JP2645664B2 - Thin-film optical imaging device - Google Patents
Thin-film optical imaging deviceInfo
- Publication number
- JP2645664B2 JP2645664B2 JP1097473A JP9747389A JP2645664B2 JP 2645664 B2 JP2645664 B2 JP 2645664B2 JP 1097473 A JP1097473 A JP 1097473A JP 9747389 A JP9747389 A JP 9747389A JP 2645664 B2 JP2645664 B2 JP 2645664B2
- Authority
- JP
- Japan
- Prior art keywords
- dark
- single crystal
- crystal plate
- low
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】 (発明の技術分野) 本発明は、シレネート型結晶構造を有する結晶の光伝
導性、電気光学効果を利用してインコヒーレント画像か
らコヒーレント画像への変換、空間周波数フィルタリン
グ、光論理演算等を行う光画像素子に関するものであ
る。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to the conversion of an incoherent image into a coherent image using the photoconductivity and electro-optic effect of a crystal having a silenate type crystal structure, spatial frequency filtering, The present invention relates to an optical image element for performing an optical logic operation or the like.
(従来技術) 例えば、第1図に示すように、光伝導効果と電気光学
効果と高暗抵抗率と併せもつBi12MO20(M=Si,Ge,Ti)
等のシレネート型結晶構造を有する単結晶板1と、その
少なくとも一方の側面に設けられた絶縁層2と、単結晶
板1と絶縁層2に電界を加えるためにそれらの側面に設
けられた透明電極3から構成される素子が従来より知ら
れている。この素子は光画像の書き込み、読み出し、消
去等を行うことができ、例えばインコヒーレント光の画
像をコヒーレント光の画像に変換したり、空間周波数フ
ィルタリング、光論理演算等に使用される。(Prior Art) For example, as shown in FIG. 1, Bi 12 MO 20 (M = Si, Ge, Ti) having both photoconductive effect, electro-optical effect and high dark resistivity
Etc., a single crystal plate 1 having a silenate type crystal structure, an insulating layer 2 provided on at least one side thereof, and a transparent film provided on those side surfaces for applying an electric field to the single crystal plate 1 and the insulating layer 2. An element composed of the electrode 3 has been conventionally known. This element can perform writing, reading, erasing, and the like of an optical image, and is used for, for example, converting an incoherent light image to a coherent light image, spatial frequency filtering, optical logic operation, and the like.
この素子の書き込みと読み出しの原理は以下のような
ものである。The principle of writing and reading of this element is as follows.
まず、電源4により透明電極3に電圧を印加すると、
暗状態では単結晶板1及び絶縁層2が共に高抵抗である
ため、コンデンサの直列接続の原理で絶縁層2と単結晶
板1の静電容量に応じて電圧が分割される。この状態に
おいて、青色光の像を単結晶板1に結像させると、単結
晶板1は光伝導効果をもっているため、光の強度に応じ
て励起された電子と正孔が入射光と反平行(平行でかつ
逆向き)の電界で分離されて、同図(a)の対称型素子
においては単結晶板1と絶縁膜2の界面(1)近傍に正
電荷分布と界面(2)近傍に負電荷分布を像に対応して
形成し、同図(b)の非対称型素子においては界面
(1)近傍に正電荷分布だけを像に対応して形成する。
即ち、単結晶板1内に像に対応した電位分布が書き込ま
れたことになる。First, when a voltage is applied to the transparent electrode 3 by the power supply 4,
In the dark state, since both the single crystal plate 1 and the insulating layer 2 have high resistance, the voltage is divided according to the capacitance of the insulating layer 2 and the single crystal plate 1 based on the principle of series connection of capacitors. When an image of blue light is formed on the single crystal plate 1 in this state, the single crystal plate 1 has a photoconductive effect, so that electrons and holes excited according to the light intensity are antiparallel to the incident light. In the symmetrical device shown in FIG. 2A, the positive charge distribution and the vicinity of the interface (2) are close to the interface (1) between the single crystal plate 1 and the insulating film 2 in the symmetrical device of FIG. A negative charge distribution is formed corresponding to the image, and only the positive charge distribution is formed corresponding to the image in the vicinity of the interface (1) in the asymmetric device of FIG.
That is, the potential distribution corresponding to the image is written in the single crystal plate 1.
この書き込まれた画像を読み出すためには光伝導効果
に寄与しない赤色の光を用い、単結晶板1の電気光学効
果を利用する。即ち、単結晶板1は電気光学効果を有し
ているため、単結晶板1内の電位分布は屈折率分布に変
換される。従って、偏光子5を用いて直線偏光の赤色光
を単結晶板1に入射し、検光子6によって検出した光は
単結晶板1内の屈折率分布に対応した光強度を持つこと
になり画像が再生される。画像の入力をインコヒーレン
ト光で行い、再生をレーザ光のようなコヒーレント光で
行えばインコヒーレント像からコヒーレント像への変換
が実時間で行える。To read the written image, red light that does not contribute to the photoconductive effect is used, and the electro-optic effect of the single crystal plate 1 is used. That is, since the single crystal plate 1 has an electro-optic effect, the potential distribution in the single crystal plate 1 is converted into a refractive index distribution. Therefore, the linearly polarized red light is incident on the single crystal plate 1 using the polarizer 5, and the light detected by the analyzer 6 has a light intensity corresponding to the refractive index distribution in the single crystal plate 1. Is played. If an image is input using incoherent light and reproduction is performed using coherent light such as laser light, conversion from an incoherent image to a coherent image can be performed in real time.
しかし、読み出し光としてコヒーレント光を用いる場
合には、単結晶板1の入射側の面と出射側の面の間で起
こる多重反射で干渉縞が発生して読み出し像の画質を劣
化させる。第2図はこの干渉縞を除去するための従来例
による光画像素子の構成図であり、単結晶板1の側面に
テーパ角を付加して構成したものである。読み出し光の
光軸と投影面との交点を原点Oとし、直接透過像(0次
像)と単結晶板1の入射側の面及び出射側の面でそれぞ
れN回反射した像(N次像)の投影面上での位置を原点
Oからの距離hNで表すとhNは、 hN=L・tan[〔arcsin{n・sin((2N+1) ・δ)}〕−δ] …(1) となる。但し、nは単結晶板1の屈折率、δはテーパ
角、Lは単結晶板1から投影面までの距離であり、単結
晶板1の中心厚みd<<Lが成り立つものとする。However, when coherent light is used as the reading light, interference fringes occur due to multiple reflections occurring between the incident side surface and the outgoing side surface of the single crystal plate 1, thereby deteriorating the image quality of the read image. FIG. 2 is a configuration diagram of an optical image element according to a conventional example for removing the interference fringes, which is configured by adding a taper angle to the side surface of the single crystal plate 1. An intersection point between the optical axis of the readout light and the projection plane is defined as an origin O, and a direct transmission image (0-order image) and an image (N-order image) reflected N times on the incident side surface and the exit side surface of the single crystal plate 1, respectively. h n Expressing position on the projection surface at a distance h n from the origin O of) is, h n = L · tan [[arcsin {n · sin ((2N + 1) · δ)} ] - [delta]] ... ( 1) Here, n is the refractive index of the single crystal plate 1, δ is the taper angle, L is the distance from the single crystal plate 1 to the projection plane, and it is assumed that the center thickness d << L of the single crystal plate 1 is satisfied.
単結晶板1の有効径をD、原点0からの直接透過像
(0次像)の距離をh0、1次像の距離をh1とそれぞれす
ると h1−h0>D ……(2) ならば、多重反射像は直接透過像と重ならないため干渉
縞は生じない。例えば、n=2.55(Bi12SiO20)、D=3
5mm、L=f=1,000mm(レンズの焦点距離)のときにお
けるテーパ角δは、式(1)及び式(2)より δ>0.38゜ ……(3) となる。従って、単結晶板1の中心厚みdを一般的な30
0μmとすると、最も薄い部分は200μm、最も厚い部分
は400μmとなる。The effective diameter of the single crystal plate 1 D, and the distance of the distance h 0, 1 primary image direct transmission image from the origin 0 (0 primary image), respectively and h 1 h 1 -h 0> D ...... (2 ), The multiple reflection image does not directly overlap the transmission image, so that no interference fringes occur. For example, n = 2.55 (Bi 12 SiO 20 ), D = 3
The taper angle δ when 5 mm and L = f = 1,000 mm (focal length of the lens) is as follows from Expressions (1) and (2): δ> 0.38 ゜ (3) Accordingly, the central thickness d of the single crystal plate 1 is set to a general value of 30.
If it is 0 μm, the thinnest part is 200 μm and the thickest part is 400 μm.
(発明が解決しようとする問題点) このように、コヒーレント光を読み出し光に用いる場
合には、従来の素子では単結晶板1にテーパ角を付加す
るため結晶の厚さが素子面内で異なる。従って、単結晶
板1に分配される電圧もまた素子面内で異なる。素子の
解像度は、単結晶板1と絶縁層2の界面近傍に書き込み
像に対応して形成された電荷分布に直接左右されるので
はなく、この電荷分布が単結晶板1内に形成する電位分
布によって決まる。従って、単結晶板1の薄い部分では
電荷分布と比較して厚さと垂直な方向への電位分布の拡
がりが小さいので解像度が良く、逆に厚い部分では電位
分布の拡がりが大きくなり解像度が悪いというように解
像度が素子面内で不均一になるという問題点があった。
また、画像書き込みの感度は単結晶板1に分配される電
圧に依存するため結晶厚さの不均一が原因となって書き
込み感度も不均一になるという問題点があった。(Problems to be Solved by the Invention) As described above, when coherent light is used for readout light, the thickness of the crystal differs in the plane of the element because a taper angle is added to the single crystal plate 1 in the conventional element. . Therefore, the voltage distributed to the single crystal plate 1 also differs in the element plane. The resolution of the element does not depend directly on the charge distribution formed corresponding to the written image in the vicinity of the interface between the single crystal plate 1 and the insulating layer 2. Determined by distribution. Therefore, in the thin portion of the single crystal plate 1, the spread of the potential distribution in the direction perpendicular to the thickness is small compared to the charge distribution, so that the resolution is good. On the contrary, in the thick portion, the spread of the potential distribution is large and the resolution is poor. As described above, there is a problem that the resolution becomes non-uniform in the element surface.
Further, since the sensitivity of image writing depends on the voltage distributed to the single crystal plate 1, there is a problem that the writing sensitivity becomes non-uniform due to the non-uniform crystal thickness.
さらに、上述の説明から明らかなように、素子の解像
度向上の点からは、単結晶板1の厚さを薄くすることが
望ましいが、素子作成及び取扱等に必要な物理的強度に
制限されてしまい従来の単結晶板1の厚さは、100μm
以下にすることが困難であった。Further, as is clear from the above description, it is desirable to reduce the thickness of the single crystal plate 1 from the viewpoint of improving the resolution of the element, but the physical strength required for element preparation and handling is limited. The thickness of the conventional single crystal plate 1 is 100 μm.
It was difficult to:
また、書き込んだ画像を印加電圧操作のみで消去でき
る方が素子を利用する際に周辺光学系を簡素化できるた
め望ましいが、従来の素子では電圧操作と同時に一様な
青色光を照射しなれば消去することができなかった。In addition, it is desirable that the written image can be erased only by applying the applied voltage, because the peripheral optical system can be simplified when using the element. Could not be erased.
以上のように、従来の光画像素子は、解像度、書き込
み感度及び消去の点で問題があった。As described above, the conventional optical image element has problems in resolution, writing sensitivity, and erasing.
本発明は、上述した従来技術の問題点に鑑みなされた
もので、画像書き込み感度の面内均一性及び解像度に優
れ、かつ印加電圧操作のみで消去が可能な薄膜型光画像
素子を提供することを目的とする。The present invention has been made in view of the above-described problems of the related art, and provides a thin-film optical image element that has excellent in-plane uniformity and resolution of image writing sensitivity and can be erased only by applying an applied voltage. With the goal.
(問題点を解決するための手段) この目的を達成するために、本発明は、シレネート型
結晶構造を有する単結晶板の光伝導効果と電気光学効果
とを用いて入射する光画像の書き込みなどを行う光画像
素子において、 Bi12MO20(但し、M=Si,Ge,Ti)が無添加の状態で光
伝導効果が起こっている状態での抵抗率と同等もしくは
それ以下の暗抵抗率を有するように該Bi20MO20(但し、
M=Si,Ge,Ti)に5価元素を添加した結晶で構成され、
かつテーパ状の形状を有する低暗抵抗単結晶板と、該低
暗抵抗単結晶板の入射側に配置され、前記低暗抵抗単結
晶板と同種の結晶構造を有し、かつ結晶成長で格子整合
がとれる高暗抵抗率で均一な厚さの高暗抵抗層と、該高
暗抵抗層の他端側に設けられた絶縁層と、前記低暗抵抗
単結晶板と前記高暗抵抗層とに電圧を印加するための透
明電極とを具備した構成を有している。(Means for Solving the Problems) In order to achieve this object, the present invention provides a method for writing an incident optical image using the photoconductive effect and the electro-optical effect of a single crystal plate having a silenate type crystal structure. In the optical imaging device, the dark resistivity is equal to or less than the resistivity in the state where the photoconductive effect occurs without Bi 12 MO 20 (where M = Si, Ge, Ti). Bi 20 MO 20 (provided that
M = Si, Ge, Ti) composed of a crystal obtained by adding a pentavalent element,
And a low-dark-resistance single-crystal plate having a tapered shape, disposed on the incident side of the low-dark-resistance single-crystal plate, having the same crystal structure as the low-dark-resistance single-crystal plate, and having a lattice formed by crystal growth. A high dark resistance layer having a uniform thickness and a high dark resistivity capable of matching, an insulating layer provided on the other end side of the high dark resistance layer, the low dark resistance single crystal plate and the high dark resistance layer, And a transparent electrode for applying a voltage to the substrate.
以下本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
(発明の原理) まず、本発明の原理について説明する。本発明で用い
る薄膜型光画像素子は、同一出願人により先に特許出願
(特願平1−41616号)した低暗抵抗単結晶板と高暗抵
抗層とで形成された構造であり、その構造を詳細に説明
する。なお、以下の説明では第1図の従来例と同一構成
部分には同一番号を付して説明の重複を省く。(Principle of the Invention) First, the principle of the present invention will be described. The thin-film optical image element used in the present invention has a structure formed of a low-dark-resistance single crystal plate and a high-dark-resistance layer, which were previously applied for a patent by the same applicant (Japanese Patent Application No. 1-441616). The structure will be described in detail. In the following description, the same components as those of the conventional example shown in FIG.
第3図は本発明に用いる薄膜型光画像素子の構造図で
あり、P添加で暗抵抗率を大幅に小さくしたシレネート
型結晶構造を有する低暗抵抗単結晶板7の入射側に低暗
抵抗単結晶板7と格子整合がとれかつ光伝導効果と電気
光学効果と高暗抵抗率を併せもつエピタキシャル成長さ
れた高暗抵抗層8を設けた構成になっている。FIG. 3 is a structural view of the thin film type optical image element used in the present invention. The low dark resistance single crystal plate 7 having a silenate type crystal structure in which the dark resistivity is significantly reduced by adding P is provided on the incident side of the low dark resistance single crystal plate. It has a structure in which a high dark resistance layer 8 which is lattice-matched to the single crystal plate 7 and has a photoconductive effect, an electro-optical effect, and a high dark resistivity is provided.
すなわち、従来の単結晶板1は高暗抵抗率であったも
のを、本発明では低暗抵抗率の低暗抵抗単結晶板7に
し、かつ新たに高暗抵抗層8を配置した構成にしたもの
である。なお、少ない露光でコントラストの良い画像を
得る手段として、同一出願人が単結晶板1の入射側に光
伝導効果の大なるエピタキシャル成長層を配置した構成
を既に特許出願している(特願昭63−208022号)。この
画像素子(特開昭63−208022号)と本発明との相違点
は、単結晶板が高暗抵抗率か、または低暗抵抗率である
かである。本発明に用いる低暗抵抗単結晶板7は、入射
光が低暗抵抗単結晶板7に入り光伝導効果が起こってい
る状態での抵抗率と同等もしくはそれ以下の抵抗率とな
るように構成されているのに対し、従来の画像素子(特
開昭63−208022号)の単結晶板は、高暗抵抗率の材料で
構成されている。That is, the conventional single crystal plate 1 has a high dark resistivity, but in the present invention, a low dark resistance single crystal plate 7 having a low dark resistivity and a high dark resistance layer 8 are newly provided. Things. As a means for obtaining an image with good contrast with a small exposure, the same applicant has already applied for a patent by applying a configuration in which an epitaxially grown layer having a large photoconductive effect is arranged on the incident side of the single crystal plate 1 (Japanese Patent Application No. 63-163). -208022). The difference between this image element (JP-A-63-208022) and the present invention is whether the single crystal plate has a high dark resistivity or a low dark resistivity. The low dark resistance single crystal plate 7 used in the present invention is configured so that the incident light enters the low dark resistance single crystal plate 7 and has a resistivity equal to or less than the resistivity when the photoconductive effect occurs. On the other hand, the single crystal plate of the conventional image element (Japanese Patent Application Laid-Open No. 63-208022) is made of a material having a high dark resistivity.
本発明では、低暗抵抗率の低暗抵抗単結晶板7と高暗
抵抗率の高暗抵抗層8とを組み合わせた構成にすること
により、透明電極3間に電源4で印加された電圧は低暗
抵抗単結晶板7の抵抗率が絶縁層2及び高暗抵抗層8よ
りも遥かに小さいため、殆ど絶縁層2と高暗抵抗層8と
で分割される。即ち、低暗抵抗単結晶板7は読み出し用
赤色光に対しては透明な電極として作用し、また高暗抵
抗層8は従来例の単結晶板1と同等の作用を行うことに
なる。従って、本発明に用いる薄膜型光画像素子では、
素子に必要な物理的強度は低暗抵抗単結晶板7を厚くし
て確保し、高暗抵抗層8を厚さ100μm以下の薄膜とす
ることで解像度を改善できる。In the present invention, the voltage applied by the power supply 4 between the transparent electrodes 3 is reduced by combining the low dark resistance single crystal plate 7 having a low dark resistivity and the high dark resistance layer 8 having a high dark resistivity. Since the resistivity of the low-dark-resistance single crystal plate 7 is much smaller than that of the insulating layer 2 and the high-dark-resistance layer 8, it is almost divided into the insulating layer 2 and the high-dark-resistance layer 8. That is, the low-dark-resistance single crystal plate 7 functions as a transparent electrode with respect to the read red light, and the high-dark-resistance layer 8 performs the same operation as the conventional single-crystal plate 1. Therefore, in the thin-film optical image element used in the present invention,
The physical strength required for the device can be ensured by increasing the thickness of the low-dark-resistance single-crystal plate 7 and increasing the resolution by improving the high-dark-resistance layer 8 to a thin film having a thickness of 100 μm or less.
まず、低暗抵抗単結晶板7を設けた本発明が印加電圧
だけで消去できる理由について説明する。First, the reason why the present invention provided with the low dark resistance single crystal plate 7 can be erased only by the applied voltage will be described.
低暗抵抗単結晶板7と高暗抵抗層8は同種の結晶構造
を有する結晶で構成されるので電気伝導に関わるバンド
構造も同種の構造をもつ。よって、電源4を取り去り透
明電極3の間を短絡すると、像に対応して高暗抵抗層8
と絶縁層2の界面近傍に形成された正電荷分布が作る電
界の方向が像書き込み時の電界とは逆であるため、自由
坦体濃度の大なる低暗抵抗単結晶板7から高暗抵抗層8
へ電子が容易に注入されてこの正電荷分布を中性化し一
様な電位分布の状態に戻すことができる。即ち、書き込
んだ画像を消去する場合に従来例の素子のように一様な
青色光を照射することなく印加電圧操作だけで目的を達
することができる。Since the low-dark-resistance single crystal plate 7 and the high-dark-resistance layer 8 are composed of crystals having the same kind of crystal structure, the band structure related to electric conduction also has the same kind of structure. Therefore, when the power supply 4 is removed and the transparent electrodes 3 are short-circuited, the high dark resistance layer 8 corresponding to the image is formed.
The direction of the electric field generated by the positive charge distribution formed near the interface between the substrate and the insulating layer 2 is opposite to the electric field at the time of image writing. Layer 8
Electrons are easily injected into the positive charge distribution to neutralize the positive charge distribution and return to a uniform potential distribution state. That is, when erasing the written image, the purpose can be achieved only by operating the applied voltage without irradiating uniform blue light unlike the element of the conventional example.
次に、低暗抵抗単結晶7を含めた本発明の薄膜型光画
像素子の作製方法について説明する。Next, a method of manufacturing the thin-film optical image element of the present invention including the low dark resistance single crystal 7 will be described.
従来では、本発明の低暗抵抗単結晶板7として用いる
ことができるような低暗抵抗率を有するシレネート型構
造の結晶は知られていなかった。そこで、本願発明者が
暗抵抗率を下げる方法を種々検討した結果、P(リン)
を少量添加することでシレネート型結晶の暗抵抗率が大
幅に低下することがわかった。第4図は本発明による低
暗抵抗単結晶板7の結晶中のP濃度と暗抵抗率との特性
図であり、例として、原料にいずれも99.9999%純度のB
i2O3,BiPO4およびSiO2を用い、るつぼに50mmφの白金を
用い、チョクラルスキー法で育成したP添加Bi12SiO20
単結晶における実験結果である。Conventionally, a crystal having a low dark resistivity and a silenate type structure that can be used as the low dark resistance single crystal plate 7 of the present invention has not been known. The inventors of the present invention have studied various methods for lowering the dark resistivity, and found that P (phosphorus)
It was found that the addition of a small amount significantly reduced the dark resistivity of the silenate type crystal. FIG. 4 is a characteristic diagram showing the relationship between the P concentration in the crystal of the low-dark-resistance single crystal plate 7 and the dark resistivity according to the present invention.
P-added Bi 12 SiO 20 grown by Czochralski method using 50 mmφ platinum in a crucible using i 2 O 3 , BiPO 4 and SiO 2
It is an experimental result in a single crystal.
同図の実験結果から明らかなようにBi12SiO20単結晶
の暗抵抗率はP(リン)濃度0.03atm%から0.2atm%{a
tm%=(P原子数/全原子数)×100%}の範囲で無添
加結晶の1/107倍以下の値を示しており、この濃度範囲
のPを含有するBi12SiO20単結晶を本発明の低暗抵抗単
結晶板7として用いることができる。このP添加結晶を
300〜500μm厚にスライスした低暗抵抗単結晶板7上
に、本願発明者により既に特許出願(特開昭62−17099
号)がなされている金属Biあるいはアルキル化Biを原料
として、気相成長によりBi含有酸化物薄膜をエピタキシ
ャル成長する方法で、本発明の高暗抵抗層8として無添
加のBi12SiO20エピタキシャル層を10μm程度成長す
る。さらに、高暗抵抗層8の側面に、本発明の絶縁層2
として、パリレン,マイカ等の絶縁層、あるいは本願発
明者により既に特許出願(特願昭63−82834号)がなさ
れている組成範囲30≦TiO2≦70、10≦Bi2O3≦40、10≦S
iO2≦50(ただし、単位はモル%でTiO2+1/2 Bi2O3+Si
O2=100)のTiO2−Bi2O3−SiO2系高電圧駆動素子用絶縁
膜等を堆積するとともに透明電極3としてITO膜(In2O3
−SnO2系膜)等を両側面に堆積することで本発明による
薄膜型光画像素子を作製することができる。As is clear from the experimental results shown in the same figure, the dark resistivity of the Bi 12 SiO 20 single crystal is from P (phosphorus) concentration of 0.03 atm% to 0.2 atm% {a.
tm% = (P atoms / total number of atoms) in the range of × 100%} indicates 1/10 7 times the value of the additive-free crystals, Bi 12 SiO 20 single crystal containing P in this concentration range Can be used as the low dark resistance single crystal plate 7 of the present invention. This P-added crystal
A patent application has already been filed by the present inventor on the low dark resistance single crystal plate 7 sliced to a thickness of 300 to 500 μm (Japanese Patent Laid-Open No. 62-17099).
A method of epitaxially growing a Bi-containing oxide thin film by vapor phase growth using metal Bi or alkylated Bi which has been subjected to (No.) as a raw material, an undoped Bi 12 SiO 20 epitaxial layer is used as the high dark resistance layer 8 of the present invention. It grows about 10 μm. Furthermore, the insulating layer 2 of the present invention is provided on the side of the high dark resistance layer 8.
As an insulating layer of parylene, mica, or the like, or a composition range of 30 ≦ TiO 2 ≦ 70, 10 ≦ Bi 2 O 3 ≦ 40, 10 for which a patent application (Japanese Patent Application No. 63-82834) has already been filed by the present inventor. ≤S
iO 2 ≦ 50 (However, the unit is TiO 2 +1/2 Bi 2 O 3 + Si in mol%
O 2 = 100) TiO 2 —Bi 2 O 3 —SiO 2 -based insulating film for high-voltage driving elements and the like are deposited and an ITO film (In 2 O 3
-SnO 2 based film) or the like can be a thin film type light image device according to the present invention by depositing on both sides.
上述のように、本発明に用いる薄膜型光画像素子は、
低暗抵抗単結晶板7と高暗抵抗層8とを配置した構造と
なっているため、解像度がよくかつ電圧印加操作だけで
消去が可能となる。さらに、本発明では、詳述した薄膜
型光画像素子(特願平1−41616号)を改善し、解像度
及び書き込み感度を素子面内で均一にするためになされ
たものである。As described above, the thin-film optical image element used in the present invention is:
Since it has a structure in which the low dark resistance single crystal plate 7 and the high dark resistance layer 8 are arranged, the resolution is good and erasing can be performed only by a voltage application operation. Further, in the present invention, the thin-film optical image element described in detail (Japanese Patent Application No. 1-41616) is improved to make the resolution and the writing sensitivity uniform in the element surface.
(実施例) 以下に図面を用いて本発明を詳細に説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.
第5図は本発明による薄膜型光画像素子の構造図であ
り、Pを添加して暗抵抗率を大幅に低減したシレネート
型結晶構造を有する低暗抵抗単結晶板7をテーパ形状の
低暗抵抗単結晶板7aにしたものである。FIG. 5 is a structural view of a thin-film type optical image element according to the present invention, in which a low-dark-resistance single crystal plate 7 having a silenate-type crystal structure in which P is added to greatly reduce the dark resistivity is formed into a tapered low-dark single crystal plate. This is a resistance single crystal plate 7a.
すなわち、従来例の素子では高暗抵抗率の単結晶板1
を多重反射による干渉縞を除去するためにテーパ形状と
していたものを、本発明では先に出願した薄膜型光画像
素子の低暗抵抗率の低暗抵抗単結晶板7をテーパ形状と
したものである。なお、低暗抵抗単結晶板7aの屈折率
(n7)と高暗抵抗層8の屈折率(n8)とが大きく異なる
と、均一な厚さの高暗抵抗層8内での多重反射により干
渉縞が生じる。しかし、Bi12MO20(但し、M=Si,Ge,T
i)及びP添加Bi12MO20等のシレネート型結晶の屈折率
は、約2.2〜2.6の範囲にあるので、多重反射は問題とな
らない。That is, in the element of the conventional example, the single crystal plate 1 having a high dark resistivity is used.
Is a tapered shape in order to remove interference fringes due to multiple reflection, but in the present invention, the low dark resistance single crystal plate 7 having a low dark resistivity of the thin film type optical image element previously applied is tapered. is there. Incidentally, when the refractive index of the low dark resistance single crystal plate 7a (n 7) and the refractive index of the high dark resistance layer 8 (n 8) are largely different, multiple reflections inside the high dark resistance layer 8 of uniform thickness Causes interference fringes. However, Bi 12 MO 20 (where M = Si, Ge, T
i) and the refractive index of Shireneto type crystal such as P added Bi 12 MO 20, since the range of about 2.2 to 2.6, multiple reflection is not a problem.
また、テーパ角δは、低暗抵抗単結晶板7aの中心の厚
み(平均値)と高暗抵抗層8の厚みとの和を中心厚みd
として、従来例と同様に式(1)及び式(2)より求め
ればよい。The taper angle δ is obtained by calculating the sum of the thickness (average value) of the center of the low dark resistance single crystal plate 7a and the thickness of the high dark resistance layer 8 as the center thickness d.
As in the conventional example, it can be obtained from Expressions (1) and (2).
本発明の如き、低暗抵抗率のテーパ状の低暗抵抗単結
晶板7aと高暗抵抗率の高暗抵抗層8とを組み合わせた構
成にすることにより、透明電極3間に電源4で印加され
た電圧は低暗抵抗単結晶板7aの抵抗率が絶縁層2及び高
暗抵抗層8よりも遥かに小さいため、殆ど絶縁層2と高
暗抵抗層8とで分割される。従って、本発明による薄膜
型光画像素子においては、低暗抵抗単結晶板7aが読み出
し用赤色光に対しては透明な電極として作用すると共に
多重反射による干渉縞除去を行い、高暗抵抗層8には均
一に電圧が印加されて従来例の単結晶板1と同様に内部
に書き込み像に対応した電荷分布が形成されるため、画
像書き込み感度と解像度を素子面内で均一にすることが
できる。By applying a configuration in which a low-dark-resistivity single-crystal plate 7a having a low-dark-resistivity and a high-dark-resistivity layer 8 having a high-dark-resistivity is combined with the power supply 4 between the transparent electrodes 3, as in the present invention. The applied voltage is almost divided by the insulating layer 2 and the high dark resistance layer 8 because the resistivity of the low dark resistance single crystal plate 7a is much smaller than that of the insulating layer 2 and the high dark resistance layer 8. Therefore, in the thin-film optical image element according to the present invention, the low-dark-resistance single crystal plate 7a acts as a transparent electrode for the read-out red light, removes interference fringes by multiple reflections, and Is applied uniformly, and a charge distribution corresponding to the written image is formed inside similarly to the single crystal plate 1 of the conventional example, so that the image writing sensitivity and the resolution can be made uniform within the element surface. .
なお、低暗抵抗単結晶板7a及び高暗抵抗層8として
は、Bi12SiO20の他にBi12GeO20、Bi12TiO20等他のシレ
ネート型結晶も適用が可能である。また、低暗抵抗単結
晶板7aと高暗抵抗層8とを、全く同一組成にする必要が
なく、屈折率がほぼ同じであれば、同種の結晶構造の材
料で組成が異なっていても良い。As the low dark resistance single crystal plate 7a and the high dark resistance layer 8, in addition to Bi 12 GeO 20, Bi 12 TiO 20 , etc. Other Shireneto type crystal of Bi 12 SiO 20 it can also be applied. Further, it is not necessary that the low dark resistance single crystal plate 7a and the high dark resistance layer 8 have exactly the same composition, and as long as the refractive indices are substantially the same, the composition may be different between materials of the same kind of crystal structure. .
また、テーパ状の低暗抵抗単結晶板7aを作製する際
に、P(リン)の代りに、Sb(アンチモン)やNb(ニオ
ビウム)等の5価元素を用いてもよい。When producing the tapered low-dark-resistance single crystal plate 7a, a pentavalent element such as Sb (antimony) or Nb (niobium) may be used instead of P (phosphorus).
(発明の効果) 以上詳細に説明したように、本発明はシレネート型結
晶構造を有するBi12MO20(M=Si,Ge,Ti)等の結晶にat
m%で0.03≦P≦0.2の範囲のPを添加して暗抵抗率を無
添加結晶より大幅に小なるようにしたテーパ状の低暗抵
抗単結晶板7aの入射光側に、低暗抵抗単結晶板7aと同種
の結晶構造を有しかつ光伝導効果と電気光学効果と高暗
抵抗率を併せもつ高暗抵抗層8を設けることにより、画
像の書き込み感度及び解像度を素子面内で均一にするこ
とが可能となる。(Effects of the Invention) As described in detail above, the present invention relates to a method of forming a crystal of Bi 12 MO 20 (M = Si, Ge, Ti) or the like having a silenate type crystal structure.
A low dark resistance is provided on the incident light side of a tapered low dark resistance single crystal plate 7a in which P is added in the range of 0.03 ≦ P ≦ 0.2 in m% so that the dark resistivity is significantly smaller than that of the non-doped crystal. By providing a high dark resistance layer 8 having the same kind of crystal structure as the single crystal plate 7a and having both a photoconductive effect, an electro-optical effect and a high dark resistivity, the writing sensitivity and resolution of an image can be made uniform within the element surface. It becomes possible to.
高暗抵抗層8を、Bi12MO20(但し、M=Si,Ge,Ti)で
構成することにより、光伝導効果と電気光学効果と高暗
抵抗率とを併せもたせることができる。When the high dark resistance layer 8 is made of Bi 12 MO 20 (where M = Si, Ge, Ti), the photoconductive effect, the electro-optical effect, and the high dark resistivity can be provided together.
低暗抵抗単結晶板7aを、Bi12MO20に5価元素を添加し
た結晶で構成することにより、低暗抵抗率のシレネート
型結晶構造の単結晶板を実現することができる。By forming the low-dark-resistance single-crystal plate 7a from a crystal in which a pentavalent element is added to Bi 12 MO 20 , a single-crystal plate having a low dark-resistivity sileneate-type crystal structure can be realized.
5価元素が、P(リン)、Sb(アンチモン)、Nb(ニ
オビウム)のうち少なくとも1つであることにより、シ
レネート型結晶構造の単結晶板の暗抵抗率を低減するこ
とができる。When the pentavalent element is at least one of P (phosphorus), Sb (antimony), and Nb (niobium), the dark resistivity of a single crystal plate having a silenate-type crystal structure can be reduced.
低暗抵抗単結晶板7aが、Bi2MO20にP(リン)を0.03
以上0.2atm%以下の濃度範囲でドープして構成されるこ
とにより、暗抵抗率が大幅に低減したシレネート型結晶
構造の単結晶板を実現することができる。The low-dark-resistance single crystal plate 7a adds P (phosphorus) to Bi 2 MO 20 by 0.03.
By doping in a concentration range of 0.2 atm% or less, a single crystal plate having a silenate-type crystal structure in which the dark resistivity is significantly reduced can be realized.
従って、本発明による薄膜型光画像素子は、インコヒ
ーレント像からコヒーレント像への変換、空間周波数フ
ィルタリングあるいは光論理演算などの光情報処理分野
に広く適用することが可能でありその効果は極めて大で
ある。Therefore, the thin-film optical image element according to the present invention can be widely applied to optical information processing fields such as conversion from an incoherent image to a coherent image, spatial frequency filtering, and optical logic operation, and the effect is extremely large. is there.
第1図(a)及び(b)は従来の対称型素子及び非対称
型素子の構造図、第2図は単結晶板1がテーパ状になっ
ている従来の光画像素子の構成図、第3図は本発明の原
理を説明するための薄膜型光画像素子の構造図、第4図
は本発明に用いる低暗抵抗単結晶板のP(リン)濃度と
暗抵抗率との特性図、第5図は本発明による薄膜型光画
像素子の構成図である。 1……単結晶板、2……絶縁層、3……透明電極、4…
…電源、5……偏光子、6……検光子、7……低暗抵抗
単結晶板、7a……テーパ状の低暗抵抗単結晶板、8……
高暗抵抗層。1 (a) and 1 (b) are structural views of a conventional symmetrical element and asymmetrical element, FIG. 2 is a structural view of a conventional optical image element in which a single crystal plate 1 is tapered, and FIG. FIG. 4 is a structural diagram of a thin-film optical image element for explaining the principle of the present invention. FIG. 4 is a characteristic diagram of P (phosphorus) concentration and dark resistivity of a low dark resistance single crystal plate used in the present invention. FIG. 5 is a configuration diagram of the thin-film optical image element according to the present invention. 1 ... single crystal plate, 2 ... insulating layer, 3 ... transparent electrode, 4 ...
… Power supply, 5… polarizer, 6… analyzer, 7… low dark resistance single crystal plate, 7a… tapered low dark resistance single crystal plate, 8…
High dark resistance layer.
Claims (4)
光伝導効果と電気光学効果とを用いて入射する光画像の
書き込みなどを行う光画像素子において、 Bi12MO20(但し、M=Si,Ge,Ti)が無添加の状態で光伝
導効果が起こっている状態での抵抗率と同等もしくはそ
れ以下の暗抵抗率を有するように該Bi12MO20(但し、M
=Si,Ge,Ti)に5価元素を添加した結晶で構成され、か
つテーパ状の形状を有する低暗抵抗単結晶板と、 該低暗抵抗単結晶板の入射側に配置され、前記低暗抵抗
単結晶板と同種の結晶構造を有し、かつ結晶成長で格子
整合がとれる高暗抵抗率で均一な厚さの高暗抵抗層と、 該高暗抵抗層の他端側に設けられた絶縁層と、 前記低暗抵抗単結晶板と前記高暗抵抗層とに電圧を印加
するための透明電極とを具備したことを特徴とする薄膜
型光画像素子。1. An optical image device for writing an incident optical image by using a photoconductive effect and an electro-optical effect of a single crystal plate having a silenate type crystal structure, wherein Bi 12 MO 20 (where M = Si , Ge, Ti) in a state where the photoconductive effect is occurring in a state where no Bi is added to the Bi 12 MO 20 (however, M
= Si, Ge, Ti) and a low-dark-resistance single-crystal plate having a tapered shape and comprising a crystal obtained by adding a pentavalent element to the pentavalent element; A high dark resistance layer having the same kind of crystal structure as the dark resistance single crystal plate and having a high dark resistivity and uniform thickness capable of achieving lattice matching by crystal growth; and a high dark resistance layer provided on the other end side of the high dark resistance layer. And a transparent electrode for applying a voltage to the low-dark-resistance single crystal plate and the high-dark-resistance layer.
Si,Ge,Ti)から構成されていることを特徴とする特許請
求の範囲第1項記載の薄膜型光画像素子。2. The high dark resistance layer is made of Bi 12 MO 20 (where M =
2. The thin-film optical image device according to claim 1, wherein the device is made of Si, Ge, Ti).
モン),Nb(ニオビウム)のうち少なくとも1つである
ことを特徴とする特許請求の範囲第1項記載の薄膜型光
画像素子。3. The thin-film optical image according to claim 1, wherein said pentavalent element is at least one of P (phosphorus), Sb (antimony), and Nb (niobium). element.
前記P(リン)を0.03以上0.2atm%以下の濃度範囲でド
ープして構成されていることを特徴とする特許請求の範
囲第1項記載の薄膜型光画像素子。4. The low dark resistance single crystal plate is formed by doping the Bi 12 MO 20 with the P (phosphorus) in a concentration range of 0.03 to 0.2 atm%. 2. The thin-film optical image element according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1097473A JP2645664B2 (en) | 1989-04-19 | 1989-04-19 | Thin-film optical imaging device |
US07/484,045 US5105302A (en) | 1989-02-23 | 1990-02-22 | Spatial light modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1097473A JP2645664B2 (en) | 1989-04-19 | 1989-04-19 | Thin-film optical imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02277020A JPH02277020A (en) | 1990-11-13 |
JP2645664B2 true JP2645664B2 (en) | 1997-08-25 |
Family
ID=14193273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1097473A Expired - Lifetime JP2645664B2 (en) | 1989-02-23 | 1989-04-19 | Thin-film optical imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2645664B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845690B2 (en) * | 1976-10-07 | 1983-10-12 | 住友電気工業株式会社 | Optical image conversion element |
JPS601606B2 (en) * | 1978-04-11 | 1985-01-16 | 住友電気工業株式会社 | image conversion element |
JPS561015A (en) * | 1979-06-18 | 1981-01-08 | Sumitomo Electric Ind Ltd | Image transducer |
-
1989
- 1989-04-19 JP JP1097473A patent/JP2645664B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
Phys.Stat.Sol.(a)Vol.96P.199〜P.213(1986) |
Also Published As
Publication number | Publication date |
---|---|
JPH02277020A (en) | 1990-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3144270B2 (en) | Light deflection element | |
DE68910199T2 (en) | Birefringent diffraction grating type polarizer. | |
JPH11194223A (en) | Optical waveguide element and its manufacture | |
DE69224144T2 (en) | Liquid crystal computing device and image processing system based thereon | |
DE3687898T2 (en) | VISIBLE INFRARED LIGHT VALVE CONVERTER WITH MATRIX MIRROR. | |
Nashimoto et al. | Electro-optic beam deflector using epitaxial Pb (Zr, Ti) O 3 waveguides on Nb-doped SrTiO 3 | |
JP2645664B2 (en) | Thin-film optical imaging device | |
Farley et al. | The dynamic properties of lithium oxide investigated by neutron scattering techniques | |
US5105302A (en) | Spatial light modulator | |
EP0433487A1 (en) | Second harmonic wave generating device | |
JPS58215626A (en) | Light intensity-space frequency transducing element | |
EP0389686A2 (en) | Second harmonic wave generating device | |
US5085503A (en) | Spatial light modulating element using uniaxial single crystal of oxide as insulating layer | |
JPH0816745B2 (en) | Thin-film optical imaging device | |
JP2658747B2 (en) | Dielectric mirror and method of manufacturing the same | |
JP2759477B2 (en) | Electrically erasable optical image element | |
Chen et al. | Variations of strain and light scattering accompanying domain switching in lead lanthanum zirconate titanate ceramics | |
JP2000330143A (en) | Light deflecting element | |
JP2731220B2 (en) | Image conversion element and X-ray image detection method using the same | |
JPS63208022A (en) | Optical image element | |
JPS5921533B2 (en) | Manufacturing method of photoconductive single crystal | |
JPS5884457A (en) | Long thin film reading device | |
JPS6038689B2 (en) | Method for manufacturing waveguide electro-optic light modulator | |
Blanc et al. | Characterization of aluminium nitride thin film structure using second-harmonic generation | |
JPS5928895B2 (en) | Optical image conversion element |