JPS5912883B2 - Flow divider negative pressure prevention device - Google Patents

Flow divider negative pressure prevention device

Info

Publication number
JPS5912883B2
JPS5912883B2 JP648282A JP648282A JPS5912883B2 JP S5912883 B2 JPS5912883 B2 JP S5912883B2 JP 648282 A JP648282 A JP 648282A JP 648282 A JP648282 A JP 648282A JP S5912883 B2 JPS5912883 B2 JP S5912883B2
Authority
JP
Japan
Prior art keywords
flow
flow path
divider
flow divider
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP648282A
Other languages
Japanese (ja)
Other versions
JPS58124805A (en
Inventor
悟 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP648282A priority Critical patent/JPS5912883B2/en
Publication of JPS58124805A publication Critical patent/JPS58124805A/en
Publication of JPS5912883B2 publication Critical patent/JPS5912883B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、分流機能と集流機能を備えたフローデイバイ
ダの負圧防止装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a negative pressure prevention device for a flow divider having a flow dividing function and a flow collecting function.

この種のフローデイバイダは、たとえば前玉トラックク
レーンのブーム伸縮シリンダ等の二基のアクチュエータ
を同調させるために使用されている。
Flow dividers of this type are used, for example, to synchronize two actuators, such as the boom telescoping cylinder of a front truck crane.

しかし、従来のフローデイバイダでは、集流時にキャビ
テーションが発生し、同調機能がなくなるのみならず、
騒音の発生、ひいてはフローディバイダの破損を招くお
それがあった。
However, with conventional flow dividers, cavitation occurs during flow collection, and not only does the tuning function disappear, but also
There was a risk of noise generation and even damage to the flow divider.

この原因を考察すると、次の通りである。The reasons for this are as follows.

この種のフローデイバイダAは、第2図に示すようにポ
ンプ機能とモータ機能を備えた2個のポンプモータA1
、A2を同軸に連結して構成されているが、従来では
、このフローディバイダAをそのままで用い、分流時に
は、集流側流路Bの圧油をフローデイバイダAにより分
流して分流側流路C,Dに導出し、集流時には、分流側
流路C2Dの圧油をそのままフローデイバイダAに導入
させ、集流して集流側流路Bに導出していた。
This type of flow divider A has two pump motors A1 with a pump function and a motor function, as shown in Fig. 2.
, A2 are coaxially connected. Conventionally, this flow divider A is used as is, and when dividing the flow, the pressure oil in the collecting side flow path B is divided by the flow divider A and the flow is connected to the divided side flow. At the time of flow collection, the pressure oil in the branch side flow path C2D was directly introduced into the flow divider A, and the flow was collected and led out to the collection side flow path B.

この場合、集流時において、流路C,Dからフローデイ
バイダAへの流入量Qc、Qdば、フローデイバイダA
の分流または集流比が、 1:1であれば、Q c =Q d。
In this case, at the time of convergence, the inflow amounts Qc and Qd from flow paths C and D to flow divider A are
If the dividing or collecting ratio of is 1:1, then Q c =Q d.

1:2であれば、Qc=2Qd でなげ扛ばならないが、この流入量Qc、Qdに差が生
じた場合、つまり、Qc、Qdの流量比がフローデイバ
イダAの分流または集流比と異なる場合、フローディバ
イダAのポンプモータA1゜A2の回転が多く流入した
方の油量で決められるため、少ない方の流路はポンプモ
ータA1 またはA2のポンプ作用によって負圧とな
り、キャビテーションが発生する。
If it is 1:2, Qc = 2Qd, but if there is a difference between the inflow amounts Qc and Qd, that is, the flow rate ratio of Qc and Qd is the dividing or concentrating ratio of flow divider A. If they are different, the rotation of the pump motors A1 and A2 of the flow divider A is determined by the amount of oil flowing into the flow path, so the flow path with the smaller flow becomes negative pressure due to the pumping action of the pump motor A1 or A2, causing cavitation. .

たとえば流路Cからの流入量Qcが多過ぎると、流路り
が負圧となり、キャビテーションが発生する。
For example, if the inflow amount Qc from the flow path C is too large, the flow path becomes negative pressure and cavitation occurs.

本発明は、このようなフローデイバイダのとくに集流時
における分流側流路が負圧になることを防止し、キャビ
テーションの発生を防止できる装置を提供するものであ
る。
The present invention provides a device that can prevent the flow divider from becoming negative pressure, particularly in the flow divider side flow path during flow collection, and can prevent the occurrence of cavitation.

本発明の特徴とするところは、分流機能と集流機能を備
えた2個のポンプモータを同軸に連結してなるフローデ
イバイダの一次側に一本の集流側流路を、二次側に二本
の分流側流路をそれぞれ接続し、各分流側流路の途中に
、フローデイバイダから各分流側流路端末方向への分流
油の流れを許容するチェック弁と、各分流側流路端末か
ら各チェック弁を迂回してフローデイバイダ方向へ集流
用油を導くバイパス流路とをパラレルに接続し、両バイ
パス流路に、フローデイバイダと前記チェック弁との間
の両分流側流路の子方差によって作動する切換弁を設け
てなり、かつ、該切換弁は子方の高い方の分流側流路か
らフローデイバイダへの流入油量を絞りあるいはブロッ
クするように構成サレテいるフローディバイダの負圧防
止装置にある。
A feature of the present invention is that a flow divider, which is formed by coaxially connecting two pump motors with a flow dividing function and a flow collecting function, has one flow passage on the primary side and one flow passage on the secondary side. The two branch flow channels are connected to the flow divider, and a check valve is installed in the middle of each branch flow channel to allow the flow of branch oil from the flow divider toward the end of each branch flow channel. A bypass flow path that bypasses each check valve from the end of the flow path and guides the collection oil toward the flow divider is connected in parallel, and both bypass flow paths are provided with both branch flow sides between the flow divider and the check valve. A switching valve is provided which operates depending on the difference between the lower flow paths, and the switching valve is configured to throttle or block the amount of oil flowing into the flow divider from the higher flow flow path on the lower side. Located in the negative pressure prevention device of the flow divider.

以下、本発明を第1図に示す実施例によって説明する。The present invention will be explained below with reference to an embodiment shown in FIG.

1はフローデイバイダで、ポンプ機能とモータ機能とを
有する2個のポンプモータ1a、1bを同軸に連結して
分流機能と集流機能とを発揮できるように構成され、そ
の一次側に集流側流路2を、二次側に流路3a 、3b
および流路4a 、4bからなる分流側流路3,4を接
続している。
Reference numeral 1 denotes a flow divider, which is configured so that two pump motors 1a and 1b having a pump function and a motor function are coaxially connected to exhibit a flow dividing function and a flow collecting function, and the flow is collected on the primary side. The side flow path 2 is connected to the flow paths 3a and 3b on the secondary side.
The branch flow channels 3 and 4, which are composed of flow channels 4a and 4b, are connected to each other.

5,6はチェック弁で、両分流側流路3,4の途中すな
わち流路3a、3b問および流路4a、4b間のフロー
デイバイダ1から該分流側流路端末方向への流れを許容
する方向に設けている。
Reference numerals 5 and 6 designate check valves that allow flow from the flow divider 1 in the middle of both the flow paths 3 and 4, that is, between the flow paths 3a and 3b and between the flow paths 4a and 4b, toward the end of the flow paths on the divided flow path. It is set in the direction of

7,8はバイパス流路で、前記チェック弁5,6の前後
を迂回して各分流側流路端末からフローディバイダ方向
へ集流用油を導くように、各分流側流路3,4に対して
チェック弁5,6とパラレルに接続している。
Reference numerals 7 and 8 designate bypass channels, which are connected to each of the branch flow channels 3 and 4 so as to bypass the check valves 5 and 6 and guide the collecting oil from the end of each branch flow channel toward the flow divider. The check valves 5 and 6 are connected in parallel.

9は切換弁で、バイパス流路7,8の途中に設けられ、
集流時にその両端のパイロットポートに前記流路3a、
4aからパイロット流路10゜11および絞り弁12,
13を介してパイロット王が導かれ、その圧力差によっ
て作動され、子方の高い方の流路3aまたば4aに流入
する油量を絞り、あるいはブロックするようになってい
る。
9 is a switching valve, which is provided in the middle of the bypass channels 7 and 8;
The flow path 3a is connected to the pilot ports at both ends during flow convergence.
4a to the pilot flow path 10°11 and the throttle valve 12,
A pilot king is guided through 13 and is actuated by the pressure difference to throttle or block the amount of oil flowing into the lower higher channel 3a or 4a.

14.15はチェック弁で、バイパス流路7,8の切換
弁9と流路3a、4aとの間に、フローデイバイダ方向
への集流用油の流入を許容する方向に設けられている。
Check valves 14 and 15 are provided between the switching valves 9 of the bypass flow paths 7 and 8 and the flow paths 3a and 4a in a direction that allows the flow of the collecting oil toward the flow divider.

次に作用について説明する。Next, the effect will be explained.

分流時 集流側流路2から矢印イ方向に導かれた油はフローデイ
バイダ1に流入し、2個のポンプモータ1a、1bによ
って所定の分流比に分流され、ポンプモータ1aを通過
した油は分流側流路3に導出されて矢印口方向に導か扛
、流路3a、チェック弁5、流路3bを経て図外のアク
チュエータに流入し、また、ポンプモータ1bを通過し
た油は分流側流路4に導出されて矢印凸方向に導かれ、
流路4a、チェック弁6、流路4bを経て図外の他のア
クチュエータに流入する。
At the time of separation, the oil guided in the direction of arrow A from the flow path 2 on the collecting side flows into the flow divider 1, and is divided into a predetermined separation ratio by the two pump motors 1a and 1b, and the oil that has passed through the pump motor 1a flows into the flow divider 1. The oil is led to the branch flow path 3 and flows in the direction of the arrow, through the flow path 3a, the check valve 5, and the flow path 3b to an actuator (not shown), and the oil that has passed through the pump motor 1b is led to the flow path 3 on the diversion side. It is guided into the flow path 4 and guided in the convex direction of the arrow,
It flows into other actuators (not shown) through the flow path 4a, the check valve 6, and the flow path 4b.

このとき、バイパス流路7,8にチェック弁14.15
が設けられているので、分流油は切換弁9に流入するこ
とはなり、矢印口、凸方向にスムーズに流れる。
At this time, check valves 14 and 15 are installed in the bypass channels 7 and 8.
Since this is provided, the diverted oil does not flow into the switching valve 9 and flows smoothly in the convex direction of the arrow.

これによって、両アクチュエータに対して所定の分流比
で油を供給し、両アクチュエータを該分流比に見合った
速度で同調作動させることができる。
Thereby, oil can be supplied to both actuators at a predetermined division ratio, and both actuators can be operated in synchronism at a speed commensurate with the division ratio.

集流時 図外のアクチュエータから分流側流路3に流入した集流
用油ば、流路3bから矢印二方向に導かれ、バイパス流
路7、切換弁9、チェック弁14、流路3aを経てフロ
ーデイバイダ1のポンプモータ1aに流入し、一方、他
のアクチュエータから分流側流路4に流入した集流用油
ば、流路4bから矢印ホ方向に導かれ、バイパス流路8
、切換弁9、チェック弁15、流路4bを経てフローデ
イバイダ1のポンプモータ1bに流入する。
At the time of flow collection, the flow collecting oil that flows into the branch flow path 3 from an actuator (not shown) is guided from the flow path 3b in the two directions of the arrows, and passes through the bypass flow path 7, the switching valve 9, the check valve 14, and the flow path 3a. The flow collecting oil flowing into the pump motor 1a of the flow divider 1 and flowing into the branch flow path 4 from another actuator is guided from the flow path 4b in the direction of the arrow H, and flows into the bypass flow path 8.
, the switching valve 9, the check valve 15, and the flow path 4b before flowing into the pump motor 1b of the flow divider 1.

ソシて、画集流用油はフローデイバイダ1で合流すなわ
ち集流され、集流側流路2に導出され、矢印へ方向に流
出される。
Then, the oil for the art collection is merged or collected in the flow divider 1, led out to the collection side flow path 2, and flowed out in the direction of the arrow.

このとき、分流側流路3,4の途中にチェック弁5,6
が設けられているので、集流用油は前記流路3b、4b
から直接フローディバイダ1に流入することはなく、必
ずバイパス流路7,8に流入し、切換弁9を経てフロー
ディバイダ1に流入する。
At this time, check valves 5 and 6 are installed in the middle of the branch flow paths 3 and 4.
are provided, so that the collecting oil flows through the flow paths 3b and 4b.
The flow does not directly flow into the flow divider 1 , but always flows into the bypass channels 7 and 8 , and flows into the flow divider 1 via the switching valve 9 .

上記集流時において、今仮りに、流路3bに流入した油
量が、流路4bに流入した油量より多い(フローデイバ
イダ1の分流または集流比を基準として)とすると、矢
印二方向に導かれた油がポンプモータ1aに流入して該
ポンプモータ1aを駆動し、これに伴って同軸に連結さ
れているポンプモータ1bが、駆動されてポンプ作用を
発揮し、このポンプモータ1bとチェック弁6との間の
流路4aが負圧き゛みになるが、このとき、流路3a。
At the time of the above flow convergence, if the amount of oil that has flowed into the flow path 3b is greater than the amount of oil that has flowed into the flow path 4b (based on the flow divider or flow concentration ratio of the flow divider 1), then the arrow The oil guided in the direction flows into the pump motor 1a and drives the pump motor 1a, and accordingly, the pump motor 1b, which is coaxially connected, is driven and exerts a pumping action. The flow path 4a between the check valve 6 and the flow path 3a becomes under negative pressure.

4a内の子方がパイロット流路10,11および絞り弁
12,13を介して切換弁9の両端パイロットポートに
導かれ、該流路3a 、4a内の圧力差によって切換弁
9が第1図下方に切換えられ、前記流路3bから流路7
を経て流路3aに流れようとする油が該切換弁9によっ
て絞られ、前記ポンプモータ1aを駆動する油量が少な
くなるように制御される。
4a is guided to pilot ports at both ends of the switching valve 9 via pilot flow paths 10, 11 and throttle valves 12, 13, and the pressure difference between the flow paths 3a and 4a causes the switching valve 9 to open as shown in FIG. is switched downward, from the flow path 3b to the flow path 7.
The oil that is about to flow into the flow path 3a via the switching valve 9 is throttled, and the amount of oil that drives the pump motor 1a is controlled to be reduced.

なお、流路4bに流入する流量つまり矢印ホ方向の流れ
が零の場合は、切換弁9が完全に第1図下方に切換えら
れ、矢印二方向の流れがブロックされる。
Note that when the flow rate flowing into the flow path 4b, that is, the flow in the direction of the arrow H, is zero, the switching valve 9 is completely switched downward in FIG. 1, and the flow in the two directions of the arrows is blocked.

こうして切換弁9は流路3a、4a内の圧力差によって
切換作動され、流路3a、4aに流入する流量が常に所
定分流または集流比となるように、すなわち、ポンプモ
ータ1a、lbが常に所定分流または集流比で回転する
ように自動的に制御される。
In this way, the switching valve 9 is switched by the pressure difference in the flow paths 3a, 4a, so that the flow rate flowing into the flow paths 3a, 4a always has a predetermined dividing or collecting ratio. It is automatically controlled to rotate at a predetermined splitting or collecting ratio.

これによって、流路3b 、4bに流入する油量に差が
生じても、フローデイバイダ1に従来のようなキャビテ
ーションが発生することを防止できる。
Thereby, even if there is a difference in the amount of oil flowing into the flow paths 3b and 4b, it is possible to prevent cavitation from occurring in the flow divider 1 as in the conventional case.

また、フローデイバイダ1の2個のポンプモータ1a、
ibの、駆動圧力を常に同等にすることができるので、
集流時の同期性を保つことができる。
In addition, two pump motors 1a of the flow divider 1,
Since the driving pressure of ib can always be the same,
It is possible to maintain synchronization during flow collection.

つまり、流路3a、4a内の圧力が異なると、フローデ
イバイダ1の内部にリーク差が生じ、集流精度が悪くな
るが、上記の本発明によればこのようなおそれがなくな
る。
That is, if the pressures in the flow paths 3a and 4a are different, a leakage difference occurs inside the flow divider 1, and the precision of flow collection deteriorates, but according to the present invention, such a fear is eliminated.

以上説明したように、本発明によれば、分流機能と集流
機能を備えたフローディバイダにおいて、とくに集流時
に分流側流路が負圧になることを防止でき、キャビテー
ションが発生することなく、集流精度を向上でき、また
、騒音の発生を抑え、フローデイバイダの機械的寿宿も
向上できるのである。
As explained above, according to the present invention, in a flow divider equipped with a flow dividing function and a flow collecting function, it is possible to prevent negative pressure in the flow path on the dividing side especially during flow collecting, and to prevent cavitation from occurring. It is possible to improve the accuracy of flow collection, suppress the generation of noise, and improve the mechanical life of the flow divider.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す油圧回路図、第2図は従
来のフローディバイダの使用例を示す油圧回路図である
。 1・・・フローデイバイダ、1a、1b・・・ポンプモ
ータ、2・・・集流側流路、3 、3a 、 3b 、
4 。 4a、4b・・・分流側流路、5,6・・・チェック弁
、7.8・・・バイパス流路、9・・・切換弁。
FIG. 1 is a hydraulic circuit diagram showing an embodiment of the present invention, and FIG. 2 is a hydraulic circuit diagram showing an example of use of a conventional flow divider. DESCRIPTION OF SYMBOLS 1...Flow divider, 1a, 1b...Pump motor, 2...Collection side flow path, 3, 3a, 3b,
4. 4a, 4b...Diversion side flow path, 5, 6...Check valve, 7.8...Bypass flow path, 9...Switching valve.

Claims (1)

【特許請求の範囲】[Claims] 1 分流機能と集流機能を備えた2個のポンプモータを
同軸に連結してなるフローデイバイダの一次側に一本の
集流側流路を、二次側に二本の分集側流路をそれぞれ接
続し、各分流側流路の途中に、フローディバイダから各
分流側流路端末方向への分流油の流れを許容するチェッ
ク弁と、各分流側流路端末から各チェック弁を迂回して
フローディバイダ方向へ集流用油を導くバイパス流路と
をパラレルに接続し、両バイパス流路に、フローデイバ
イダと前記チェック弁との間の両分流側流路の圧力差に
よって作動する切換弁を設けてなり、かつ、該切換弁は
圧力の高い方の分流側流路からフローデイバイダへの流
入油量を絞りあるいはブロックするように構成されてい
ることを特徴とするフローデイバイダの負圧防止装置。
1. A flow divider consisting of two pump motors with a flow dividing function and a flow collecting function connected coaxially. One flow path on the primary side of the flow divider and two flow paths on the secondary side of the flow divider. A check valve is installed in the middle of each diversion side flow path to allow the flow of the diversion oil from the flow divider toward the end of each diversion side flow path, and a check valve is installed to bypass each check valve from the end of each diversion side flow path. A switching valve is connected in parallel to a bypass flow path that guides oil for collection toward the flow divider, and is operated by a pressure difference between the flow divider and the check valve on both the diversion side flow paths. , and the switching valve is configured to throttle or block the amount of oil flowing into the flow divider from the branch flow path with higher pressure. Pressure prevention device.
JP648282A 1982-01-18 1982-01-18 Flow divider negative pressure prevention device Expired JPS5912883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP648282A JPS5912883B2 (en) 1982-01-18 1982-01-18 Flow divider negative pressure prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP648282A JPS5912883B2 (en) 1982-01-18 1982-01-18 Flow divider negative pressure prevention device

Publications (2)

Publication Number Publication Date
JPS58124805A JPS58124805A (en) 1983-07-25
JPS5912883B2 true JPS5912883B2 (en) 1984-03-26

Family

ID=11639688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP648282A Expired JPS5912883B2 (en) 1982-01-18 1982-01-18 Flow divider negative pressure prevention device

Country Status (1)

Country Link
JP (1) JPS5912883B2 (en)

Also Published As

Publication number Publication date
JPS58124805A (en) 1983-07-25

Similar Documents

Publication Publication Date Title
US4528892A (en) Hydraulic circuit system for construction machine
US3478647A (en) Circuit for hydraulically operable devices,especially hydraulic dredges
KR0158533B1 (en) Fluid brake device
KR100797315B1 (en) Hydraulic apparatus for controlling complex work mode of travel and front works
JPS5912883B2 (en) Flow divider negative pressure prevention device
JP2004027706A (en) Hydraulic circuit device for construction machinery
SU1716967A3 (en) Hydraulic device with variable-capacity pump
KR20200046500A (en) Hydraulic Valve Assembly For Accelerating And Boosting
JP2799045B2 (en) Hydraulic circuit for crane
JPS6229629A (en) Oil pressure apparatus for construction vehicle
JPH0143162B2 (en)
JPS5830973Y2 (en) Actuator drive circuit
KR870003751Y1 (en) An excavator bucket
JPH0643260Y2 (en) Hydraulic equipment for construction machinery
JPH0128177B2 (en)
JPH11217852A (en) Hydraulic circuit for construction equipment using third hydraulic pump
JPH06167037A (en) Hydraulic circuit for crawler type vehicle
KR950006161A (en) Heavy-duty hydraulics for straight travel
JPS60123629A (en) Hydraulic circuit for hydraulic shovel
JP2696346B2 (en) Excavator control device
JP3072804B2 (en) Vehicle straight-running control circuit
JPS5811236A (en) Hydraulic device for vehicle
JPS6054463B2 (en) Hydraulic circuit of upper swing type hydraulic excavator
KR19990031879A (en) Internal joining device of hydraulic equipment with 2 sets of hydraulic circuit system
JPS6054464B2 (en) Hydraulic circuit of upper swing type hydraulic excavator