JPS59128760A - Manufacture of nonaqueous electrolyte battery - Google Patents

Manufacture of nonaqueous electrolyte battery

Info

Publication number
JPS59128760A
JPS59128760A JP448883A JP448883A JPS59128760A JP S59128760 A JPS59128760 A JP S59128760A JP 448883 A JP448883 A JP 448883A JP 448883 A JP448883 A JP 448883A JP S59128760 A JPS59128760 A JP S59128760A
Authority
JP
Japan
Prior art keywords
lithium
battery
carbon dioxide
atmosphere
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP448883A
Other languages
Japanese (ja)
Inventor
Ryoji Okazaki
良二 岡崎
Hidesuke Oguro
小黒 秀祐
Koichi Sato
公一 佐藤
Hirofumi Oishi
大石 裕文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP448883A priority Critical patent/JPS59128760A/en
Publication of JPS59128760A publication Critical patent/JPS59128760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To secure formation of a protective film on the surface of lithium so as to improve the preservation performance and reduce variation in the preservation performance of a lithium battery by leaving the lithium to stand in an atmosphere of carbon dioxide gas before the lithium is incorporated in the battery. CONSTITUTION:Lithium is left to stand in an atmosphere containing carbon dioxide gas prior to being incorporated in a battery. For instance, in the first process of making a negative electrode, ingot-like lithium is formed into a long ribbon-like shape of 0.25mm. thickness and 20mm. width in dry air of below 4% relative humidity by extrusion molding while the ribbon-like lithium is wound in hoop-like form which is then sealed and stored in a metallic can charged with argon. Next the ribbon-like lithium is punched into disks of 14mm. diameter and 0.25mm. thickness in dry air. Then the thus obtained disk-like lithium 3 is pressed and integrated with a negative current collector net 2 welded to the inner surface of a sealing plate 1. Next this is left to stand in an atmosphere of carbon dioxide gas for a given time before being combined with other parts. After that electrolyte is poured in the battery before it is sealed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウムを負極活物質とし、電解液として有
機溶媒に無機塩を溶解した非水電解液を用い、正極に各
種の酸化物、ハロゲン化物、硫化物など任意の固体状活
物質を用いる非水電解液電池の製造法に関するものであ
る。
Detailed Description of the Invention: Industrial Field of Application The present invention uses lithium as a negative electrode active material, uses a non-aqueous electrolyte in which an inorganic salt is dissolved in an organic solvent as an electrolyte, and uses various oxides and halides as a positive electrode. , relates to a method for manufacturing a non-aqueous electrolyte battery using any solid active material such as sulfide.

2  、、。2.

従来例の構成とその問題点 非水電解液電池には様々な種類があり、正極活物質や電
解液の種類によって異った特性の電池が得られ、一般的
には正極活物質の種類によシミ池系が区分される。正極
活物質には、二酸化マンガン、酸化銅、酸化ビスマス、
酸化鉛、五酸化バナジウム、酸化クロムなどの酸化物フ
ッ化炭素 塩化銅、フッ化ニッケル、フッ化銅などのハ
ロゲン化物、二値化モリブデン、硫化鉄、硫化銅などの
硫化物、さらには上記を複合した複合化合物、クロム酸
塩、タングステン酸塩など固体状正極活物質の種類は枚
挙にいとま、かない。そのうち、実用化されている電池
の代表的なものとして、フッ化炭素/リチウム電池、二
酸化マンガン/リチウム電池が挙げられ、何れも約3v
の電圧が得られる。
Structures of conventional examples and their problems There are various types of non-aqueous electrolyte batteries, and batteries with different characteristics can be obtained depending on the type of positive electrode active material and electrolyte. The Yosimi Pond system is classified. The positive electrode active materials include manganese dioxide, copper oxide, bismuth oxide,
Oxides such as lead oxide, vanadium pentoxide, chromium oxide, carbon fluoride, halides such as copper chloride, nickel fluoride, copper fluoride, sulfides such as binary molybdenum, iron sulfide, copper sulfide, and the above. There are too many types of solid positive electrode active materials, such as composite compounds, chromates, and tungstates. Among these, typical batteries that have been put into practical use include fluorocarbon/lithium batteries and manganese dioxide/lithium batteries, both of which have a power consumption of approximately 3V.
voltage can be obtained.

その他に約1.5■の電圧が得られる酸化銅/リチウム
電池、硫化鉄/リチウム電池も一部で実用化されている
In addition, copper oxide/lithium batteries and iron sulfide/lithium batteries, which can obtain a voltage of about 1.5 μ, are also in practical use.

一方、これら各種の電池系に用いられる電解液も様々で
あるが、一般的にはr−プチロラクトンプロピレンカー
ボネイトの単独溶媒、もしくはこれらと1−2デイメト
キシエタン、ディオキソラン、テトラハイドロフラン、
アセトニトリルなどを混合した溶媒に過塩素酸リチウム
、ホウフッ化リチウムなどの無機塩を溶解したものが用
いられている。これらのリチウム電池のうち、少くとも
現在実用化されている上記の各電池は、高エネルギー密
度であることは勿論、貯蔵性のすぐれた電池であり、在
来の各種水溶液系電池に代り、近年では電子ウォッチ、
電卓、メモリーバックアップなど各種分野の主要な電源
としての地位を占めている。
On the other hand, the electrolytes used in these various battery systems vary, but generally they are a single solvent of r-butyrolactone propylene carbonate, or a combination of these with 1-2 dimethoxyethane, dioxolane, tetrahydrofuran, etc.
Inorganic salts such as lithium perchlorate and lithium fluoroborate are dissolved in a solvent mixed with acetonitrile or the like. Among these lithium batteries, at least the above-mentioned batteries that are currently in practical use have not only high energy density but also excellent storage properties, and have recently been replaced by various conventional aqueous batteries. So electronic watch,
It occupies the position as the main power source for various fields such as calculators and memory backup.

貯蔵性のすぐれたリチウム電池を得るためには多くの要
件を備へていることが必要で、そのうち正極の活物質が
電解液に溶削したシ、化学反応を行わないこと、電解液
自体が長期間にわたり化学的に安定で変質せず、正、負
極活物質の酸化還元作用に対しても安定であることがお
もな条件である。これらの条件を具備した活物質、電解
液を組合せることにより、はじめて上記のような実用に
供し得るリチウム電池が構成できる。上述の条件のうち
、負極活物質のリチウムと電解液との貯蔵中の″化学反
応を抑止するためには、リチウム表面に極く薄い反応阻
止膜が形成されることが必須条件とされており、この保
護膜の無い状態では殆んどすべての非水電解液はリチウ
ムと反応し、リチウムを腐食させるとともに自らは分解
もしくは重合して著しい自己消耗やガス発生による電池
の膨張を生ずる。従って、上記保瞼膜により、電池の貯
蔵中に活性なリチウム表面と電解液との接触がどの程度
の完壁さで断たれているかが貯蔵性を左右する要因であ
る。上記の現在実用化されている電池に於いても、この
要因を確実に満たすための一層進んだ技術を必要として
おり、貯蔵状能に関する品質のバラツキの縮少や、一層
の性能向上を必要としている。即ち、前記の溶媒のうち
、プロピレンカーボネイトやγ−ブチロラクトンはリチ
ウムと接触することにより、比較的容易にリチウム表面
に保護膜を形成する性質を有し、プロピレンカーボネイ
トの場合、炭酸リチウムの薄膜が形成し薄膜が貯蔵中は
負極リチウムの表面を保護し、放電反応が行われ始ると
物理的に破壊されて活性なリチウムと電解液とが接触し
、円滑に電気化学的酸化反応が進行する。しかし上記の
単独溶媒に無iP堪を溶解した電解液は電導度が低く、
粘度も高いので、強負荷放電、低温性能が不十分であり
、多くの場合比較的低沸点、低粘度の溶媒すなわち前に
例示した1−2デイメトキシエタン、ディオキソラン、
テトラハイドロフランなどエーテル系の溶媒やアセトニ
トリルなど比較的低粘度の溶媒を適宜の比率で混合し、
低粘度でより高電導度の電解液を得、強負荷放電特性、
低温特性を確保する方法が採られている。しかし上記の
エーテル系溶媒は、リチウムと接触した場合に、保渉膜
を形成する能力が乏しいばかりか保薄膜の形成が不完全
な場合はすでに形成されている保護膜を破壊しさらに活
性なリチウムを腐食させ、自らも分解又は重合する性質
を有している。従って、混合溶媒に無機塩を溶解させた
電解液を用いる場合、放電性能は向上するり゛、リチウ
ム負待の貯蔵性能に関6 ・ −ジ゛ しては不安定さが付与され、γ−ブチロラクトンやプロ
ピレンカーボネイトによる保護膜形成が十分に行われる
範囲でエーテル系など低粘度溶媒との混合比率を設定す
ることで貯蔵性能を確保することが必要とされる。一般
的にはエーテル系溶媒を容量比で30〜70%混合して
用いており、その配合の設定は貯蔵性、放電性能、コス
ト、製造工程上の適合性など、その都度重視する要求項
目に応じて適宜なバランスを考慮して行われている。し
かしこれらのバランスを考慮した配合に於いても、貯蔵
性能の確保に信頼性が乏しい。これは前記の負極表面の
保護膜の形成に関しての確実性が乏しいことに由来して
いる。この保護膜の形成や破壊に及ぼす要因として、前
記の溶媒の配合比率以外に、溶解させる無機塩の種類、
正負極中及び電解液中の不純物、水分など様々な要因が
複雑に作用を及ぼすために、貯蔵性の良い電池を信頼性
高く製造するための工程管理が非常に困難であり、貯蔵
性の良い均質な電池の製法確立が必要とされている。
In order to obtain a lithium battery with excellent storability, it is necessary to meet many requirements, including the fact that the active material of the positive electrode is melted into the electrolyte, that no chemical reaction occurs, and that the electrolyte itself is The main conditions are that it is chemically stable and does not deteriorate over a long period of time, and that it is also stable against the redox effects of the positive and negative electrode active materials. By combining an active material and an electrolyte that meet these conditions, a lithium battery that can be put to practical use as described above can be constructed. Among the above conditions, in order to suppress the chemical reaction between the lithium of the negative electrode active material and the electrolyte during storage, it is essential that an extremely thin reaction prevention film be formed on the surface of the lithium. Without this protective film, almost all nonaqueous electrolytes react with lithium, corroding the lithium, and decomposing or polymerizing themselves, resulting in significant self-depletion and expansion of the battery due to gas generation.Therefore, The degree to which contact between the active lithium surface and the electrolyte is cut off by the eyelid membrane during battery storage is a factor that determines storage performance. In order to reliably satisfy this factor, even batteries that are currently in use require more advanced technology, reducing quality variations in storage conditions and further improving performance. Among these, propylene carbonate and γ-butyrolactone have the property of forming a protective film on the lithium surface relatively easily when they come into contact with lithium. protects the surface of the negative electrode lithium, and when the discharge reaction begins, it is physically destroyed and the active lithium comes into contact with the electrolyte, allowing the electrochemical oxidation reaction to proceed smoothly.However, the above-mentioned sole solvent The electrolyte solution in which non-IP is dissolved has low conductivity,
Since the viscosity is also high, strong load discharge and low temperature performance are insufficient, and in many cases, solvents with relatively low boiling point and low viscosity, such as 1-2 dimethoxyethane, dioxolane,
Mix ether solvents such as tetrahydrofuran and relatively low viscosity solvents such as acetonitrile in appropriate ratios,
Obtain electrolyte with low viscosity and high conductivity, strong load discharge characteristics,
A method is adopted to ensure low-temperature properties. However, when the above-mentioned ether-based solvents come into contact with lithium, they not only have a poor ability to form a protective film, but if the formation of a thin protective film is incomplete, they may destroy the already formed protective film and further activate the lithium. It has the property of corroding and decomposing or polymerizing itself. Therefore, when using an electrolytic solution in which an inorganic salt is dissolved in a mixed solvent, the discharge performance is improved, but the storage performance of lithium is unstable, and γ- It is necessary to ensure storage performance by setting the mixing ratio with low viscosity solvents such as ethers within a range where the formation of a protective film by butyrolactone or propylene carbonate is sufficient. Generally, ether solvents are mixed at a volume ratio of 30 to 70%, and the composition is determined based on the requirements that are emphasized in each case, such as storage stability, discharge performance, cost, and compatibility with the manufacturing process. This is done with an appropriate balance in mind. However, even in formulations that take these balances into consideration, there is a lack of reliability in ensuring storage performance. This is due to the lack of certainty regarding the formation of the protective film on the surface of the negative electrode. Factors that affect the formation or destruction of this protective film include the type of inorganic salt to be dissolved in addition to the blending ratio of the solvent mentioned above.
Due to the complex effects of various factors such as impurities and moisture in the positive and negative electrodes and in the electrolyte, it is extremely difficult to control the process to reliably manufacture batteries with good storage life. There is a need to establish a method for manufacturing homogeneous batteries.

発明の目的 本発明は、リチウムを負極とする非水電解液電池の貯蔵
性能の向上とバラツキの縮少とを目的とし、そのため、
前述のリチウム表面の保護膜を確実に形成させる手段を
提供するものである。
Purpose of the Invention The purpose of the present invention is to improve the storage performance and reduce variations in non-aqueous electrolyte batteries using lithium as a negative electrode.
This provides a means for reliably forming the above-mentioned protective film on the surface of lithium.

発明の構成 上記目的を達成するため、本発明はリチウムを負極活物
質とする非水電解液電池の製造工程に於いて、リチウム
を電池内に組み込む以前にこのリチウムを炭酸ガス雰囲
気中で放置する工程を設けることを特徴とするものであ
る。
Structure of the Invention In order to achieve the above-mentioned object, the present invention involves, in the manufacturing process of a non-aqueous electrolyte battery using lithium as a negative electrode active material, leaving lithium in a carbon dioxide atmosphere before incorporating it into the battery. It is characterized by providing a process.

リチウム負極は通常、リチウムインゴットを押出し成型
することにより所定の厚みのフープ状に加工し、必要に
応じて圧延したのち、所定の極板形状に打抜き、押し切
りなどの方法で切断加工する工程と、コレクタと接続す
る工程を経て電池内に組み込まれる。負極の構成の形態
は通常の円筒形電池では、長方形に加工したリチウム板
にニッケルネット、エキスバンドメタルなど多孔性の集
電体を圧入したもの、ボタン形電池では封目板の内面の
凹凸に円板状に加工したリチウムを圧着したものが一般
的で、何れもそれらの加工は部品加工工程として、乾燥
雰囲気中で行われ、加工された前記の負極が、正極、セ
パレータ、電池ケース。
Lithium negative electrodes are usually produced by extrusion molding a lithium ingot into a hoop shape of a predetermined thickness, rolling if necessary, and then cutting into a predetermined electrode shape by punching, extrusion, etc. It is incorporated into the battery after a process of connecting it to the collector. In normal cylindrical batteries, the negative electrode is constructed by press-fitting a porous current collector such as nickel net or expanded metal into a rectangular lithium plate, and in button-shaped batteries, the negative electrode is formed by press-fitting a porous current collector such as nickel net or expanded metal into a rectangular lithium plate. Generally, lithium is processed into a disk shape and crimped together, and these processes are performed in a dry atmosphere as part processing steps, and the processed negative electrode is used to create positive electrodes, separators, and battery cases.

電解液など他の電池部品とともに組立て工程に入る。It goes into the assembly process along with other battery parts such as electrolyte.

上記の負極の加工工程に於いては、リチウムの押し出し
成形、圧延、切断、圧着など、リチウムの機械的な加工
により、切断面を含む外表面に物理的な変化が生じてい
る。通常これらの加工や保管はアルゴンなど不活性ガス
雰囲気中や、乾燥空気中で行われる。乾燥雰囲気中に長
時間曝露した場合、表面に炭酸リチウム、酸化リチウム
などから構成される薄膜が形成され、本来のリチウム表
面よりも幾分不活性となるが、上記の機械的な加工を行
う毎に、薄膜が破壊されたシ、新たな活性面が露出する
ことになる。従って、アルゴン雰囲気中で加工、保管を
行う場合、表面は薄膜の形成が殆んどなく比較的活性に
保たれ、乾燥空気中で加工、保管する場合は比較的不活
性な表面になシ易いが、加工工程を経るにつれて活性な
部分と不活性な部分とが偏在することになる。上記の薄
膜は、電池構成後に電解液中のγ−ブチロラクトンやプ
ロピレンカーボネイトとの反応により形成される保護膜
と同類の保護膜であり、電池貯蔵中の負極の自己消耗や
電解液の変質防止を幾分、助成する作用を有するが、そ
の薄膜の形成度合に部分的な強弱があり、しかも、乾燥
雰囲気中で仮に均一膜が形成しても、その形成層は極く
薄く、それのみで負極の消耗を抑止するのは不可能であ
あ。
In the above negative electrode processing steps, physical changes occur on the outer surface including the cut surface due to mechanical processing of lithium, such as extrusion molding, rolling, cutting, and crimping of lithium. Normally, these processing and storage processes are carried out in an inert gas atmosphere such as argon or in dry air. When exposed to a dry atmosphere for a long time, a thin film composed of lithium carbonate, lithium oxide, etc. is formed on the surface, making it somewhat more inactive than the original lithium surface, but after the mechanical processing described above, When the thin film is destroyed, a new active surface is exposed. Therefore, when processed and stored in an argon atmosphere, the surface remains relatively active with almost no thin film formation, and when processed and stored in dry air, the surface becomes relatively inert. However, as the material goes through the processing steps, active parts and inactive parts become unevenly distributed. The above thin film is similar to the protective film formed by reaction with γ-butyrolactone and propylene carbonate in the electrolyte after battery construction, and prevents self-depletion of the negative electrode and deterioration of the electrolyte during battery storage. Although it has a somewhat supportive effect, the degree of formation of the thin film varies depending on the area, and even if a uniform film is formed in a dry atmosphere, the formed layer is extremely thin, and it alone is insufficient for the negative electrode. It's impossible to suppress the wear and tear.

本発明は、電池の組立てに先立ち、リチウム負極の加工
工程に於て、負極反応面の全面に炭酸リチウムの保護膜
を確実に形成させるため、リチウム□表面を炭酸ガス雰
囲気中に曝す工程を設けたものである。これにより、電
池内で形成される保護膜が不十分であっても、前記の加
工工程で形成された保護膜により負極の自己消耗を抑止
することができる。通常、空気中には約0.03%程度
の炭酸ガスが存在し、部会の生活環境のうちの汚れた空
□気中でも、せいぜいO,a%未満の炭酸ガスが存在1
0 −5、 するにすぎない。本発明は、後述する実験の結果より負
極の保護膜として有効な炭酸リチウム膜を形成できる炭
酸ガス濃度は少くとも1%以上好ましくはts 17 
%以上が必要で、他の成分は乾燥空気アルゴンなど不活
性気体の何れでも良いことを見出したものである。
The present invention includes a step of exposing the lithium surface to a carbon dioxide atmosphere in order to ensure that a protective film of lithium carbonate is formed over the entire surface of the negative electrode reaction surface in the lithium negative electrode processing process prior to battery assembly. It is something that Thereby, even if the protective film formed within the battery is insufficient, self-depletion of the negative electrode can be suppressed by the protective film formed in the above processing step. Normally, there is about 0.03% carbon dioxide gas in the air, and even in the dirty air of the living environment of the subcommittee, at most less than 0.0% carbon dioxide gas exists1.
0-5, only. According to the results of experiments described below, the carbon dioxide concentration at which a lithium carbonate film effective as a negative electrode protective film can be formed is preferably at least 1% or more.
% or more, and the other components may be any inert gas such as dry air or argon.

実施例の説明 次に、本発明による効果を実験的に確認した電池と、そ
の製造法について説明する。
DESCRIPTION OF EXAMPLES Next, a battery for which the effects of the present invention have been experimentally confirmed and a manufacturing method thereof will be described.

図は扁平形電池の断面を示したもので、図中1はステン
レススチール製の封口板、2は封口板1の内面に電気溶
接されたニッケルネット製の負極集電ネット、3は負極
集電ネット2に圧着された円板状の金属リチウム、4及
び4′はポリプロピレン不織布からなるセパレータ、5
は7ツ化炭素にアセチレンブラックとスチレンブタジェ
ンラバー製の結着剤とを混合して成形した正極、6はス
テンレススチール製の正極ケース、7は正極ケース6の
内面に電気溶榛されたチタン製の中空円板状の正極集電
体で正極5と密接している。8はボリプロピレン製ガス
ケットで、正極ケース6の開口部の折シまげによシ密封
を果している。電池内には後述する各種配合の電解液を
密封している。
The figure shows a cross section of a flat battery. In the figure, 1 is a stainless steel sealing plate, 2 is a negative electrode current collector net made of nickel net electrically welded to the inner surface of the sealing plate 1, and 3 is a negative electrode current collector. Disc-shaped metallic lithium is crimped onto the net 2, 4 and 4' are separators made of polypropylene nonwoven fabric, 5
6 is a positive electrode formed by mixing carbon heptide with acetylene black and a binder made of styrene butadiene rubber, 6 is a stainless steel positive electrode case, and 7 is titanium electrolyzed on the inner surface of the positive electrode case 6. The positive electrode current collector is a hollow disc-shaped positive electrode made by the company, and is in close contact with the positive electrode 5. Reference numeral 8 denotes a polypropylene gasket, which serves to seal the opening of the positive electrode case 6 by bending the opening. Inside the battery, electrolytes of various compositions, which will be described later, are sealed.

電池の加工工程のうち、負極側の加工工程としてまずイ
ンゴット状のリチウムを押出し成型により相対湿度4%
以下の乾燥空気中で厚さ0.25Wrrn。
In the battery processing process, the negative electrode side is first processed by extrusion molding of ingot-shaped lithium at a relative humidity of 4%.
Thickness 0.25Wrrn in dry air below.

幅2ofiの長尺リボン状に加工しながらフープ状に巻
き取ったものを、アルゴンを封入した金属缶内に密封保
管する。次に乾燥空気中でこれを開缶して、同雰囲気中
で直径14喘、厚さ0.25mの円板状に押し切り加工
し、次いで封口板1の内面に溶接された負極集電ネット
2に円板状のリチウムを圧着して一体化する。次いでこ
れを後述の所定濃度の炭酸ガス雰囲気中に入れ、所定時
間放置する。その後、炭酸ガス雰囲気中より取り出し、
仲の部品とともに組合せ、電解液を注入した後封口して
密封する。この電池の外形は直径2Ofl1m。
The ribbon was processed into a long ribbon with a width of 2 of and wound into a hoop, and then stored in a metal can sealed with argon. Next, this can was opened in dry air, and in the same atmosphere, it was pressed into a disk shape with a diameter of 14 mm and a thickness of 0.25 m, and then a negative electrode current collector net 2 was welded to the inner surface of the sealing plate 1. A disc-shaped lithium is crimped onto the lithium and integrated. Next, this is placed in a carbon dioxide atmosphere of a predetermined concentration, which will be described later, and left for a predetermined period of time. Then, take it out from the carbon dioxide atmosphere,
It is assembled with other parts, and after injecting electrolyte, it is sealed. The external shape of this battery is 2Of1m in diameter.

総高2.0mである。次に上記の製法で、負極の炭酸ガ
ス雰囲気中での処理条件と電解液の配合とを変へて各種
電池を試作し、高温での貯蔵試験を実施した結果を記述
する。第1表に各電池の試作条件を示す。
The total height is 2.0m. Next, we will describe the results of various battery prototypes manufactured using the above manufacturing method by changing the treatment conditions for the negative electrode in a carbon dioxide atmosphere and the composition of the electrolyte, and storage tests at high temperatures. Table 1 shows the trial production conditions for each battery.

第1表  3 なおPCはグロピレンカーボネイ)、DMEはディメト
キシエタンを示す。
Table 1 3 PC stands for glopylene carbonate) and DME stands for dimethoxyethane.

第2表は第1表の電池を60Cで100日保存したのち
、20C下で30にΩの定抵抗放電を行った場合の製造
直後品に対する放電容量の維持率(n=10の平均値、
及び最大値、最小値)を示したものである。
Table 2 shows the discharge capacity maintenance rate (average value of n = 10,
, maximum value, minimum value).

以    下    余    白 4 第2表 15 第2表に見られるように、単に乾燥空気(相対1度4チ
以下)で負極を処理した電池A、Pはいづれも貯蔵によ
る容量劣化が著しく大きく、容量バラツキも大きい。一
方、炭酸ガスを各種の比率で含有する燥報空気、アルゴ
ン及び炭酸ガス単独の各雰囲気で負極を処理したものは
、一様に容量劣化及びバラツキが少なく、炭酸ガス含有
隼゛の多い雰囲気で処理したもの程、単時間の処理で効
果があられれ、電解液の溶質にホウフッ化リチウム、過
塩素酸リチウムを用いた場合のいづれに於いても同様の
効果が得られている。
Margin below 4 Table 2 15 As seen in Table 2, both batteries A and P, whose negative electrodes were simply treated with dry air (relatively less than 4 inches), had a significant capacity deterioration due to storage, and their capacity decreased. The variation is also large. On the other hand, negative electrodes treated in dry air containing various proportions of carbon dioxide gas, argon gas, and carbon dioxide gas alone exhibit uniformly less capacity deterioration and variation, and in an atmosphere with a large amount of carbon dioxide gas. The more treated, the more effective the treatment is for a short period of time, and similar effects were obtained in both cases where lithium fluoroborate and lithium perchlorate were used as the solute in the electrolytic solution.

発明の効果 これらの結果は前に述べたように、リチウム表面に炭酸
リチウムの保護膜を形成することにより貯蔵中の負極の
自己消耗及び電解液の変質が効果的に抑制され、電池の
貯蔵性能が本発明の実施により効果的に改良さ九るもの
である。
Effects of the Invention As mentioned above, these results show that by forming a protective film of lithium carbonate on the lithium surface, self-depletion of the negative electrode and deterioration of the electrolyte during storage are effectively suppressed, and the storage performance of the battery is improved. This can be effectively improved by implementing the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の効果を確認するため実施例で組立てた扁平
形リチウム電池の断面図である。 1・・・・・・封口板、3・・・・・・リチウム負極、
4.4’・・・・・セバレ〜り、6・・・・・・正極、
6・・・・・・電池ケース、8・・・・・・絶縁ガスケ
ット。
The figure is a sectional view of a flat lithium battery assembled in an example to confirm the effects of the present invention. 1... Sealing plate, 3... Lithium negative electrode,
4.4'...Severe~ri, 6...Positive electrode,
6...Battery case, 8...Insulating gasket.

Claims (2)

【特許請求の範囲】[Claims] (1)  リチウムを負極活物質とする非水電解液電池
の製造法であって、リチウムを電池内に組み込むに先立
って炭酸ガスを含有する雰囲気中に放置する工程を設け
たことを特徴とする非水電解液電池の製造法。
(1) A method for manufacturing a non-aqueous electrolyte battery using lithium as a negative electrode active material, characterized by including a step of leaving the battery in an atmosphere containing carbon dioxide gas prior to incorporating lithium into the battery. Manufacturing method for non-aqueous electrolyte batteries.
(2)炭酸ガス雰囲気が乾燥空気又はアルゴンと炭酸ガ
スの比率が重量比で99=1〜o:1ooで混合された
雰囲気である特許請求の範囲第1項記載の非水電解液電
池の製造法。
(2) Manufacturing the nonaqueous electrolyte battery according to claim 1, wherein the carbon dioxide atmosphere is dry air or an atmosphere in which argon and carbon dioxide are mixed at a weight ratio of 99=1 to o:1oo. Law.
JP448883A 1983-01-14 1983-01-14 Manufacture of nonaqueous electrolyte battery Pending JPS59128760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP448883A JPS59128760A (en) 1983-01-14 1983-01-14 Manufacture of nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP448883A JPS59128760A (en) 1983-01-14 1983-01-14 Manufacture of nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS59128760A true JPS59128760A (en) 1984-07-24

Family

ID=11585471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP448883A Pending JPS59128760A (en) 1983-01-14 1983-01-14 Manufacture of nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS59128760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333522A1 (en) * 2002-02-01 2003-08-06 Batrec Industrie AG Method of and apparatus for storage and handling of objects comprising alkali metals, such as alkali metal containing batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333522A1 (en) * 2002-02-01 2003-08-06 Batrec Industrie AG Method of and apparatus for storage and handling of objects comprising alkali metals, such as alkali metal containing batteries
US7833646B2 (en) 2002-02-01 2010-11-16 Batrec Industrie Ag Method of and apparatus for dismantling and storage of objects comprising alkali metals, such as alkali metal containing batteries

Similar Documents

Publication Publication Date Title
US5626988A (en) Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US4658498A (en) Process for producing rechargeable electrochemical device
JP3152305B2 (en) Polymer solid electrolyte
US4687716A (en) Organic electrolyte cell
JP2021180064A (en) Lithium primary battery
JPS61288374A (en) Organic electrolyte cell
JP3396990B2 (en) Organic electrolyte secondary battery
JP3537165B2 (en) Organic electrolyte battery
JPS59128760A (en) Manufacture of nonaqueous electrolyte battery
WO2017081834A1 (en) Nonaqueous electrolyte battery and member for nonaqueous electrolyte battery
JPH07122261A (en) Electrochemical element
CN115280574A (en) Dual-electrolyte method for improving energy density of metal-based battery
JPS6164082A (en) Nonaqueous electrolyte battery
JPH04162363A (en) Nonaqueous electrolyte battery
JP2812943B2 (en) Organic electrolyte battery
JPH0462764A (en) Nonaqueous electrolyte cell
JPS61294756A (en) Organic electrolyte battery
JP2686072B2 (en) Non-aqueous electrolyte battery
JPS60170172A (en) Rechargeable electrochemical device
JPH08185887A (en) Totally solid lithium battery
JPH0578590A (en) Ionically conductive polymer compound
JPH01151158A (en) Manufacture of positive electrode for nonaqueous solvent cell
JPS62139260A (en) Manufacture of positive active material for organic electrolyte battery
JPS59171462A (en) Nonaqueous electrolyte battery
JP2552438B2 (en) Non-aqueous electrolyte battery