surface thereof.

第3図(ニ)のかしめ作業終了段階で、荷重F2が除か
れ、かしめプレー)・5のつめ部5aがスプリングバッ
ク作用の下に上方に少しもどる。従って、/IvI部底
壁4bの表面のひずみはε2まで低下する。このとき、
底壁は組成変形ひずみε3も含んでおり、もしごの状態
でかしめプレート5を除去して拘束を解いたならば、底
壁4bは弾性ひずみ量ε2−ε3の分だけ初期状態にも
どることになる。そこで、第2図に示す従来構造のひず
み発生パターンを丈、線で表わすと、溝部城壁の表面に
引張方向の弾性ひずみが生していることがわかる。
At the completion stage of the caulking work shown in FIG. 3(d), the load F2 is removed and the pawl portion 5a of the caulking play).5 returns slightly upward under the action of springback. Therefore, the strain on the surface of the bottom wall 4b of the /IvI section is reduced to ε2. At this time,
The bottom wall also contains a compositional deformation strain ε3, and if the caulking plate 5 is removed and the restraint is released in the state of the cage, the bottom wall 4b will return to its initial state by an amount of elastic strain ε2−ε3. Become. Therefore, when the strain generation pattern of the conventional structure shown in FIG. 2 is expressed by length and line, it can be seen that elastic strain occurs in the tensile direction on the surface of the groove wall.

そして、このように溝部底面4bのうち特にシールリン
グ6と直接接する側の表面か引張り応力下に置かれると
いう事は、り下に述べる如くコアプレー1・4の腐食に
とって非常に大きな影響を与えることになる。
In this way, the fact that the surface of the groove bottom surface 4b, especially the side that is in direct contact with the seal ring 6, is placed under tensile stress has a very large effect on the corrosion of the core plays 1 and 4, as described below. become.

即ち、自動車用ラソエータの場合タンク3の内部へに存
在する冷却水が、コアプレート溝部4dの底壁4bと弾
性シール材6との下面の接触すきま邪に浸透し、すきま
腐食環境か生(2る。ずなわち、すきま部に溜った液体
中の腐食性成分が拡散しにくい上に、黄銅製のコアプレ
ーI・表面の不動懇皮膜(酸化皮膜)はその不動態を保
持しようとしてすきま部内の液体中の酸素を消費し、そ
のため、すきま部内の液体とタンク内の液体との間に酸
素の濃度差が生じ、酸素濃淡電池が形成される。
That is, in the case of an automotive lasoator, the cooling water present inside the tank 3 penetrates into the contact gap between the bottom wall 4b of the core plate groove 4d and the lower surface of the elastic sealing material 6, creating a crevice corrosion environment (2 In other words, corrosive components in the liquid that accumulates in the crevice are difficult to diffuse, and the immobile coating (oxide film) on the surface of the brass core play I tries to maintain its passivity by causing the corrosive components in the crevice to spread out. Oxygen in the liquid is consumed, resulting in a difference in oxygen concentration between the liquid in the gap and the liquid in the tank, forming an oxygen concentration cell.

その電池作用により、すきま部での液体のPHが低下し
、この結果生しる腐食環境は非常にきびしいものとなる
Due to the battery action, the pH of the liquid in the gap decreases, and the resulting corrosive environment becomes extremely severe.

それに加えて、タンク3内Aに圧力が加えられる時には
、タンク3は外方に向けて拡がろうとし、タンク3のy
lii 縁取付部3cを介して、コアブレー14の外側
壁4aを外方に向は荷車が伝わり、この荷重によっても
溝部の底壁4bのシールリング6側表面には引張り応力
を生しさせる。
In addition, when pressure is applied to the inside A of the tank 3, the tank 3 tends to expand outward, and the y of the tank 3
lii The cart is transmitted outwardly through the outer wall 4a of the core bra 14 via the edge attachment portion 3c, and this load also causes tensile stress to be generated on the surface of the bottom wall 4b of the groove portion on the side of the seal ring 6.

以上のような条件の下でコアプレート溝部4cての底壁
41)のシールリンク6側の表面に引張り応力か加わっ
ては、応力腐食割れが容易に生してしまうのである。尤
も上記事実は本発明者等による種々の実験の結果解明さ
れたものである。又、本発明者等はそのi際、アンモニ
ア等の成分を多く含む通常のエンジン冷却水として用い
た場合、割れ寿命の悪化が着しいことも合ゼで確認した
If tensile stress is applied to the surface of the bottom wall 41) of the core plate groove 4c on the seal link 6 side under the above conditions, stress corrosion cracking will easily occur. Of course, the above fact has been elucidated as a result of various experiments conducted by the present inventors. In addition, the present inventors also confirmed through synthesis that when used as normal engine cooling water containing a large amount of components such as ammonia, the cracking life deteriorates rapidly.

本発明は、上記本発明者等の解明した実験結果に基づい
て案出されたもので、コアブレー1・の保持溝底面の内
シールリング側表面に生じる引張り応力を低減して、応
力腐食割れのメ↑命向トをgすることをLl的とする。
The present invention was devised based on the experimental results elucidated by the inventors, and reduces the tensile stress generated on the inner seal ring side surface of the bottom surface of the retaining groove of the core brake 1, thereby preventing stress corrosion cracking. It is Ll-like to move ↑ to the direction of life.

その為、本発明ではコアプレート保持溝低壁とかしめプ
レートの底壁との間にしていの間隙を設けるという構成
を採用する。
Therefore, the present invention adopts a configuration in which a gap is provided between the core plate holding groove lower wall and the bottom wall of the caulking plate.

以下本発明の一実施例を図に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

熱交換器の基本構造は第1図と同しであるので説明を省
略し、主にかしめプレート5について説明する。本例で
は、第4図に示すようにコアプレート4の保持溝4d底
壁4 bとな3めブレー1−5の底gy5bとの間に所
定(0,4mmJ°1度)の1tJl 隙を設けている
。その為、本例のものでは、絞めプレート5を絞めた時
であっても、コアプレー)4aの保持溝4d底壁4bの
うらシールリンク6側の表面には引張応力ではなく圧縮
応力が止している。
Since the basic structure of the heat exchanger is the same as that shown in FIG. 1, the explanation will be omitted, and the caulking plate 5 will be mainly explained. In this example, as shown in FIG. 4, a predetermined (0.4 mmJ° 1 degree) 1tJl gap is provided between the retaining groove 4d of the core plate 4 and the bottom wall 4b of the third brake 1-5. It is set up. Therefore, in this example, even when the tightening plate 5 is tightened, compressive stress is not applied to the surface of the back seal link 6 side of the retaining groove 4d of the core plate 4a on the bottom wall 4b. ing.

この圧縮応力発生のメカニズムを第5図に基づいて説明
する。第5図中(イ)(ロ)(ハ) (二は第3図の(
イ) (ロ) (ハ) (ニ)に対応するもので、(イ
)は絞め前であるので第3図と同じである。ただ、絞め
作業を開始すると((ロ)の状態)、本例のものでは隙
間δの存在によりコアプレー1・4の溝部底部4bは従
来のもの以上に凹み、従って、底部4bのうちシールリ
ング6と接する側の表面には大きな圧縮圧力が生じる。
The mechanism of this compressive stress generation will be explained based on FIG. 5. (A) (B) (C) in Figure 5 (2 is (2) in Figure 3)
A) (B) (C) This corresponds to (D), and since (A) is before the strangling, it is the same as Figure 3. However, when the tightening operation is started (state (B)), in this example, the groove bottoms 4b of the core plays 1 and 4 are recessed more than the conventional ones due to the existence of the gap δ, and therefore, the seal ring 6 of the bottom 4b A large compressive pressure is generated on the surface in contact with.

その為、絞め隙間が進行して、荷重が垂直方向になり、
それが外方側壁4aを経て溝部底壁4bに伝った状態(
(ハ)の状態)でも、以前として溝部底壁4 bは多少
凹んでいる。その為、この状態(ハ)であっても溝部底
壁4bのシールリング6側表面には圧縮応力が残ってい
る。
Therefore, the choke gap progresses and the load becomes vertical,
The state in which it is transmitted to the groove bottom wall 4b via the outer side wall 4a (
Even in state (C)), the groove bottom wall 4b is somewhat recessed as before. Therefore, even in this state (c), compressive stress remains on the surface of the groove bottom wall 4b on the seal ring 6 side.

かしめ作業か終了すると((ニ)の状態)、つめ部5a
のスプリングバックにより溝部底壁4bの凹みは多少少
なくなるが、やはりまだ凹んでおり、シールリング側表
面には圧縮応力が生している。
When the caulking work is completed (state (d)), the pawl portion 5a
Although the dent in the groove bottom wall 4b is somewhat reduced due to the springback, it is still dented, and compressive stress is generated on the seal ring side surface.

即し、本例のものではコアプレート4の底壁4bとかし
めプレート5の底壁5bのかしめ前の歌合時あらかしめ
間隙δを生ずるようにしであるため、曲げ加工時の荷車
を受けたコアプレート底壁4bli(図面−トで)下方
の間隙6曲げを吸収し、底壁4bの表面に発生ずる応力
は圧縮方向となるのである。
Therefore, in this example, since the swage gap δ is created when the bottom wall 4b of the core plate 4 and the bottom wall 5b of the swage plate 5 are joined together before swage, the core receives the cart during bending. The bending of the gap 6 below the plate bottom wall 4b (in the drawing) is absorbed, and the stress generated on the surface of the bottom wall 4b is in the compressive direction.

従って、本例のものはかしめ作業終了時点においても、
底壁の表面に圧縮方向の弾性ひずみが生していることに
なる。そこで、前記の弾性ひずみ址(ε2−ε・3)を
応力σ−E(ε2−ε3)(ここで、Eは縦弾性係数)
で応力値に換算し、δを横軸に整理した実験結果を第6
図に示す。この図から明かなように、δ≧0.2鰭であ
れば、溝部1+X壁の表面の応力は圧縮応力となりかつ
安定するのである。従って、応力腐食割れの発生が著し
く抑えられ、この部分での寿命が大幅に延びることにな
る。
Therefore, in this example, even at the end of the caulking work,
This means that elastic strain occurs in the compressive direction on the surface of the bottom wall. Therefore, the above elastic strain (ε2-ε・3) is converted to stress σ-E (ε2-ε3) (where E is the longitudinal elastic modulus).
The experimental results, which were converted into stress values and arranged on the horizontal axis with δ, are shown in the sixth
As shown in the figure. As is clear from this figure, if δ≧0.2 fins, the stress on the surface of the groove 1+X wall becomes compressive stress and becomes stable. Therefore, the occurrence of stress corrosion cracking is significantly suppressed, and the life of this part is significantly extended.

尚、上述の例ではコアプレート4側壁4aの高さhを絞
め部の高さHと同一としたが、第7図のように側壁4a
画さhを絞め部高さト1より低くしてもよい。本例によ
れば、絞めプレート5鮫め時(第3図中(ハ)の状態)
であっても、コアプレー[側壁4aには走向方向の荷重
が直接加わらず、従って、」−述した間隙δによる効果
とあいまってコアプレート底壁4bのシールリング1(
1111面は確実に圧縮応力状態となる。それゆえ、こ
の部位での応力腐食割れはより良好に防止される。
In the above example, the height h of the side wall 4a of the core plate 4 was set to be the same as the height H of the constriction part, but as shown in FIG.
The width h may be lower than the constriction height t1. According to this example, when the tightening plate 5 is closed (state shown in (c) in Figure 3)
However, the core plate [the load in the strike direction is not directly applied to the side wall 4a, and therefore, combined with the effect of the gap δ mentioned above, the seal ring 1 of the core plate bottom wall 4b (
The 1111 plane is definitely in a compressive stress state. Therefore, stress corrosion cracking at this location is better prevented.

更に、!417図の例では絞めプレート5の底部5bに
段部5cを形成しており、この段部5c上にコアプレー
ト4の〕Iy壁4り載るようにしている為、間隙δの管
理がより確実にかつ正確に行なえる。
Furthermore,! In the example shown in Fig. 417, a step 5c is formed on the bottom 5b of the constriction plate 5, and the [Iy wall 4 of the core plate 4 is placed on this step 5c, so that the gap δ can be managed more reliably. Can be done quickly and accurately.

以上説明したように本発明熱交換器はコアプレートの保
持溝底部と絞めフレートの底壁との間に間隙を設けるよ
うにしたため、コアプレートの保持溝底部の内シールリ
ングと接する側の表面は必ず圧縮応力下に置かれ、その
結果コアプレートの応力腐食割れの発生が抑制されて、
熱交換器の寿命が大幅に伸びるという優れた効果を有す
る。
As explained above, in the heat exchanger of the present invention, a gap is provided between the bottom of the holding groove of the core plate and the bottom wall of the choke plate, so that the surface of the bottom of the holding groove of the core plate in contact with the inner seal ring is The core plate is always placed under compressive stress, which suppresses the occurrence of stress corrosion cracking in the core plate.
It has the excellent effect of significantly extending the life of the heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱交換器を示す正面図、第2図は第1図
のn −II矢祝断面図、第3図は従来の熱交換器の絞
め工程に伴なうコアプレート表面の応力状態を示す説明
図、第4図は本発明熱交換器の要部を示す断面図、第5
図は@4図図示熱交換器の絞め工程に伴なうコアプレー
I・表面の応力状態を示す説明図、第6図はコアプレー
ト・絞めプレート間の間隙とコアプレート表面の応力と
の関係を示す説明図、第7図は本発明熱交換器の他の例
の要部を示す断面図である。 1.3・・・タンク、2b・・・チューブ、11・・・
コアプレー1・、4C・・保持溝、5・絞めプレート。 代理人ブ「埋土 岡 部   隆 第4図 第5図 (イ)     (ロ)      (ハ)(=)第6
図 第7図
Figure 1 is a front view of a conventional heat exchanger, Figure 2 is a sectional view taken along the arrow n-II in Figure 1, and Figure 3 is a view of the core plate surface during the tightening process of the conventional heat exchanger. An explanatory diagram showing the stress state, FIG. 4 is a sectional view showing the main part of the heat exchanger of the present invention, and FIG.
The figure is an explanatory diagram showing the stress state of the core play I and the surface due to the tightening process of the heat exchanger shown in @4. Figure 6 shows the relationship between the gap between the core plate and the choke plate and the stress on the core plate surface. The explanatory diagram shown in FIG. 7 is a sectional view showing the main parts of another example of the heat exchanger of the present invention. 1.3...Tank, 2b...Tube, 11...
Core play 1., 4C.. retaining groove, 5. choking plate. Agent B: Buried Earth Takashi Okabe Figure 4 Figure 5 (A) (B) (C) (=) Figure 6
Figure 7

Claims (1)

【特許請求の範囲】[Claims] 冷却液を流すチューブと、このチューブの両端に配設さ
れ、り(周に保持溝を有するコアプレートと、このコア
プレートの保持溝内にシールリングを介して取付けられ
た樹脂製タンクと、このタンクと前記コアプレートの保
持溝とを挾持してタンクとコアプレートとを連結する絞
めプレートとを備え、かつ、この較プレートと前記コア
プレーI・の保持溝底部との間に所辻の間隙を形成した
PIV交換器。
A tube through which the cooling liquid flows; A constriction plate is provided to connect the tank and the core plate by sandwiching the tank and the retaining groove of the core plate, and a gap is provided between the comparison plate and the bottom of the retaining groove of the core plate I. Formed PIV exchanger.
JP251383A 1983-01-10 1983-01-10 Heat exchanger Pending JPS59129396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP251383A JPS59129396A (en) 1983-01-10 1983-01-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP251383A JPS59129396A (en) 1983-01-10 1983-01-10 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59129396A true JPS59129396A (en) 1984-07-25

Family

ID=11531445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP251383A Pending JPS59129396A (en) 1983-01-10 1983-01-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59129396A (en)

Similar Documents

Publication Publication Date Title
JP3414171B2 (en) Heat exchanger
US5787973A (en) Heat exchanger
US8181694B2 (en) Collar rib for heat exchanger header tanks
US4461348A (en) Heat exchanger
JPS6115095A (en) Coupler for tank and header plate
JPS59129396A (en) Heat exchanger
JPS5860197A (en) Heat exchanger
JPS58224298A (en) Heat exchanger
JPS59129395A (en) Heat exchanger
JPS59129397A (en) Heat exchanger
JPS5886395A (en) Heat exchanger
JPS58148393A (en) Heat exchanger
JPS5886394A (en) Heat exchanger
JPH0610584B2 (en) Heat exchanger
JPS6350626Y2 (en)
JP2000283692A (en) Neck filler, and water pouring structure
JPS5923991Y2 (en) Heat exchanger
JP2008261550A (en) Heat exchanger and its manufacturing method
JPH0115799B2 (en)
JPS6222079B2 (en)
JPS632225Y2 (en)
JPS625589Y2 (en)
JP3648859B2 (en) Pipe coupling device
JPS6247033Y2 (en)
JPS5993194A (en) Heat exchanger