JPS59127884A - Picture conversion element - Google Patents

Picture conversion element

Info

Publication number
JPS59127884A
JPS59127884A JP58003682A JP368283A JPS59127884A JP S59127884 A JPS59127884 A JP S59127884A JP 58003682 A JP58003682 A JP 58003682A JP 368283 A JP368283 A JP 368283A JP S59127884 A JPS59127884 A JP S59127884A
Authority
JP
Japan
Prior art keywords
light
conversion element
coherent
incoherent
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58003682A
Other languages
Japanese (ja)
Other versions
JPH0211124B2 (en
Inventor
Yoshiya Takeda
悦矢 武田
Shinji Fujiwara
慎司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58003682A priority Critical patent/JPS59127884A/en
Publication of JPS59127884A publication Critical patent/JPS59127884A/en
Publication of JPH0211124B2 publication Critical patent/JPH0211124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/141Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the semiconductor device sensitive to radiation being without a potential-jump barrier or surface barrier
    • H01L31/143Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the semiconductor device sensitive to radiation being without a potential-jump barrier or surface barrier the light source being a semiconductor device with at least one potential-jump barrier or surface barrier, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Abstract

PURPOSE:To write informations by incoherent visible rays and read them by coherent infrared rays, to increase the kinds of light sources and to improve sensitivity and resolution by holding a photoconductive body with a semiconductor made of a zinc blende type crystal by a pair of electrodes through an insulator. CONSTITUTION:An insulating film 32 in 7mum is formed on Cd0.3Zn0.7Te 31 as a photoconductive body in 500mum thickness prepared through a high-pressure melting method, and transparent electrodes (In2O3.Sn) 33 are formed on both surfaces through a reactive sputtering method. Voltage of 2kV is applied between the transparent electrodes 33, 33, and informations are written by incoherent beams (c) from a tungsten lamp. Coherent beams (d) from a laser in a 1.06mum wavelength are used, and projected to a picture conversion element through a polarizer 36. Only components modulated by the conversion element are changed into coherent beams (e) converted through the polarizer 36 and an analyzer 37 positioned at the position of a cross Nicol. Cd0.3Zn0.7Te has sensitivity extending over the whole visible regions, and visible rays can be used for writing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、通常のインコヒーレント光画像を蓄積し、コ
ヒーレントな光画像に変換するための画像変換系子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an image conversion system for storing and converting ordinary incoherent optical images into coherent optical images.

従来例の構成とその問題点 コヒーレント光による2次元情報の並列処理は、コンピ
ュータの時系列処理の限界を打破し、リアルタイムのパ
ターン認識等が可能になる。しかし通常の画像は、白色
のインコヒーレント光によるものが多(、このインコヒ
ーレントな光画像をコヒーレントな光画像に変換する素
子が必要でみる。
Conventional configurations and their problems Parallel processing of two-dimensional information using coherent light overcomes the limitations of time-series processing by computers and enables real-time pattern recognition. However, most ordinary images are made of white incoherent light (and an element is required to convert this incoherent light image into a coherent light image).

この画像変換系子は、大きくわけて2つの8i能が必要
である。1つは、インコヒーレント光の画像書き込み−
こ対してそれに応じた電荷分布等のパターンを作り、蓄
積する機能である。光導電体がこの機能を果たしている
場合が多い。もう1つはこのインコヒーレント光のパタ
ーンに対応し°Cコヒーレント光に空124+変調を与
える機能である0この機能はポッケルス効果、強誘電体
のドメーンー液晶の配向等を利用し′Cいる。
This image conversion system requires two 8i functions. One is image writing using incoherent light.
In response to this, it is a function to create and accumulate a pattern such as a charge distribution according to the charge distribution. A photoconductor often performs this function. The other is a function that corresponds to the pattern of this incoherent light and gives 124+ modulation to the coherent light. This function utilizes the Pockels effect, the domain of ferroelectric material, the alignment of liquid crystal, etc.

従来の画像変換素子について第1図を用いて説明する。A conventional image conversion element will be explained using FIG. 1.

第1図(4)は液晶と光導電膜とを組みあわせた画像変
換素子の断面図で、インコヒーレント光(イ)は図の右
側から入射し、ファイ)<−オプテイクス(1)と透明
型f4i (2)を通って光導[膜(3)で重荷パター
ンに変換される。インコヒーレント光(イ)は先組止層
(4)で止まりそれ以1左側に侵入しない、透明亀14
1(2) (8) rlに一定の電圧を印加していると
、光導電膜(3)の重荷パターンに応じて液晶(7)に
分配されCいる電比ダ変化し、液晶(7)の内已向パタ
ーンに変鋏さ口る。図の左側からコヒーレント光(ロ)
を入射すると、コヒーレント光(ロ)は、ガラス(9)
及び透明電極(8)を通り、コヒーレント光(ロ)の偏
光角を変化させる液晶(7)を通過し、誘電体ミラー(
5)によって反射され、再びガラス(9)から戻ってい
く。このようにして右側から入射したインコヒーレント
光(イ)の強弱は、コヒーレント光(ロ)の偏光角の空
間分布に変換される。(6)は成品配向フィルムである
Figure 1 (4) is a cross-sectional view of an image conversion element that combines a liquid crystal and a photoconductive film. The light is guided through f4i (2) and converted into a heavy pattern by the membrane (3). The incoherent light (a) stops at the first stopper layer (4) and does not enter the left side after that, transparent turtle 14
1 (2) (8) When a constant voltage is applied to rl, the electric ratio of C distributed to the liquid crystal (7) changes according to the load pattern of the photoconductive film (3), and the liquid crystal (7) It has a strange scissors in the inner Umimukai pattern. Coherent light (b) from the left side of the figure
When incident on the glass (9), the coherent light (b)
and a transparent electrode (8), passes through a liquid crystal (7) that changes the polarization angle of the coherent light (b), and passes through a dielectric mirror (
5) and returns from the glass (9) again. In this way, the strength of the incoherent light (a) incident from the right side is converted into a spatial distribution of polarization angles of the coherent light (b). (6) is a finished oriented film.

この第1図囚に示す素子は、低電圧で動作するが、応答
時向が遅いのが欠点である。
Although the device shown in FIG. 1 operates at low voltage, it has a drawback of slow response time.

第1図の)はBi125i02o (以下BSOと称す
)aつを用いた画像変換素子の断面図である。このBS
O01は、光導電効果とポッケルス効果とをあわせもつ
材料である。このBSO(12に絶縁層(至)を介して
取付けられた透明vM、極(1−905間に一定電圧を
印加し、紫外から青色のインコヒーレント光(イ)のパ
ターンを照射すると、入側光量に応じて絶縁層(至)と
BSOllaとの電圧分配が空間的に変化する。(至)
は紫外及び青色を通過し赤色を反射させる干渉フィルタ
である。ポッケルス効果は、印加電圧により屈折率の異
方性が出てくる一次電気光学効果であるから、偏光子−
で直線偏光されたコヒーレント光(ロ)が通過すると印
加電圧によって倫光成分が変化するわ(ブである。変化
成分だけが検光子aηを通過し、コヒーレント光(ロ)
のパターンに変換される。B50(2)は赤色の光は透
過するから、読み出しの光は赤色のコヒーレント光を用
いるのが艮い。このB50(6)を用いた画像変換素子
は、感度と分解能に問題がある。
1) is a sectional view of an image conversion element using Bi125i02o (hereinafter referred to as BSO). This BS
O01 is a material that has both a photoconductive effect and a Pockels effect. When a constant voltage is applied between the transparent vM and poles (1-905) attached to this BSO (12) through an insulating layer (to), and a pattern of incoherent light from ultraviolet to blue (A) is irradiated, the entrance side The voltage distribution between the insulating layer (to) and the BSOlla changes spatially depending on the amount of light. (to)
is an interference filter that passes ultraviolet and blue light and reflects red light. The Pockels effect is a first-order electro-optic effect in which anisotropy of the refractive index appears depending on the applied voltage.
When linearly polarized coherent light (b) passes through, the optical component changes depending on the applied voltage (b).Only the changed component passes through the analyzer aη, and the coherent light (b)
is converted into a pattern of Since B50(2) allows red light to pass through, it is best to use red coherent light as the read light. The image conversion element using this B50(6) has problems in sensitivity and resolution.

また、このポッケルス効果は、せん亜鉛鉱型の結晶にお
いても観察される。セん亜鉛鉱型の結晶で光導電性をも
つ半導体としては、I−4族化合物半導体がある。しか
も画像変換素子とし′Cは、解像力を必要とするので比
抵抗大なるものが良い。
This Pockels effect is also observed in zincite-type crystals. As a semiconductor having photoconductivity and having a zincite type crystal, there is a group I-4 compound semiconductor. Furthermore, since the image conversion element 'C requires high resolution, it is preferable that it has a large specific resistance.

例えば、ZnSは高抵抗で光導電性をもつ■−■族化合
物であるので、I EEE%ED18(1979)P1
769に示されCいるように両(財)変換素子として用
いられる。その構造を第1図(C)に示す。このZn5
(ホ)は、Ga As単結晶ぐυ上に成長させたもので
ある。そしCZnS四とに絶縁層(2)、透明電極輪を
形成し°Cいる。 GaAs単結晶t41Jは低抵抗で
あり、一方の電極も兼b’rいる11 インコヒーレン
ト光(4)は干渉フィルタ囮を通り、ZnSσしで吸収
されるパターンを形成する。コヒーレント光(0はZn
Sに)とGa As単結晶(ハ)との界面で反射し、グ
ラントムソンプリズム(財)で入射光と分離される。こ
のZn5(イ)は解佇度は充分であるが、B50Qaと
ll−11様にインコヒーレントな紫外光による書き込
みであり、感度が悪いという欠点をもつCいる。
For example, since ZnS is a ■-■ group compound with high resistance and photoconductivity, it is
As shown in 769 and C, it is used as a double conversion element. Its structure is shown in FIG. 1(C). This Zn5
(E) is grown on a GaAs single crystal. Then, an insulating layer (2) and a transparent electrode ring were formed on the CZnS layer and heated at °C. The GaAs single crystal t41J has a low resistance, and one of the electrodes also serves as a b'r11.The incoherent light (4) passes through the interference filter decoy and forms a pattern that is absorbed by the ZnSσ. Coherent light (0 is Zn
The light is reflected at the interface between the GaAs single crystal (S) and the GaAs single crystal (C), and is separated from the incident light by a Glan-Thompson prism. This Zn5(A) has a sufficient degree of resolution, but like B50Qa and 11-11, writing is performed using incoherent ultraviolet light, and C has the drawback of poor sensitivity.

発明の目的 本発明は上記従来の欠点を解消するもので、インコヒー
レントな可視光で引き込み、コヒーレントな赤外光で読
み出すことができ、光源の種類を多くでき、感度及び解
像度の大なる画像変換素子を提倶することを目的とする
Purpose of the Invention The present invention solves the above-mentioned drawbacks of the conventional technology, and is capable of capturing images using incoherent visible light and reading them using coherent infrared light, increasing the number of types of light sources, and achieving image conversion with high sensitivity and resolution. The purpose is to provide devices.

発明の構成 上記目的を達するため、本発明の画像変換素子は、(C
dxZn1−xTe )1−y(In2Te3)y (
0SXSI、Q <、 y≦0.1)4を有する光導電
体と、この光導電体を挾む一対の電極と、これら一対の
電極と前記光導電体との間の少なくとも一方に介装され
た絶縁体とを備えた構成である。
Structure of the Invention In order to achieve the above object, the image conversion element of the present invention comprises (C
dxZn1-xTe )1-y(In2Te3)y (
0SXSI, Q <, y≦0.1) 4, a pair of electrodes sandwiching the photoconductor, and a photoconductor interposed between at least one of the pair of electrodes and the photoconductor. The structure is equipped with an insulator and an insulator.

すなわち本発明の画像変換素子は、せん亜鉛鉱型結晶で
、可視光領域ですぐれた光導電性をもつ半導体である(
 Cdx Zn1−x Te )t−y’(In2 T
e5) Y〔0≦X≦1、Opy≦0.1〕を主成分と
するものである。第2図は様々な材料の光導電感度を示
す。
That is, the image conversion element of the present invention is a semiconductor having a zincite type crystal and excellent photoconductivity in the visible light region (
Cdx Zn1-x Te )ty'(In2 T
e5) The main component is Y [0≦X≦1, Opy≦0.1]. Figure 2 shows the photoconductive sensitivity of various materials.

(a)はZnS 、 (b)はBSo 、 (C)はZ
nTe s (d)はCdTeのmuである。(e)は
Zn5e −Cdo、2Zn6..1 ’l”eの感度
を示す。第2図に示すよう磨こCd Zn Teと禁止
帯幅の広いZn Se等の窓材料とのへテロ接合を形成
すると、その窓材料の禁止帯幅とCdx Zn1−x 
Teの禁止帯幅との間の波長領域で感度をもつ。このへ
テロ接合Q形成により、高感度化の他に低暗電流化が図
れる。
(a) is ZnS, (b) is BSo, (C) is Z
nTe s (d) is mu of CdTe. (e) is Zn5e-Cdo, 2Zn6. .. 1 'l''e. As shown in Figure 2, when a heterojunction is formed between polished Cd Zn Te and a window material such as Zn Se with a wide forbidden band width, the forbidden band width of the window material and Cdx Zn1-x
It has sensitivity in the wavelength region between the forbidden band width of Te. By forming this heterojunction Q, not only high sensitivity but also low dark current can be achieved.

さら1こIn2 Te3との固溶化によって、低暗電流
化が図れると共に、光に対する応答か速くなる。
Furthermore, by forming a solid solution with In2Te3, the dark current can be reduced and the response to light becomes faster.

Cdx Zn1−x Teと(にdx Zn1−x T
e )+−y (In2 Te5)yとでは0≦y≦0
1の範囲では禁止帯幅は大きく変わらないので、CCd
x Zn4−x Te )1−y (In2 Tes 
) yの光感度はCdx Zn1−x Tcと同1様に
可視光領域にある。
Cdx Zn1-x Te and (dx Zn1-x T
e ) + - y (In2 Te5) y and 0≦y≦0
Since the prohibited band width does not change significantly in the range of 1, CCd
x Zn4-x Te )1-y (In2 Tes
) The photosensitivity of y is in the visible light region like Cdx Zn1-x Tc.

なお、y>0.1になると暗電流が増加し、インコヒー
レントの低照度でのパターン形成が困難となり好ましく
ない。本発明ではこの点に着目し、第1図(B)のBS
O02、mt図(C)のZnS OQの代りに、(Cd
xZnl−xTe)+−y(Ing Te5)yを主成
分とする、単層又はヘテロ接合構造の材料を用いること
によつ°C上記材料の問題点を解決したものである。
Note that when y>0.1, dark current increases, making it difficult to form an incoherent pattern at low illuminance, which is not preferable. In the present invention, paying attention to this point, the BS shown in FIG. 1(B)
O02, instead of ZnS OQ in mt diagram (C), (Cd
The problems of the above materials are solved by using a material with a single layer or heterojunction structure, which has xZnl-xTe)+-y(Ing Te5)y as its main component.

本発明の画像変り素子は、通常のインコヒーレントな可
視光で仏、き込み、コヒーレントな赤外光で読み出すこ
とかできる。このことは、次の点で有利である。
The image altering element of the present invention can be read out using normal incoherent visible light and coherent infrared light. This is advantageous in the following respects.

■ 通常、情報処理する対象物は我々の目に見える形が
多い。すなわち可視光で読み込むのに都合の良い対象が
多い。
■ Usually, the objects that we process information are in the form that we can see with our eyes. In other words, there are many objects that are convenient to read with visible light.

■ 書き込みの光源は可視光であれば良く、特殊な光源
を必要としない。
■ The light source for writing only needs to be visible light, and no special light source is required.

■ 読み出しにコヒーレントな赤外光を用いるというこ
とは、半導体レーザをはじめとする多くのレーザが使え
有利である。しかも、画俄処理するための光は、可視光
である必然性はなく、最終の処理結果のみを2次高調波
変換器、赤外線フィルム、赤外テレビカメラ等で可視光
化すれば良い。
■ Using coherent infrared light for readout is advantageous because many lasers including semiconductor lasers can be used. Moreover, the light for image processing does not necessarily have to be visible light, and only the final processing result may be converted into visible light using a second harmonic converter, an infrared film, an infrared television camera, or the like.

本発明に用いた光導電体の一例であるZn5e −(C
dx Zn1−x Te )1−y (ln2 Tes
 ) yは、商品名1ニュービコン、の撮像管ターゲッ
トとして使用され、高解佇化が可能であることは実証さ
れている。撮像管や固体撮像板として用いる場合は、一
方の電極は全面電極とし、他方の電極では電子ビーム、
走査回路での時系列でスイッチングしている。この光導
電体を本発明に用いる場合、光導電体の一方の主面側は
絶縁物として電流としては流れないようにし、光導電体
に電荷パターンを形成する。
Zn5e-(C
dx Zn1-x Te )1-y (ln2 Tes
) y is used as an image pickup tube target for the product name 1 Newbicon, and it has been demonstrated that it is possible to achieve high resolution. When used as an image pickup tube or solid-state image pickup plate, one electrode should be a full-surface electrode, and the other electrode should be used for electron beams,
Switching is performed in time series in the scanning circuit. When this photoconductor is used in the present invention, one main surface side of the photoconductor is made an insulator so that no current flows, and a charge pattern is formed on the photoconductor.

したがって絶縁物の働きは電荷パターン保持の為不可決
である。光で書き込んだ電荷パターンは再ヒ光によつ゛
C並列的に読み出されるので、撮像管、固体撮像板の場
合とは動作が異なる。
Therefore, the function of the insulator is unreliable in order to retain the charge pattern. Since the charge pattern written with light is read out in parallel by re-lighting, the operation is different from that of an image pickup tube or a solid-state image pickup plate.

実施例の説明 以下、本発明の共犀的な実施例を1而に基づいて説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, a syncretic embodiment of the present invention will be described based on one example.

〔実施例■〕[Example ■]

高圧浴融法によつ゛C作成したCd6.s Znq、7
 Teを(110)面でへき開し、平板をとり出す。研
摩及びエツチングをして、1.5anX8cn+の白檀
で厚さ500μmの大きさにし、両面は多少のテーパを
つけた。第8図(a)のように、光導電体であるCdO
,3Zn6.7 Te C3T)の上に商品名Pary
 Ieneの絶縁膜(イ)を7μm形成した後、反応性
スパッタ法により透明!)C441(In20s・8口
)(財)を両面に形成する。透明WL極(至)(至)h
に2KVの電圧を印加し、タングステンランプのインコ
ヒーレント光(ハ)で書き込んだ。すなわちCdo、3
 Zno、7 Te lυにインコヒーレント光(ハ)
に対応した電在パターンを形成した。
Cd6 prepared by high pressure bath melting method. s Znq, 7
Cleave the Te on the (110) plane and take out the flat plate. It was polished and etched to a size of 500 μm thick with 1.5 an x 8 cn+ sandalwood, and both sides were slightly tapered. As shown in FIG. 8(a), CdO which is a photoconductor
, 3Zn6.7 Te C3T) on top of the product name Pary
After forming a 7 μm insulating film (A) of Iene, it was made transparent by reactive sputtering! ) C441 (In20s, 8 mouths) (goods) is formed on both sides. Transparent WL pole (to) (to) h
A voltage of 2 KV was applied to the disk, and writing was performed using incoherent light (c) from a tungsten lamp. i.e. Cdo, 3
Zno, 7 Te lυ incoherent light (c)
An electrical distribution pattern corresponding to this was formed.

次に第8図(b)のように、波長1.06μmのレーザ
のコヒーレント光に)を用い、偏光子−を通して画像変
換素子に入射させる。ここで変調された成分のみが偏光
子(至)とクロスニコルの位置にある検光子−を通して
変換されたコヒーレント光(ホ)となる。第4図に(a
)で示したようにCd6.s Zno、yTeは、可視
全域に感度があり、第2図に(b)で示すBSOの感度
が500μm以下しかないのと大きく異なる。下記第1
表に示すように、BsoとCd Te * Zn Te
はポッケルス係数1こ大差はない。
Next, as shown in FIG. 8(b), coherent light from a laser with a wavelength of 1.06 μm is used and made incident on the image conversion element through a polarizer. Only the modulated component here becomes coherent light (E) converted through a polarizer (E) and an analyzer located at a crossed Nicols position. In Figure 4 (a
) as shown in Cd6. sZno and yTe have sensitivity in the entire visible range, which is significantly different from BSO shown in FIG. 2(b), which has a sensitivity of only 500 μm or less. 1st below
As shown in the table, Bso and CdTe*ZnTe
There is not much difference in Pockels coefficient of 1.

第1表 インコヒーレント光からコヒーレント光に変換される効
率は大差がないことになるが、本実施例では、書き込み
に可視光が使用できることが明らかである。書き込んだ
画佇を消去するには、透明電極(至)同志を短絡すれば
良い。
Although there is not much difference in the efficiency of conversion from incoherent light to coherent light in Table 1, it is clear that visible light can be used for writing in this example. To erase the written image, it is sufficient to short-circuit the transparent electrodes (to each other).

〔実施例置〕[Example]

帛5図に示すように、〔実施例1〕で用いたと回様なC
do、、Zno、7 TeC1σのインコヒーレント光
の入射側の面に、ZnSemを2oooi蒸着によって
形成する。
As shown in Figure 5, the C
ZnSem is formed on the surface of the incoherent light incident side of do,,Zno,7TeC1σ by 2oooi vapor deposition.

他の工程は〔実施例I〕と同様である。このようにする
と、第4図に(シ)で示すように、可視光領域で高fi
 liとなる。第4図(b) (c) (d)はZn5
e −Cd(、,3Zn(1,7Teの感度を示し、そ
れぞれZn Seの厚さが異なる。 Zn:Se(至)
が窓効果の役割を果たし、Cd6.3 Zno、7 T
e 01の禁止帯幅よ0エネルギーの大きい波長の光、
短波長側の光によって生成されたキャリアの再結合を防
ぐためである。本実施例でタングステンランプを用い°
C書き込みを行なうと、〔実施例I〕に比べて1〜2桁
光量が少なくてすむ。
Other steps are the same as in [Example I]. In this way, as shown in Fig. 4 (C), high fi
It becomes li. Figure 4 (b) (c) (d) is Zn5
e -Cd(,,3Zn(1,7Te sensitivity, each with different ZnSe thickness. Zn:Se(to)
plays the role of window effect, Cd6.3 Zno, 7 T
Light with a wavelength larger than the 0 energy bandgap of e 01,
This is to prevent recombination of carriers generated by light on the short wavelength side. In this example, a tungsten lamp was used.
When C writing is performed, the amount of light is reduced by one to two orders of magnitude compared to [Embodiment I].

〔実施例1〕 第6図に示すように、〔実施例■〕のCdo、3Zno
、7 Te @の代り1こ、(Cd6.3 Zno、y
 Te ) o、vr (In2Ts4 )。、O5(
イ)を光導電体とした。他の構成は〔実施例1〕と同様
である。このようにすると、〔実施倒置〕よt)も解像
度が向上し、消去時間が速(なる。下記第2表に従来例
と比較して示す。
[Example 1] As shown in FIG. 6, Cdo, 3Zno of [Example ■]
, 7 Te instead of @, (Cd6.3 Zno, y
Te ) o, vr (In2Ts4). , O5(
A) was used as a photoconductor. The other configurations are the same as [Embodiment 1]. By doing this, the resolution is improved and the erasing time becomes faster even when the inversion is performed.Table 2 below shows a comparison with the conventional example.

第2表 このように、In2 Te3と固溶化することによって
、固有抵抗が大きくなると共に、正孔を袖獲するトラッ
プが経、少しでいるものと思われる。
Table 2 As shown in Table 2, by forming a solid solution with In2Te3, the specific resistance increases and it is thought that there are only a few traps that capture holes.

〔実施例■〕[Example ■]

〔実施例I〕〜〔実施伝厘〕の場合は、機械的強度の関
係で素子をあまり薄くできrよい。この問題を解決する
ために、画像変換を行なう部分を薄膜で形成した例を示
す。
In the case of [Example I] to [Practical example], the element can be made very thin in terms of mechanical strength. In order to solve this problem, an example will be shown in which the part that performs image conversion is formed of a thin film.

気相法によって成長させたZn5e単結晶をZn溶液中
で熱処理して低抵抗化した後、約1aII×ionの面
積〔111〕面を使用し、厚さ0.5j!11とする。
After a Zn5e single crystal grown by the vapor phase method is heat-treated in a Zn solution to lower its resistance, a [111] plane with an area of about 1aII×ion is used and a thickness of 0.5j! 11.

これを重クロム酸硫酸でエツチングし、基板−とする、
第7図に示すように、この基板の片面に透明電極(I 
n20s ) 1511をスパッタ法で形成した後、基
板の他の面に、近接法によってcdTelI21を10
 pms (ZnTe)o、n (In2 Tes )
o、ot@を20μm、基板温邸100〜+300°C
で形成する(第7図(a))。これを真空中で550℃
、2時間熱処理すると、主としてZnCdの相互拡散に
誹って、CdTen2と(ZnTe)0.H(In2 
Te3 )o、o+ f531とが(CdxZn1−x
 Te )+−y (In2 Tes ) yの層−と
なる。この上にガラス−をスパッタ法で形成し、続いて
反応性スパッタ法により透明電極(In203) @を
形成する(第7図(b))。この画像変換素子は、透明
電極−に正の電圧を印加すると、基板−は低抵抗である
ので、電界は(CdxZn1−xTe)1−y(In3
 Tes )yの層−とガラス−と1こかかる。この結
果、画像変換層が薄くなり、〔実施倒置〕の場合よりも
解像度は良くなった。
This is etched with dichromate sulfuric acid and used as a substrate.
As shown in FIG. 7, a transparent electrode (I
n20s) 1511 by the sputtering method, 10 cdTelI21 was deposited on the other surface of the substrate by the proximity method.
pms (ZnTe)o,n (In2Tes)
o,ot@20μm, substrate temperature 100~+300°C
(Fig. 7(a)). This was heated to 550℃ in a vacuum.
, after heat treatment for 2 hours, CdTen2 and (ZnTe)0. H(In2
Te3) o, o+ f531 is (CdxZn1-x
Te)+-y (In2Tes)y layer-. Glass is formed on this by a sputtering method, and then a transparent electrode (In203) is formed by a reactive sputtering method (FIG. 7(b)). In this image conversion element, when a positive voltage is applied to the transparent electrode, the electric field changes to (CdxZn1-xTe)1-y(In3
It takes one layer of Tes)y and one glass. As a result, the image conversion layer became thinner, and the resolution was better than in the case of [practical inversion].

〔実施例Y〕[Example Y]

ブリッジマン(Bridgeman )法により形成し
たCd Te単結晶のウェーハー厚さ0,5fl、面積
8一×8国の(111)面を使用し、一方の面には、ガ
ラス−をスパッタ法で形成し、他方の曲には、In金属
を蒸着し、Zn金属とともに真空封入し、熱処理を行な
う。このような熱処理をすると、Cd Te単結晶にZ
n、Inの拡散がおこり、(CdxZn1−x Te 
)t−y (In2 Te3 ) y−となる。最後に
ガラス1上に透明電極(財)を作成し、他方の面のIn
金鳥をそのまま電極組とする(第8図)。この場合、岩
き込み光も読み出し光も、第8図の左側から入射し、コ
ヒーレント光(へ)は! $jA簗で反射し、(Cdx
 Zn1−x Te)1−y (In2 Tea )y
 Elの層を2回通過する。この場合、2倍の変調をう
け、〔実施例・舊〕の印加電圧のほぼ半分の電圧で、同
様のコヒーレント信号が得られる。
A CdTe single crystal wafer formed by the Bridgeman method was used with a thickness of 0.5 fl and an area of 81 x 8 (111) planes, and glass was formed on one surface by the sputtering method. , In the other track, In metal is vapor-deposited, vacuum-sealed together with Zn metal, and heat treated. When such heat treatment is performed, Z is added to the CdTe single crystal.
Diffusion of n and In occurs, and (CdxZn1-x Te
) ty (In2 Te3 ) y-. Finally, create a transparent electrode (material) on the glass 1, and
Use the golden bird as it is as an electrode assembly (Figure 8). In this case, both the rock entry light and the readout light enter from the left side of Figure 8, and the coherent light is! Reflected by the $jA gauze, (Cdx
Zn1-xTe)1-y (In2Tea)y
Pass through the layer of El twice. In this case, a similar coherent signal can be obtained with twice the modulation and with a voltage that is approximately half of the applied voltage in [Embodiment 2].

なお上記実施例では、Zn Se −(Cdx Znt
−xTe)1−y(In2 ’re、 )yのへテロ接
合を主として説明したが、このZn5eの代りにGaN
等の璽−v族化合物ZnO等の冨−■族化合物、5n0
2、CdO等の酸化物を用いても良い。
Note that in the above example, Zn Se −(Cdx Znt
-xTe)1-y(In2're, )y heterojunction was mainly explained, but instead of this Zn5e, GaN
5n0, etc., 5n0, etc.
2. Oxides such as CdO may also be used.

また本発明の素子はインコヒーレント光−コヒーレント
光の餐換累子として説明したが、こねに限う−r 、イ
ンコヒーレント、コヒーレントを問わず可視光パターン
を赤外光パターンとする波長変換素子としCも使用でき
る。
Furthermore, although the device of the present invention has been described as an incoherent light-coherent light converter, it is limited to a wavelength conversion device that converts a visible light pattern into an infrared light pattern, regardless of whether it is incoherent or coherent. C can also be used.

発明の詳細 な説明したように本発明によれば、光導電性及びボッケ
ル効果の大きい(Cdx Zn1−x Te )t−y
 (I n2Te3 )y (0:x≦1.0≦y≦0
1)を用いたので、書き込みのインコヒーレント光は可
視光、読み出しのコヒーレント光は赤外光を使用するこ
とができ、光源の種類が豊富で選択が自由となると共I
こ、光導電の波長範囲が広く高m度となOlまた暗比抵
抗が大であるので解像度が大きい。さらに、応答特性が
良いので、消去等の高速画像処理に有利である。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, as described in detail, (Cdx Zn1-x Te )ty with high photoconductivity and Bockel effect
(I n2Te3 )y (0:x≦1.0≦y≦0
1), the incoherent light for writing can be visible light, and the coherent light for reading can be infrared light, and there is a wide variety of light sources and freedom of choice.
The photoconductive wavelength range is wide and the resolution is high because of the high m degree and the high dark specific resistance. Furthermore, since the response characteristics are good, it is advantageous for high-speed image processing such as erasing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)〜(C)はそれぞれ従来の’g’、1 仰
変換素子の断面図、第2図は光導電感度の説明図、第8
図は第1図の実施例におりる画像変換素子の断面図、第
4図はZn5e −Cdo、3 Zn6.7 Teの光
導m感度の説明図、第5図〜第8図はそれぞれ第2〜第
5の実施例における画像変換素子の断面図である。 0])・・・Cd+1.3 Zn(、,7Te sに)
・・・絶縁膜、(至)・・・透明電極、脅1− Zn 
Se s H−(Cdo、3Zno、y Te )0.
95 (ln2Te3)o、os、6参・・・基板、翰
)@・・・透明電極、95カ・・・CdTe s(財)
・・・(Zn Te )o、all (In2 Te3
 )o、ot 、1541− (CdxZn1−x T
e)t−y(In2 Te5)y s  M ++ガラ
ス、−・・・ガラス、m ・g極、Ell −(Cdx
Zn1−x Te)+−y (In2 Te3 )y 
s N−透明電極。 代理人 森本義弘 第1図 1(C) 2 7β 、3202/ 4 第3図 Ctl) 第2図 438− (ト) 第4図 特開昭59−127884 (7) 第7図 、11)           、め 第1図 641/ 、43 χ打″
Figures 1 (A) to (C) are cross-sectional views of conventional 'g' and 1 elevation conversion elements, Figure 2 is an explanatory diagram of photoconductive sensitivity, and Figure 8
The figure is a cross-sectional view of the image conversion element according to the embodiment of FIG. 1, FIG. - It is a sectional view of the image conversion element in a 5th example. 0])...Cd+1.3 Zn (,,7Te s)
...Insulating film, (to)...Transparent electrode, Threat 1-Zn
SesH-(Cdo, 3Zno, yTe)0.
95 (ln2Te3) o, os, 6...substrate, wire)@...transparent electrode, 95ka...CdTes (foundation)
...(Zn Te )o, all (In2 Te3
) o, ot, 1541- (CdxZn1-x T
e) ty(In2Te5)ys M++ glass, -... glass, m ・g pole, Ell -(Cdx
Zn1-x Te)+-y (In2 Te3)y
s N-transparent electrode. Agent Yoshihiro Morimoto Figure 1 1(C) 2 7β , 3202/4 Figure 3 Ctl) Figure 2 438- (G) Figure 4 JP-A-59-127884 (7) Figure 7, 11) , Me Fig. 1 641/, 43 χ stroke''

Claims (1)

【特許請求の範囲】 1、  (CdxZn+−xTe)+−y(In2Te
3)VLO>XSI、Q (、−y <−Q、1〕層を
胸する光導電1体と、この光導電体を挟む一対の電称と
、こオ′シら一対の電極と曲記光鴇−捧との簡の少な(
とも一方番こ介装されtコ杷縁体とを煽えた画像変換系
子。 2、光導電体1ま、(CdX Zn1−x Te )+
−y (ln2 Tea)y(,0;、!≦1.0,4
ySOt )mと、この胸よりも禁止帯幅の人なる半導
体層とのへテロ接合力1らなる構成とした特許請求の範
囲第1項記載の1illll像及換素子。
[Claims] 1. (CdxZn+-xTe)+-y(In2Te
3) VLO > XSI, Q (, -y <-Q, 1) A photoconductor that covers the layer, a pair of electrical contacts that sandwich this photoconductor, and a pair of electrodes and a musical notation. A small number of letters with light (
On the other hand, it was an image conversion system that was interposed and was able to stir up the t-co-loquan body. 2. Photoconductor 1, (CdX Zn1-x Te )+
-y (ln2 Tea)y(,0;,!≦1.0,4
ySOt)m and a semiconductor layer having a bandgap width wider than the chest, and a heterojunction force of 1 is formed.
JP58003682A 1983-01-12 1983-01-12 Picture conversion element Granted JPS59127884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58003682A JPS59127884A (en) 1983-01-12 1983-01-12 Picture conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003682A JPS59127884A (en) 1983-01-12 1983-01-12 Picture conversion element

Publications (2)

Publication Number Publication Date
JPS59127884A true JPS59127884A (en) 1984-07-23
JPH0211124B2 JPH0211124B2 (en) 1990-03-13

Family

ID=11564168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003682A Granted JPS59127884A (en) 1983-01-12 1983-01-12 Picture conversion element

Country Status (1)

Country Link
JP (1) JPS59127884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789500A (en) * 1985-03-28 1988-12-06 Futaba Denshi Kogyo Kabushiki Kaisha Optical control element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789500A (en) * 1985-03-28 1988-12-06 Futaba Denshi Kogyo Kabushiki Kaisha Optical control element

Also Published As

Publication number Publication date
JPH0211124B2 (en) 1990-03-13

Similar Documents

Publication Publication Date Title
US4655554A (en) Spatial light modulator having a capacitively coupled photoconductor
US4114991A (en) Visible-to-infrared converter light valve
US4842376A (en) Double-schottky diode liquid crystal light valve
JPS59210677A (en) Photodetecting element using josephson junction
US6025950A (en) Monolithic all-semiconductor optically addressed spatial light modulator based on low-photoconductive semiconductors
Miller Novel analog self-electrooptic-effect devices
US4881110A (en) Double-Schottky diode liquid crystal light valve
JP2503091B2 (en) Superconducting light guide function element
US4973136A (en) Reflective matrix mirror visible to infrared converter light valve
US5547705A (en) Nonlinear optical device and method of manufacturing same
Knight Interface devices and memory materials
JPS59127884A (en) Picture conversion element
Hebbron et al. Development of gallium arsenide-based spatial light modulators
US3554818A (en) Indium antimonide infrared detector and process for making the same
US5085503A (en) Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
USH840H (en) Single-Schottky diode liquid crystal light valve and method
JPH01179124A (en) Optical space modulating element
Salamov et al. Incoherent-to-coherent IR image converter on the basis of GaAs and Bi12SiO20 crystals
JP2759477B2 (en) Electrically erasable optical image element
JP2645664B2 (en) Thin-film optical imaging device
Mitkova et al. Influence of an electrical field on optical recording in chalco-halide glasses
Karim Electro-Optical and Acousto-Optical Devices
JP3006749B2 (en) Spatial light modulator
Zhuang et al. Fabrication and performance of CdSe/CdS/ZnS photoconductor for liquid-crystal light valve
Warde et al. Image Processing Operations Achievable with the Microchannel Spatial Light Modulator