JPS59129387A - Shell-and-tube type heat exchanger - Google Patents
Shell-and-tube type heat exchangerInfo
- Publication number
- JPS59129387A JPS59129387A JP350683A JP350683A JPS59129387A JP S59129387 A JPS59129387 A JP S59129387A JP 350683 A JP350683 A JP 350683A JP 350683 A JP350683 A JP 350683A JP S59129387 A JPS59129387 A JP S59129387A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- pipe
- tube
- group
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
- F28D7/082—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、高速増殖炉の中間熱交換器等に使用されてい
るシェルアンドチューブ型熱交換器に関ずろものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shell-and-tube heat exchanger used as an intermediate heat exchanger of a fast breeder reactor.
従来の前記シェルアンド号ユーノ型熱交換器は、第1図
に示すよ5に支持スカート(]αンによって懸架された
外胴(1)、外胴(1)内側の外部シュラウド(2)、
外部シュラウド(2)内側の上下部に設けられた下管板
(3α)と下管板(3h)により画成されそれらに上下
端部が貫通状に固着された多数の伝熱管(3)よりなる
伝熱管群が配置された伝熱管群部(4)、外胴(1)の
上部から伝熱管群部(4)中央に縦設され前記上管板(
3a)と上管& (3b)に固着された下降管(5)、
下管板(3り下側の下部ブレナム(6)、および上管板
(3り上側の上部ブレナム(力等によって構成され、1
次篩温側流体は、入口ノズル(1b)、入口窓(2りを
通って伝熱管群部(4)内を下降し出口窓(2b)を経
て出口ノズル(IC)に至る経路で流通され、一方、2
次低温側流体は、入口ノズル(5a)から下降管(5)
内を下降し下部プレナム(6)を介し反転して各伝熱管
(3)内を上昇し熱交換されて高温となり、上部ブレナ
ム(7)を介し出口ノズル(1d〕から機器外へ取り出
される構造になっており、前記下降管(5)は伝熱管(
3)の補修、交換等のためにそれを外胴(1)外へ引抜
く必要から上管板(3a)と下管板(3b)に結合され
、また、各伝熱管(3)の上下端部は上管板(3a)と
下管板(3b)とに貫通状に固着されている。As shown in FIG. 1, the conventional Shell AND type heat exchanger includes an outer shell (1) suspended by a support skirt (5), an external shroud (2) inside the outer shell (1),
From a large number of heat transfer tubes (3) defined by a lower tube plate (3α) and a lower tube plate (3h) provided at the upper and lower parts of the inside of the external shroud (2), and whose upper and lower ends are fixed to these in a penetrating manner. A heat exchanger tube group part (4) in which a heat exchanger tube group is arranged, and a heat exchanger tube group part (4) vertically arranged from the upper part of the outer shell (1) to the center of the heat exchanger tube group part (4) and the upper tube plate (
3a) and the downcomer pipe (5) fixed to the upper pipe & (3b),
The lower tube plate (3 lower lower blennium (6), and the upper tube plate (3 upper upper brenum (6))
The next sieve hot side fluid is passed through the inlet nozzle (1b), the inlet window (2), descends inside the heat transfer tube group (4), passes through the outlet window (2b), and flows through the route leading to the outlet nozzle (IC). , while 2
The next low temperature side fluid flows from the inlet nozzle (5a) to the downcomer pipe (5).
It descends through the lower plenum (6), reverses itself, rises inside each heat transfer tube (3), exchanges heat, becomes high temperature, and is taken out of the equipment from the outlet nozzle (1d) through the upper plenum (7). The downcomer pipe (5) is a heat transfer pipe (
3) because it is necessary to pull it out of the outer shell (1) for repair or replacement, etc., it is connected to the upper tube plate (3a) and the lower tube plate (3b), and the upper and lower tubes of each heat transfer tube (3) are The end portions are fixed to the upper tube plate (3a) and the lower tube plate (3b) in a penetrating manner.
しかして、前記シェルアンドチューブ型熱交換器を運転
し内部が高温になると、各部の温度が異なるため各部の
熱膨張用つまり伸び量が異なり部分的に過大な熱応力が
発生し、その代表的なものとして伝熱管(3)群と下降
管(5)との熱膨張差を挙げることができ、即ち、伝熱
管(3)群は比較的に高温となり下降管(5)側は2次
低温0111 ′bij体側によって低温になるため、
両者間に大きな熱膨張hj°の差が生じ、その結果、多
数の伝熱管(3)群に比べ一般的に剛性が弱い下IIH
t管(5)側が座屈される危険性がある。However, when the shell-and-tube heat exchanger is operated and the internal temperature becomes high, the temperature of each part is different, so each part has different thermal expansion, or elongation, and excessive thermal stress is generated in some parts. One example of this is the difference in thermal expansion between the heat exchanger tube (3) group and the downcomer tube (5), that is, the heat exchanger tube (3) group has a relatively high temperature and the downcomer tube (5) side has a secondary low temperature. 0111 'bij Because the temperature becomes lower depending on the body side,
A large difference in thermal expansion hj° occurs between the two, and as a result, the lower IIH is generally less rigid than the large number of heat exchanger tubes (3) group.
There is a risk that the T-tube (5) side will buckle.
また、伝熱管群を形成している各伝熱管(j3)相互の
熱膨張差も生じる、即ち、熱交換器が大型化されるに伴
って伝熱管群部(4)の流路横断面績が大きくなり、各
伝熱管(3)外の1次高温側流体の31i)れの不均一
による偏流が生じ易くなって、その偏流によって各伝熱
管(3)間の熱膨張差が発生して特定の伝熱・′θが座
屈される恐れがある。In addition, a difference in thermal expansion occurs between the heat exchanger tubes (j3) forming the heat exchanger tube group, that is, as the heat exchanger becomes larger, the flow path cross section of the heat exchanger tube group (4) increases. becomes large, and uneven flow due to non-uniform flow of the primary high temperature side fluid outside each heat exchanger tube (3) tends to occur, and this uneven flow causes a difference in thermal expansion between each heat exchanger tube (3). There is a risk that certain heat transfer/'θ may be buckled.
そこで、前記の対策として、下降管(5)の外周に内部
シュラウ)−゛を配置するとともに、該内部シュラウド
の一端側と下降管(5)とをベローズを介して連結し、
−上管板(3α)は内部シュラウド側に下管板(3A月
士下降管(5)側にそれぞれ結合して、伝熱管(3)群
と下降管(5)との熱膨張差をベローズによって吸収す
る構成をさきに提案したが、この構成では、前記のよう
な伝熱管群部(4)にて生じた偏流による7、)A度不
均−に伴って発生した伝熱管(3)相互の熱膨張差を吸
収することができず、従って、伝熱’17 (:31G
+内(伝熱管(3)外の流路)にバッフル孜を設けて流
体のミキンング性を向上させることにより、[可1)己
(11j!流をと1イ消することが考えられるが、その
パンフル、)1シの介装は圧力損失の増大をもたらしポ
ンプ揚程の増加等の不利を招くことになって好ましくな
い。Therefore, as a countermeasure to the above, an internal shroud is disposed around the outer periphery of the downcomer pipe (5), and one end of the internal shroud is connected to the downcomer pipe (5) via a bellows.
- The upper tube plate (3α) is connected to the inner shroud side and the lower tube plate (3A) to the downcomer pipe (5) side, respectively, so that the difference in thermal expansion between the heat transfer tube group (3) group and the downcomer pipe (5) is reduced by bellows. We have previously proposed a configuration in which the heat exchanger tubes (3) are absorbed by the heat exchanger tubes (7) caused by the uneven flow caused in the heat exchanger tube group section (4) as described above. It is not possible to absorb the mutual thermal expansion difference, and therefore heat transfer '17 (:31G
By providing a baffle inside (the flow path outside the heat transfer tube (3)) to improve the mixing properties of the fluid, it is possible to eliminate the flow by (11j!). It is not preferable to insert the panfur (1) because it increases the pressure loss and causes disadvantages such as an increase in the pump head.
また、別の対策とし7て、各伝熱管(3)に曲げ部を設
けて、該曲げ部の変形によって伝熱管(3)群と下降管
(1う)との熱膨張差、および伝熱管群部(4)内の偏
流に伴って生じる各伝熱管(3)の熱膨張差を吸収する
構成をさきに提案したが、この構成では、熱交換器の大
型化に伴って熱膨張差が拡大され、前記両熱膨張差の吸
収に必要な曲げ部の突出開゛が大きくなって、フレキシ
ビリチーが小さく撓み易くなり、引抜性、組立性の低下
、構造上の無駄部分の増加、曲げ部の形成の困離性、な
どの種々の欠点がある。In addition, as another countermeasure 7, each heat exchanger tube (3) is provided with a bent part, and the deformation of the bent part causes the difference in thermal expansion between the heat exchanger tube (3) group and the downcomer pipe (1), and the heat exchanger tube We previously proposed a configuration that absorbs the difference in thermal expansion between the heat exchanger tubes (3) that occurs due to drift in the group (4), but with this configuration, the difference in thermal expansion increases as the heat exchanger becomes larger. As a result, the protruding opening of the bent portion necessary to absorb the difference in thermal expansion between the two sides becomes larger, resulting in less flexibility and easy bending, resulting in decreased pullability and assembly, increased structural waste, and increased bending. There are various drawbacks such as difficulty in forming the parts.
本発明は、従来のシェルアンドチューブ型熱交換器にお
ける前記のような欠点を解消するために開発されたもの
であって、外胴内側の外部シュラウド内における多数の
伝熱管が配設された伝熱管群部内に1次高温側流体が流
通され、2次低温側流体が前記伝熱管群部内の中央に縦
設された下降管内を下降し下部ブレナムを介し前記各伝
熱管内を上昇して熱交換される構成のシェルアンドチュ
ーブ型熱交換器において、前記下降管の外周に内部シュ
ラウド°を配置し、該内部シュラウドの端部をベローズ
を介して前記下降管に連結するとともに、伝熱管群を形
成している前記各伝熱管に曲げ部を設けた点に特徴を有
し、その目的とする処は、下降管の外周に設けた内部シ
ュラウドと同下降管間にベローズを設けかつ各伝熱管に
曲げ部を設けた画構成の組合せにより、伝熱管群と下降
管間および各伝熱管相互間における熱膨張差に伴なう熱
応力の吸収効率を向上させたシェルアンドチューブ型熱
交換器を供する点にある。The present invention was developed to eliminate the above-mentioned drawbacks of conventional shell-and-tube heat exchangers, and is a heat exchanger in which a large number of heat exchanger tubes are disposed within an external shroud inside an outer shell. The primary high-temperature fluid flows through the heat tube group, and the secondary low-temperature fluid descends in the downcomer tube installed vertically in the center of the heat transfer tube group, ascends through the lower blennium, and rises within each heat transfer tube to generate heat. In a shell-and-tube heat exchanger configured to be exchanged, an internal shroud is disposed around the outer periphery of the downcomer pipe, an end of the internal shroud is connected to the downcomer pipe via a bellows, and a group of heat transfer tubes is connected to the downcomer pipe. It is characterized by providing a bent portion in each of the heat exchanger tubes formed, and its purpose is to provide a bellows between the inner shroud provided on the outer periphery of the downcomer tube and the downcomer tube, and to bend each heat exchanger tube. A shell-and-tube heat exchanger that improves the efficiency of absorbing thermal stress caused by the difference in thermal expansion between the heat exchanger tube group and downcomer tubes and between each heat exchanger tube by combining a configuration with a bent part on the side. It is in the point of providing.
本発明は、前記の構成になっており、2次低温t111
流体が下降される下降管の外周に配設された内部シュラ
ウドの端部をベローズを介して同下降管に連結している
ので、該ベローズによって伝熱管群と下降管間の熱膨張
差が吸収され、各伝熱管に設けた曲げ部によって伝熱管
相互の熱膨張差が吸収されるととイ・、に、伝熱管群に
比べ前記ズローズの剛性の方が遥かに小さいため、伝熱
管群と下降管間の熱膨張差ははローズによって吸収され
て伝熱管群側への影響がなくなり、各伝熱管に設けた曲
げ部には、伝熱管群部内における偏流によって生じる比
吸的に小さい伝熱管相互の熱膨張差のみがかかることに
なり、該曲げ部の撓みが著しく少なくなり該熱膨張差を
極めて効率よく吸収でき、熱応力発生防止性能が大幅に
向上されるとともに、構造健全性が著しく旨められかつ
製作、組立性が向上される。The present invention has the above-mentioned configuration, and the secondary low temperature t111
The end of the internal shroud disposed around the outer periphery of the downcomer pipe through which fluid is descended is connected to the downcomer pipe via a bellows, so the difference in thermal expansion between the heat transfer tube group and the downcomer pipe is absorbed by the bellows. If the difference in thermal expansion between the heat exchanger tubes is absorbed by the bent portion provided in each heat exchanger tube, then the rigidity of the tubes is much smaller than that of the heat exchanger tube group, so the heat exchanger tube group The thermal expansion difference between the downcomer tubes is absorbed by the rose and has no effect on the heat exchanger tube group, and the bent portion of each heat exchanger tube has a relatively small heat exchanger tube that is caused by the uneven flow within the heat exchanger tube group. Since only the mutual thermal expansion difference is applied, the deflection of the bent portion is significantly reduced, and the thermal expansion difference can be absorbed extremely efficiently.The thermal stress prevention performance is greatly improved, and the structural integrity is significantly improved. The taste is improved, and the ease of production and assembly is improved.
以下、本発明の実施例を図示について説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第2図、第6図に本発明の一実施例を示しており、図中
(1)は支持スカート(1a)にて懸架された外胴、(
2)は外胴(1)内側に同心状に配設された外部シュラ
ウド、(3a)は外部シュラウド(2)内側の上部に設
けられた上管板、(3h)は外部シュラウド(2)内側
の下部に設けられた下管板、(3)は上、下管板(3す
(3b)に上下端部が貫通状に固5jlされた多数の伝
熱管、(4)は前記伝熱管(3)群が配置された伝熱管
群部、(5)は外胴(1)の上部から伝熱管1(π部(
4)内の中央に縦設された下降管、(6)は下管板(3
b)下側にノヒ成された下部プロナム、(7)は上管板
(3り上t111に形成された上部プレナム、(8)は
外胴(1)と外部ンユラウド(2)の下部間に連設され
た・ζイ・ξスシールベローであって、1次高温側流体
が、入口ノズル(1b)から外胴(1)内に流入されさ
らに入口窓(2a)から外部シュラウド(2)内の伝熱
管群部(4)内(伝熱管(3)の外側)を下降したのち
、出口窓(2h)から外胴(1)側へ出て出口ノズル(
1C)に至る経路にて流通され、2次低温側流体が、入
口ノズル(5α)から下降管(5)内を下降し下部プレ
ナム(6)にて反転され各伝熱管(3)内を上昇しつつ
熱交換されて高温となり、上部プレナム(力を経て出口
ノズル(1d)から取り出される熱交換機構になってい
る。An embodiment of the present invention is shown in FIGS. 2 and 6, in which (1) shows an outer shell suspended by a support skirt (1a), (
2) is the outer shroud arranged concentrically inside the outer shell (1), (3a) is the upper tube plate provided at the upper part of the inner side of the outer shroud (2), and (3h) is the inner side of the outer shroud (2). (3) is a large number of heat exchanger tubes whose upper and lower ends are solidly fixed to the upper and lower tube plates (3b), (4) is the heat exchanger tube ( 3) Heat exchanger tube group part where the group is arranged, (5) is the heat exchanger tube group part (π part (
4) is a descending pipe installed vertically in the center of the inner pipe, (6) is a lower pipe plate (3
b) Lower pronum formed on the lower side, (7) is the upper plenum formed on the upper tube plate (3rd upper t111), (8) is between the outer shell (1) and the lower part of the outer shell (2) The primary high-temperature side fluid flows into the outer shell (1) from the inlet nozzle (1b), and further flows into the outer shroud (2) from the inlet window (2a). After descending inside the heat exchanger tube group part (4) (outside of the heat exchanger tubes (3)), it exits from the outlet window (2h) to the outer shell (1) side and exits the outlet nozzle (
1C), and the secondary low-temperature side fluid descends from the inlet nozzle (5α) in the downcomer pipe (5), is reversed in the lower plenum (6), and ascends in each heat transfer tube (3). This is a heat exchange mechanism in which the heat is exchanged, the temperature becomes high, and it is taken out from the outlet nozzle (1d) through the upper plenum (force).
さらに、該実施例においては、第2図、第6図に示され
ているように下降管(5)の外周に小間隔を存して内部
シュラウド−+1,0)が略全長にわたって同心状に配
置され、該内部シュラウドσαの上端部はベローズ0υ
を介して下降管(5)の外周に連結されており、同内部
シュラウドQOIの下端部は必要に応じ下降管(5)の
外周に連結され、また、上管板(3a)が内部シュラウ
ドα〔の外周に固着され、下管板(3h)は下降管(5
)の下端側に固着されている。Furthermore, in this embodiment, as shown in FIGS. 2 and 6, the inner shroud (+1, 0) is arranged concentrically over substantially the entire length of the downcomer (5) with a small interval around the outer periphery of the downcomer pipe (5). The upper end of the inner shroud σα has a bellows 0υ
The lower end of the internal shroud QOI is connected to the outer periphery of the downcomer pipe (5) as necessary, and the upper tube plate (3a) The lower tube plate (3h) is fixed to the outer periphery of the downcomer pipe (5h).
) is fixed to the lower end side.
また、前記伝熱管群を形成している各伝熱管(3)は、
前記のようにその上、下端部が上管板(3りと下管板(
3b)とにそれぞれ貫通状に固着されているとともに、
各伝熱管(3)の下部に曲げ部α2が設けられた構成に
なっている。Moreover, each heat exchanger tube (3) forming the heat exchanger tube group is
As mentioned above, the upper and lower ends are connected to the upper tube plate (three and the lower tube plate).
3b) and are fixed in a penetrating manner, respectively, and
A bent portion α2 is provided at the lower part of each heat exchanger tube (3).
図示した実施例は、前記のような構成になっており、1
次高温側流体および2次低温側流体の流通経路オ6よぴ
熱交間機能は従来例と略同様になっているが、伝熱管(
3)群と下降管(5)との間に生じる熱j影l辰差は、
第6図に示すように内部シュラウド(10)を介したぺ
Yl−ズ01)によって吸収され、ベローズ(11)と
伝熱管(3)群との剛性ン考えると、Rローズ圓の剛性
の方が遥かに小さいために伝熱管(3)群と下降管(5
)との熱膨張差が各伝熱管(3)の曲げ部02)へ及ぼ
す影響は殆んど皆無の状態になる。The illustrated embodiment has the above-mentioned configuration, and includes 1
The flow path O6 and heat exchange functions for the secondary high-temperature side fluid and the secondary low-temperature side fluid are almost the same as in the conventional example, but the heat exchanger tubes (
3) The thermal difference between the group and the downcomer pipe (5) is:
As shown in Fig. 6, it is absorbed by the pipes 01) via the internal shroud (10), and considering the rigidity of the bellows (11) and the heat transfer tube group (3), the rigidity of the R rose circle is is much smaller, so the heat exchanger tubes (3) group and the downcomer tubes (5
) has almost no effect on the bent portion 02) of each heat exchanger tube (3).
従って、各伝熱管(3)にす6ける曲げ部(12)には
、伝熱管群部(4)内における偏流(またはrl’i+
’1度不均−)によって生じるところの各1尺熱管(,
3)相互の熱膨張差による影響のみがかかることになり
、該曲げ部(12)によって吸収する必要のある熱膨張
お、は著しく小さいものとなる。Therefore, the bent portion (12) of each heat exchanger tube (3) has a biased flow (or rl'i+
Each 1 inch heat tube (,
3) Only the mutual thermal expansion difference will be affected, and the thermal expansion that needs to be absorbed by the bent portion (12) will be extremely small.
さらに詳述すると、伝熱管(3)群と下降管(5)間の
熱膨張変位を含む全てを伝熱管(3)の曲げ部で吸収す
る場合に比べ、該実施例におけろ曲げ部θ2にかかる変
位は著しく低減されることになり、各伝熱管(3)のフ
レキシビリチーを極端に下げる必要がなくなるため、曲
げ部0鐵における突出を小さく形成でき、前記ベローズ
(II)と曲げ部0′2の構成の並設により、大型機器
にも適用可能であってその構造健全性が大幅に向上され
る。To explain in more detail, in this example, the bending portion θ2 The displacement applied to the bellows (II) is significantly reduced, and there is no need to extremely reduce the flexibility of each heat exchanger tube (3), so the protrusion at the bent part 0 iron can be formed small, and the By arranging the 0'2 configurations in parallel, it can be applied to large-sized equipment and its structural integrity is greatly improved.
また、曲げ部圓の撓みが小さくなることによって、伝熱
管(3)相互、その支持具との間の接触による荷重もな
くなりある(・は低減され伝熱管の摩耗も低減される、
同時にベローズ(11)だけで熱膨張差を吸収する場合
に比べて、伝熱管(3)相互の熱膨張差の吸収をその曲
げ部(12)により行なうことが可能となり、伝熱管の
座屈防止のために偏流をな(するパンフル板が不要とな
るなどの利点を有する。In addition, by reducing the bending of the bending part circle, the load due to contact between the heat exchanger tubes (3) and their supports is also eliminated (・ is reduced, and wear of the heat exchanger tubes is also reduced.
At the same time, compared to the case where the difference in thermal expansion is absorbed only by the bellows (11), the difference in thermal expansion between the heat exchanger tubes (3) can be absorbed by the bent portion (12), thereby preventing buckling of the heat exchanger tubes. This has the advantage of eliminating the need for a panful plate that causes drifting of currents.
前記各伝熱管(3)の曲げ部(12)の形状について1
次応力評価を行なってその制限値を求めると、実際の現
象に対して本評価は十分に安全であると考えられ、前記
伝熱管(3)の曲げ部02)の形状を検討するにあたり
、第4図に示す解析モデルを設定しており、該モデルは
伝熱管(3)をビームモデルとして取り扱いその断面係
数を考慮することによって妥当性を有している。1 Regarding the shape of the bent portion (12) of each heat exchanger tube (3)
When we perform the following stress evaluation and find its limit value, this evaluation is considered to be sufficiently safe for actual phenomena. An analytical model shown in Fig. 4 has been set up, and this model has validity by treating the heat exchanger tube (3) as a beam model and considering its section modulus.
伝熱管(3)の曲げ部(I2におけるフレキシビリチー
を決定する要因としては、曲げ部021の突出It (
M)、曲げ部の曲率(R)および曲げ部軸方向長さくL
)が挙げられ、Lに関しては、伝熱管(3)のサポート
位置によって制限され、伝熱管サポート位置は、伝熱管
振動に関する制限(流体による振動や耐震性など)によ
って決まるため、Lの値は、おのずからある制限値を有
する。従って、ここではLを一定値(最大値ンとして与
えている。The factors that determine the flexibility at the bent portion (I2) of the heat exchanger tube (3) include the protrusion It (
M), curvature of the bent part (R) and length L in the axial direction of the bent part
), and L is limited by the support position of the heat exchanger tube (3), and the heat exchanger tube support position is determined by restrictions on heat exchanger tube vibration (vibration due to fluid, earthquake resistance, etc.), so the value of L is It naturally has certain limits. Therefore, L is given as a constant value (maximum value) here.
曲げ部軸方向長さくL)が一定値として与えられると、
RとMとは従属関係にあるため、一定の変位搦(熱膨張
量りに対して、応力に影響を与えるパラメータは、Rの
み(もしくはMのみ)と考えられ、換言すれば、Rのみ
(もしくはMのみ〕によって伝熱管の曲げ部形状を表現
できる。When the axial length L) of the bent part is given as a constant value,
Since R and M are in a dependent relationship, the only parameter that affects stress for a constant displacement rate (thermal expansion measure) is considered to be only R (or only M); in other words, only R (or M only] can express the shape of the bent portion of the heat exchanger tube.
第5図に前記の検討結果の一例を示し、この結果は、伝
熱部の有効長さを9mとしたときの大型熱交換器(シェ
ルアンドチューブ型)についてのものであり、伝熱管(
3)群と下降管(5)との熱膨張差を約1CJrnmと
すると、ベローズ(11)を設けない場合には、機器の
構造成立性自体が満足されず、それを解決するためにL
の値を大きくするか、もしくは曲げ部形状を第6図の(
()から(ロ)のように変えて撓み易くする等の対策が
考えられるが、いずれも製作、組立性の低下、コストの
上昇、構造健全性の低下等を招き不利となる。Figure 5 shows an example of the above study results, and the results are for a large heat exchanger (shell and tube type) when the effective length of the heat transfer section is 9 m.
3) Assuming that the thermal expansion difference between the group and the downcomer pipe (5) is approximately 1 CJrnm, the structural integrity of the equipment itself will not be satisfied if the bellows (11) is not provided, and in order to solve this problem, L
Either increase the value of or change the shape of the bent part to (
Countermeasures such as changing from () to (b) to make it more flexible can be considered, but all of these methods are disadvantageous as they result in reduced ease of manufacture and assembly, increased costs, and reduced structural integrity.
以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるもの′ではなく、本
発明の精神を逸脱しない範囲内で種々の設計の改変を施
しうるものである。Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to these embodiments, and that various design modifications can be made without departing from the spirit of the invention. be.
第1図は従来のシェルアンドチューブ型熱交換器の機器
を示す縦断面図、第2図は本発明の一実施例の機構を示
す縦断面図、第6図は第2図の要部拡大図、第4図は伝
熱管の曲げ部形状の解析モデル図、第5図は伝熱管の曲
げ部形状の検討結果図、第6図は同曲げ部の可撓性向上
策図である。
1:外部 2:外部シュラウド 6:伝熱管31Z、
31!l :上、下管板 4:伝熱管群部5:下降管
6:下部ブレナム
7:上部プレナム 10:内部シュラウド11:ベロ
ーズ 12:曲げ部
復代理人 弁理士 岡 本 重 文
外2名
第1M
ぺn
第2図Fig. 1 is a vertical sectional view showing the equipment of a conventional shell-and-tube heat exchanger, Fig. 2 is a longitudinal sectional view showing the mechanism of an embodiment of the present invention, and Fig. 6 is an enlarged view of the main parts of Fig. 2. 4 is an analytical model diagram of the shape of the bent portion of the heat exchanger tube, FIG. 5 is a diagram showing the results of an examination of the shape of the bent portion of the heat exchanger tube, and FIG. 6 is a diagram of a measure to improve the flexibility of the bent portion. 1: External 2: External shroud 6: Heat exchanger tube 31Z,
31! l: Upper and lower tube plates 4: Heat exchanger tube group section 5: Downcomer tube 6: Lower plenum 7: Upper plenum 10: Internal shroud 11: Bellows 12: Bend section sub-agent Patent attorney Shige Okamoto 2nd person 1st M Pen Figure 2
Claims (1)
設された伝熱管群部内に1次高温側流体が流1rThさ
れ、2次低温側流体がAC前記伝熱管群部内の中央に縦
設された下降管内を下降し下部プレナムを介し前記各伝
熱管内を上昇して熱交藺される構成のシェルアンドチュ
ーブ型熱交換器において。 前記下降管の外周に内部シュラウドを配置し、該内部・
/ニラウドの端部なベローズを介して1)11記下降管
に連結するとともに、伝熱管群を形成している前記各伝
熱管に曲げ部を設けたことを特徴とするシェルアンドチ
ューブ型熱交換器。[Scope of Claims] The primary high temperature side fluid flows 1rTh into the heat transfer tube group section in which a large number of heat transfer tubes are arranged in the external shroud inside the outer shell, and the secondary low temperature side fluid flows into the AC heat transfer tube group section. In a shell-and-tube type heat exchanger, heat exchange is performed by descending in a downcomer pipe vertically installed in the center of the heat exchanger and ascending in each of the heat transfer tubes via a lower plenum. An internal shroud is disposed around the outer circumference of the downcomer pipe, and the internal shroud
1) A shell-and-tube type heat exchanger characterized in that each of the heat transfer tubes forming a group of heat transfer tubes is provided with a bent portion while being connected to the downcomer tube of 1) No. 11 through a bellows at the end of the tube. vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP350683A JPS59129387A (en) | 1983-01-14 | 1983-01-14 | Shell-and-tube type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP350683A JPS59129387A (en) | 1983-01-14 | 1983-01-14 | Shell-and-tube type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59129387A true JPS59129387A (en) | 1984-07-25 |
Family
ID=11559238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP350683A Pending JPS59129387A (en) | 1983-01-14 | 1983-01-14 | Shell-and-tube type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59129387A (en) |
-
1983
- 1983-01-14 JP JP350683A patent/JPS59129387A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3989105A (en) | Heat exchanger | |
JPH0250398B2 (en) | ||
US3854528A (en) | Heat-exchanger module | |
US12130009B2 (en) | Helical baffle for once-through steam generator | |
US4505329A (en) | Heat exchanger | |
JPS59129387A (en) | Shell-and-tube type heat exchanger | |
US3277958A (en) | Heat exchangers | |
JPS61165304U (en) | ||
JPS58217192A (en) | Heat exchanger | |
US4147208A (en) | Heat exchanger | |
JPS5952197A (en) | Heat exchanger | |
JPS60243494A (en) | Heat exchanger | |
JPS5915702A (en) | Vertical type high-pressure feedwater preheater | |
JPH05203388A (en) | Straight-tube type shell and tube heat exchanger | |
JP3372424B2 (en) | Tube heat exchanger type vertical steam generator | |
JPS60240995A (en) | Intermediate heat exchanger | |
JPH08129097A (en) | Steam generator | |
JPS62202996A (en) | Heat exchanger | |
JPS604790A (en) | Heat exchanger | |
JPS61180894A (en) | Heat exchanger of high-speed bleeder reactor | |
JPH01181002A (en) | Vapor generator | |
JPH07119901A (en) | Steam generator | |
JPS6033083A (en) | Tank type fast breeder reactor | |
JPH01200103A (en) | Heat exchanger | |
JPS5949497A (en) | Heat exchanger |