JP2759477B2 - Electrically erasable optical image element - Google Patents

Electrically erasable optical image element

Info

Publication number
JP2759477B2
JP2759477B2 JP4161589A JP4161589A JP2759477B2 JP 2759477 B2 JP2759477 B2 JP 2759477B2 JP 4161589 A JP4161589 A JP 4161589A JP 4161589 A JP4161589 A JP 4161589A JP 2759477 B2 JP2759477 B2 JP 2759477B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal plate
optical image
resistance layer
low dark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4161589A
Other languages
Japanese (ja)
Other versions
JPH02221916A (en
Inventor
康之 長尾
栄紀 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP4161589A priority Critical patent/JP2759477B2/en
Publication of JPH02221916A publication Critical patent/JPH02221916A/en
Application granted granted Critical
Publication of JP2759477B2 publication Critical patent/JP2759477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、シレネート型結晶構造を有する結晶の光伝
導性、電気光学効果を利用してインコヒーレント画像か
らコヒーレント画像の変換、空間周波数フィルタリン
グ、光論理演算等を行う光画像素子の改良に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to the conversion of an incoherent image to a coherent image using the photoconductivity and electro-optic effect of a crystal having a silenate type crystal structure, spatial frequency filtering, light The present invention relates to an improvement of an optical image element for performing a logical operation or the like.

(従来の技術) 例えば、第1図に示すように、光伝導効果と電気光学
効果を併せもつBi12MO20(M=Si,Ge,Ti)等のシレネー
ト型結晶構造を有する単結晶板1と、その少なくとも一
方の側面に設けられた絶縁層2と、単結晶板1と絶縁層
2に電界を加えるためにそれらの側面に設けられた透明
電極3から構成される素子が従来より知られている。こ
の素子は光画像の書き込み、読み出し、消去等を行うこ
とができ、例えばインコヒーレント光の画像をコヒーレ
ント光の画像に変換したり、空間周波数フィルタリン
グ、光論理演算等に使用される。
(Prior Art) For example, as shown in FIG. 1, a single crystal plate 1 having a silenate type crystal structure such as Bi 12 MO 20 (M = Si, Ge, Ti) having both a photoconductive effect and an electro-optical effect. An element comprising an insulating layer 2 provided on at least one side surface thereof, and a transparent electrode 3 provided on the side surface thereof for applying an electric field to the single crystal plate 1 and the insulating layer 2 is conventionally known. ing. This element can perform writing, reading, erasing, and the like of an optical image, and is used for, for example, converting an incoherent light image to a coherent light image, spatial frequency filtering, optical logic operation, and the like.

この素子の動作原理は以下のようなものである。 The operation principle of this element is as follows.

まず、電源4により透明電極3に電圧を印加する。こ
の状態において、青色光の画像を単結晶板1に結像させ
ると、単結晶板1は光伝導効果をもっているため光の強
度に応じて励起された電子と正孔が入射光と平行でかつ
逆向きの電界で分離されて、同図(a)の対称型素子に
おいては単結晶板1と絶縁膜2の界面1近傍に正電荷分
布を界面2の近傍にその像に対応した負電荷分布を形成
し、一方、同図(b)の非対称型素子においては界面1
近傍に正電荷分布だけをその結像に対応して形成する。
即ち、単結晶板1内に画像に対応した電位分布が書き込
まれたことになる。
First, a voltage is applied to the transparent electrode 3 by the power supply 4. In this state, when an image of blue light is formed on the single crystal plate 1, the single crystal plate 1 has a photoconductive effect, so that electrons and holes excited according to the light intensity are parallel to the incident light and In the symmetrical device shown in FIG. 3A, the positive charge distribution is separated from the vicinity of the interface 1 between the single crystal plate 1 and the insulating film 2 and the negative charge distribution corresponding to the image is formed near the interface 2 in the symmetrical device shown in FIG. On the other hand, in the asymmetric device shown in FIG.
Only a positive charge distribution is formed in the vicinity corresponding to the image formation.
That is, the potential distribution corresponding to the image is written in the single crystal plate 1.

この書き込まれた画像を読み出すためには光伝導効果
に寄与しない赤色の光を用い、単結晶板1の電気光学効
果を利用する。即ち、単結晶板1は電気光学効果を有し
ているため、単結晶板1内の電位分布は屈折率分布に変
換される。従って、偏光子5を用いて直線偏光の赤色光
を単結晶板1に入射し、検光子6によって検出した光は
単結晶板1内の屈折率分布に対応した光強度を持つこと
になり画像が再生される。画像の入力をインコヒーレン
ト光で行い、再生をレーザのようなコヒーレント光で行
えば、インコヒーレント像からコヒーレント像への変換
を実時間で行うことができる。
To read the written image, red light that does not contribute to the photoconductive effect is used, and the electro-optic effect of the single crystal plate 1 is used. That is, since the single crystal plate 1 has an electro-optic effect, the potential distribution in the single crystal plate 1 is converted into a refractive index distribution. Therefore, the linearly polarized red light is incident on the single crystal plate 1 using the polarizer 5, and the light detected by the analyzer 6 has a light intensity corresponding to the refractive index distribution in the single crystal plate 1. Is played. If the input of an image is performed by using incoherent light and the reproduction is performed by using coherent light such as a laser, conversion from an incoherent image to a coherent image can be performed in real time.

次に、書き込まれた画像を消去する原理を説明する。
入力画像に対応して形成されている電荷分布は電子ある
いは正孔がトラック準位に捕獲されたものと考えられて
おり、書き込み時と逆向きの電界の存在下でも捕獲され
ている電荷は容易には移動しない。そこで、まず電源4
を取り去り、透明電極3相互間を短絡する。この状態に
おいて一様な青色光を単結晶板1に照射すると、トラッ
プに捕獲されていたものも含めて電子と正孔が励起さ
れ、電荷分布によって生ずる電界を緩和するように移動
して電荷分布を中性化する。即ち、単結晶板1内の電位
分布が一様な初期状態に戻されたことになる。
Next, the principle of erasing the written image will be described.
It is considered that the charge distribution formed corresponding to the input image is such that electrons or holes are trapped at the track level, and the trapped charge is easily formed even in the presence of an electric field in the direction opposite to that at the time of writing. Do not move to So, first, power supply 4
And short circuit between the transparent electrodes 3. In this state, when the single crystal plate 1 is irradiated with uniform blue light, electrons and holes, including those trapped in the trap, are excited, and move so as to relax the electric field generated by the charge distribution. To neutralize. That is, the potential distribution in the single crystal plate 1 is returned to a uniform initial state.

(発明が解決しようとする問題点) 上述の動作原理から明らかなように、従来の素子では
印加電圧操作と同時に一様な青色光を照射しなければ書
き込んだ像を消去できないため、素子を応用する際に周
辺光学系が複雑になるという欠点があった。
(Problems to be Solved by the Invention) As is apparent from the above-described operation principle, in the conventional device, the written image cannot be erased without irradiating uniform blue light simultaneously with the operation of the applied voltage. In this case, there is a disadvantage that the peripheral optical system becomes complicated.

本発明は、上述した従来技術の問題点に鑑みなされた
もので、印加電圧操作のみで極めて短い時間内に消去で
きるようにした電気消去型光画像素子を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-described problems of the related art, and has as its object to provide an electrically erasable optical image element capable of erasing in an extremely short time only by operating an applied voltage.

(問題点を解決するための手段) 本発明の特徴は、シレネート型結晶構造を有する単結
晶板の光伝導効果と電気光学効果とを用いて入射する光
画像の書き込みなどを行う光画像素子において、単結晶
板の入射側に配置された絶縁層と、出射側の単結晶板内
の一部に直接か、または単結晶板の外側に単結晶板と同
種の結晶構造を有しかつ結晶成長で格子整合がとれる成
長層に5価元素Pを0.03atm%以上0.2atm%以下の濃度
範囲で添加して半導体化した低暗抵抗層と、絶縁層と低
暗抵抗層とのそれぞれ他端側に設けられた透明電極とを
具備したことにある。
(Means for Solving the Problems) A feature of the present invention is an optical image element which performs writing of an incident optical image using a photoconductive effect and an electro-optical effect of a single crystal plate having a silenate type crystal structure. An insulating layer disposed on the incident side of the single crystal plate, and having the same kind of crystal structure as the single crystal plate directly on part of the single crystal plate on the emission side or outside the single crystal plate, and crystal growth The other ends of the low-dark-resistance layer and the insulating layer and the low-dark-resistance layer, each of which is formed into a semiconductor by adding a pentavalent element P in a concentration range of 0.03 atm% or more and 0.2 atm% or less to the growth layer capable of achieving lattice matching with the above, And the transparent electrode provided in the above.

(実施例1) 第2図は本発明による第1の実施例の構造図であり、
従来例と異なるところは単結晶板1で出射光側の面に単
結晶板1と同種の結晶構造で格子整合がとれ、かつ少量
のP(リン)を添加して暗抵抗率を大幅に小なるように
して半導体化した低暗抵抗層7を設けた点である。
Embodiment 1 FIG. 2 is a structural diagram of a first embodiment according to the present invention.
What differs from the conventional example is that the single crystal plate 1 has a lattice matching with the surface on the side of the emitted light with the same kind of crystal structure as that of the single crystal plate 1, and a small amount of P (phosphorus) is added to greatly reduce the dark resistivity. This is the point that the low dark resistance layer 7 made into a semiconductor as described above is provided.

本願発明者は、従来のシレネート型構造の結晶が高暗
抵抗率を有することから、本発明で用いる低暗抵抗率の
低暗抵抗層7を得る方法を種々検討した。その結果、5
化元素P(リン)を少量添付することでシレネート型結
晶の暗抵抗率を小さくできることが判明した。
The inventor of the present application has studied various methods for obtaining a low dark resistance layer 7 having a low dark resistivity used in the present invention, since a conventional crystal having a silenate structure has a high dark resistivity. As a result, 5
It has been found that the dark resistivity of the silenate type crystal can be reduced by adding a small amount of the chemical element P (phosphorus).

第3図は本発明による低暗抵抗層7の結晶中のP濃度
と低暗抵抗率との特性図であり、例として、原料にいず
れも99.9999%純度のBi2O3,BiPO4およびSiO2、るつぼに
50mmφの白金を用い、チョクラルスキー法で育成したP
添加Bi12SiO20単結晶における実験結果である。
FIG. 3 is a characteristic diagram showing the relationship between the P concentration in the crystal of the low dark resistance layer 7 and the low dark resistivity according to the present invention. As an example, each of the raw materials contains 99.9999% pure Bi 2 O 3 , BiPO 4 and SiO 2. 2 , in the crucible
P grown by Czochralski method using 50mmφ platinum
Added a Bi 12 SiO 20 experimental results in the single crystal.

同図の実験結果から明らかなようにBi12SiO20単結晶
の暗抵抗率はP(リン)濃度0.03atm%から0.2atm%
{(P原子数/全原子数)×100%}の範囲で無添加結
晶の1/107倍以下の値を示している。従って、この濃度
範囲のPを含有するBi12SiO20単結晶を単結晶板1の外
側(出射側)に新たに設けた低暗抵抗層7として用いる
ことができる。なお、低暗抵抗層7の作製方法として
は、前述の濃度範囲のPを添加したBiSiO20単結晶薄膜
を例えば、本願発明者により既に特許出願(特開昭62−
17099号)がなされている金属Biあるいはアルキル化Bi
を原料として、気相成長によりBi含有酸化物薄膜をエピ
タキシャル成長方法で成長すれば良い。
As is clear from the experimental results shown in the same figure, the dark resistivity of the Bi 12 SiO 20 single crystal is 0.03 atm% to 0.2 atm% in P (phosphorus) concentration.
It indicates 1/10 7 times the value of the additive-free crystals in the range of {(P atoms / total number of atoms) × 100%}. Therefore, a Bi 12 SiO 20 single crystal containing P in this concentration range can be used as a newly formed low dark resistance layer 7 outside (single side) the single crystal plate 1. As a method for manufacturing a low dark resistance layer 7, the BiSiO 20 single-crystal thin film with the addition of P in the concentration range of above example, already patent application by the present inventors (JP 62-
No. 17099) Metal Bi or alkylated Bi
May be used as a raw material to grow a Bi-containing oxide thin film by an epitaxial growth method by vapor phase growth.

本発明の如き、単結晶板1の外側(出射側)に新たに
低暗抵抗層7を儲けた構成にすることにより、透明電極
3間に電源4で印加された電圧は、低暗抵抗層7の抵抗
率が絶縁層2及び単結晶板1よりも遥かに小さくこの低
暗抵抗層7が半導体化されたことになるため、殆ど絶縁
層2と単結晶板1とで分割される。従って、低暗抵抗層
7は読み出し用赤色光に対しては透明な電極として作用
し、従来の素子と同様の動作原理で画像の書き込みと読
み出しができる。
By providing a configuration in which a low dark resistance layer 7 is newly provided outside (emission side) of the single crystal plate 1 as in the present invention, the voltage applied between the transparent electrodes 3 by the power supply 4 can be reduced. Since the resistivity of the low dark resistance layer 7 is much smaller than that of the insulating layer 2 and the single crystal plate 1, the low dark resistance layer 7 is converted into a semiconductor. Therefore, the low dark resistance layer 7 functions as a transparent electrode for the read red light, and can write and read an image according to the same operation principle as that of the conventional element.

次に、本発明の光画像素子における書き込んだ画像の
消去について記述する。
Next, the erasure of the written image in the optical image element of the present invention will be described.

単結晶板1と低暗抵抗層7は同種の構造を有する結晶
で構成されるので、電気伝導に関わるバンド構造も同種
の構造をもつ。従って、電源4を取り去り透明電極3相
互間を短絡すると、画像に対応して単結晶板1と絶縁膜
2の界面近傍に形成された正電荷分布が作る電界の方向
が画像書き込み時の電界とは逆であるため、自由坦体濃
度の大なる低暗抵抗層7から単結晶板1へ電子が容易に
注入されてこの正電荷分布を中性化し、一様な電位分布
の状態に戻すことができる。
Since the single crystal plate 1 and the low dark resistance layer 7 are composed of crystals having the same kind of structure, the band structures related to electric conduction also have the same kind of structure. Therefore, when the power supply 4 is removed and the transparent electrodes 3 are short-circuited, the direction of the electric field generated by the positive charge distribution formed near the interface between the single crystal plate 1 and the insulating film 2 corresponding to the image is different from the electric field at the time of image writing. Is reversed, electrons are easily injected from the low dark resistance layer 7 having a large free carrier concentration into the single crystal plate 1 to neutralize this positive charge distribution and return to a uniform potential distribution state. Can be.

このように、本発明は書き込んだ画像を消去する場合
に従来例の素子のように一様な青色光を照射することな
く印加電圧操作だけで目的を達することができる。
As described above, according to the present invention, when erasing a written image, the object can be achieved only by operating the applied voltage without irradiating uniform blue light unlike the element of the conventional example.

なお、上述の説明では低暗抵抗層7としてBi12SiO20
を用いたが、これに限定されることなくBi12GeO20、Bi
12TiO20等他のシレネート型結晶にも適用が可能であ
る。また、Bi12Si1+XO20(−0.3≦X≦+0.1)等のよう
に、同種の材料で組成が異なっていてもよい。
In the above description, Bi 12 SiO 20 is used as the low dark resistance layer 7.
, But without being limited thereto, Bi 12 GeO 20 , Bi
It can be applied to other silate-type crystals such as 12 TiO 20 . Further, the same kind of material may have a different composition such as Bi 12 Si 1 + X O 20 (−0.3 ≦ X ≦ + 0.1).

(実施例2) 第4図は本発明による第2の実施例であり、電気消去
型光画像素子の構成図である。
Embodiment 2 FIG. 4 shows a second embodiment of the present invention, and is a configuration diagram of an electric erasure type optical image element.

実施例1と異なるところは、単結晶板1に熱拡散法あ
るいはイオン打ち込み法等の技術を用いて0.03atm%な
いし0.2atm%のPを添加し、単結晶板1の出射光側の一
部に暗抵抗率が他の単結晶板1部分よりも大幅に小なる
低暗抵抗層8を形成した点である。すなわち、実施例1
では、単結晶板1の外側(出射側)に新たに低暗抵抗層
7を儲けた構造であるのに対し、実施例2では、単結晶
板1内の一部に拡散やイオン注入等の技術により低暗抵
抗層8を設けて構成を簡単にしたものである。
The difference from the first embodiment is that 0.03 atm% to 0.2 atm% of P is added to the single crystal plate 1 by using a technique such as a thermal diffusion method or an ion implantation method, and a part of the single crystal plate 1 on the emission light side is added. The difference is that a low dark resistance layer 8 whose dark resistivity is significantly smaller than that of the other single crystal plate 1 is formed. That is, the first embodiment
In the second embodiment, a low dark resistance layer 7 is newly provided on the outside (outgoing side) of the single crystal plate 1. On the other hand, in the second embodiment, a part of the single crystal plate 1, such as diffusion or ion implantation, is formed. The structure is simplified by providing a low dark resistance layer 8 by technology.

この構造の電気消去型光画像素子においても、実施例
1の構造の素子と同様に、印加電圧の殆どは単結晶板1
と絶縁層2とで分割され、低暗抵抗層8は読み出し光に
対しては透明な電極として作用する。また、低暗抵抗層
8は単結晶板1と同じ結晶構造であるから、実施例1で
説明した原理で書き込み像の消去が可能なことは明らか
である。即ち、従来例の素子のように一様な青色光を照
射することなしに印加電圧操作だけで、書き込み像の消
去が可能である。
In the electrically erasable optical image device having this structure, as in the device having the structure of Example 1, most of the applied voltage is applied to the single crystal plate 1.
And the insulating layer 2, and the low dark resistance layer 8 acts as a transparent electrode for readout light. Further, since the low dark resistance layer 8 has the same crystal structure as the single crystal plate 1, it is clear that the written image can be erased according to the principle described in the first embodiment. That is, the written image can be erased only by operating the applied voltage without irradiating uniform blue light unlike the element of the conventional example.

(発明の効果) 以上詳細に説明したように、本発明は単結晶板1内の
出射側の一部もしくは外側にこの単結晶板と同種の結晶
構造を有しかつ結晶成長で格子整合がとれる成長層に5
価元素Pを0.03以上0.2atm%以下の濃度範囲で添加して
半導体化した低抵抗率の低暗抵抗層8(7)を設けるこ
とにより、印加電圧操作のみの消去することが可能とな
る。
(Effects of the Invention) As described in detail above, the present invention has the same kind of crystal structure as the single crystal plate on a part or outside of the exit side in the single crystal plate 1 and can achieve lattice matching by crystal growth. 5 for growth layer
By providing a low-resistivity low-dark-resistance layer 8 (7) which is made into a semiconductor by adding a valence element P in a concentration range of 0.03 to 0.2 atm%, erasing can be performed only by applying an applied voltage.

単結晶板1を、Bi12MO20(但し、M=Si,Ge,Ti)で構
成することにより、光伝導効果と電気光学効果と高暗抵
抗率とを併せ持った結晶ができる。
By forming the single crystal plate 1 from Bi 12 MO 20 (where M = Si, Ge, Ti), a crystal having both the photoconductive effect, the electro-optical effect, and the high dark resistivity can be obtained.

低暗抵抗層8を、単結晶板1の出射側の一部に5価元
素Pを拡散もしくはイオン注入して構成することによ
り、構成が簡単でかつ印加電圧操作だけで消去すること
が可能な電気消去型光画像素子を実現することができ
る。
By forming the low dark resistance layer 8 by diffusing or ion-implanting the pentavalent element P into a part of the exit side of the single crystal plate 1, the structure is simple and can be erased only by operating the applied voltage. An electric erasing optical image element can be realized.

低暗抵抗層7を、Bi12MO20に5価元素Pを添加した成
長層で構成することにより、印加電圧操作だけで消去す
ることが可能な電気消去型光画像素子を実現可能であ
る。
By forming the low dark resistance layer 7 with a growth layer obtained by adding a pentavalent element P to Bi 12 MO 20 , an electric erasing optical image element that can be erased only by operating an applied voltage can be realized.

従って、本発明による電気消去型電気消去型光画像素
子は、印加電圧操作だけで消去が可能なため、インコヒ
ーレント像からコヒーレント像への変換、空間周波数フ
ィルタリングあるいは光論理演算などの光情報処理分野
に広く適用することが可能であり、その効果は極めて大
である。
Therefore, since the electric erasing type optical erasing optical image element according to the present invention can be erased only by applying an applied voltage, the field of optical information processing such as conversion from an incoherent image to a coherent image, spatial frequency filtering or optical logic operation. Can be widely applied, and the effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)及び(b)は従来の対称型素子及び非対称
型素子の構造図、第2図は本発明による第1の実施例の
電気消去型光画像素子の構造を示す断面図、第3図は本
発明に用いる低暗抵抗層のP(リン)濃度と暗抵抗率の
特性図、第4図は本発明による第2の実施例の電気消去
型光画像素子の構造を示す断面図である。 1……単結晶板、2……絶縁層、3……透明電極、 4……電源、5……偏光子、6……検光子、7,8……低
暗抵抗層。
1 (a) and 1 (b) are structural views of a conventional symmetrical element and asymmetrical element, FIG. 2 is a cross-sectional view showing a structure of an electro-erasable optical image element of a first embodiment according to the present invention, FIG. 3 is a characteristic diagram of the P (phosphorus) concentration and the dark resistivity of the low dark resistance layer used in the present invention, and FIG. 4 is a cross-section showing the structure of the electric erase type optical image element of the second embodiment according to the present invention. FIG. DESCRIPTION OF SYMBOLS 1 ... Single crystal plate, 2 ... Insulating layer, 3 ... Transparent electrode, 4 ... Power supply, 5 ... Polarizer, 6 ... Analyzer, 7,8 ... Low dark resistance layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−46047(JP,A) 特開 昭52−141245(JP,A) 特開 昭57−208525(JP,A) Phys.Status Solid e A,Vol.96,No.1,(1986 年),PP.199〜210 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-46047 (JP, A) JP-A-52-141245 (JP, A) JP-A-57-208525 (JP, A) Phys. Status Solid A, Vol. 96, No. 1, (1986), PP. 199-210

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シレネート型結晶構造を有する単結晶板の
光伝導効果と電気光学効果とを用いて入射する光画像の
書き込みなどを行う光画像素子において、 前記単結晶板の前記入射側に配置された絶縁層と、 出射側の前記単結晶板内の一部に直接かまたは前記単結
晶板の外側に前記単結晶板と同種の結晶構造を有しかつ
結晶成長で格子整合がとれる成長層に5価元素Pを0.03
atm%以上0.2atm%以下の濃度範囲で添加して半導体化
した低暗抵抗層と、 該絶縁層と該低暗抵抗層とのそれぞれ他端側に設けられ
た透明電極と を具備したことを特徴とする電気消去型光画像素子。
1. An optical image element for writing an incident optical image using a photoconductive effect and an electro-optical effect of a single crystal plate having a silenate type crystal structure, wherein the optical image device is disposed on the incident side of the single crystal plate. And a growth layer having the same kind of crystal structure as the single crystal plate directly on a part of the single crystal plate on the emission side or outside the single crystal plate and capable of achieving lattice matching by crystal growth. Pentavalent element P to 0.03
a low dark resistance layer doped into a semiconductor in a concentration range of atm% or more and 0.2 atm% or less, and transparent electrodes provided on the other end sides of the insulating layer and the low dark resistance layer, respectively. Characteristic electric erasure type optical image element.
【請求項2】前記単結晶板が、Bi12MO20(但し、M=S
i,Ge,Ti)から構成されていることを特徴とする特許請
求の範囲第1項記載の電気消去型光画像素子。
2. The method according to claim 1, wherein the single crystal plate is Bi 12 MO 20 (where M = S
2. The electrically erasable optical image element according to claim 1, wherein the element is composed of (i, Ge, Ti).
【請求項3】前記低暗抵抗層が、前記単結晶板の出射側
の一部に5価元素Pを拡散もしくはイオン注入して構成
されていることを特徴とする特許請求の範囲第1項記載
の電気消去型光画像素子。
3. The low dark resistance layer is formed by diffusing or ion-implanting a pentavalent element P into a part of the exit side of the single crystal plate. The electrically erasable optical image element according to the above.
【請求項4】前記低暗抵抗層が、前記Bi12MO20に5価元
素Pを添加した成長層で構成されていることを特徴とす
る特許請求の範囲第1項記載の電気消去型光画像素子。
4. The electric erasing light according to claim 1, wherein said low dark resistance layer comprises a growth layer obtained by adding a pentavalent element P to said Bi 12 MO 20. Image element.
JP4161589A 1989-02-23 1989-02-23 Electrically erasable optical image element Expired - Lifetime JP2759477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4161589A JP2759477B2 (en) 1989-02-23 1989-02-23 Electrically erasable optical image element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161589A JP2759477B2 (en) 1989-02-23 1989-02-23 Electrically erasable optical image element

Publications (2)

Publication Number Publication Date
JPH02221916A JPH02221916A (en) 1990-09-04
JP2759477B2 true JP2759477B2 (en) 1998-05-28

Family

ID=12613244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161589A Expired - Lifetime JP2759477B2 (en) 1989-02-23 1989-02-23 Electrically erasable optical image element

Country Status (1)

Country Link
JP (1) JP2759477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190749B2 (en) * 2001-09-28 2008-12-03 古河電気工業株式会社 Laser module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829493B2 (en) * 1976-05-19 1983-06-23 住友電気工業株式会社 Optical image conversion element
JPS5845690B2 (en) * 1976-10-07 1983-10-12 住友電気工業株式会社 Optical image conversion element
JPS57208525A (en) * 1981-06-19 1982-12-21 Ricoh Co Ltd Optical image converting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Phys.Status Solide A,Vol.96,No.1,(1986年),PP.199〜210

Also Published As

Publication number Publication date
JPH02221916A (en) 1990-09-04

Similar Documents

Publication Publication Date Title
US3801966A (en) Optical memory device
Staebler et al. Hologram storage in photochromic LiNbO 3
Colton et al. Photochromism and electrochromism in amorphous transition metal oxide films
Megumi et al. High‐sensitive holographic storage in Ce‐doped SBN
DE2050715B2 (en) Electronic-optical memory
US4391901A (en) Photosensitivity enhancement of PLZT ceramics by positive ion implantation
US3932299A (en) Method for the reduction of iron in iron-doped lithium niobate crystals
Kiss Photochromics
JP2759477B2 (en) Electrically erasable optical image element
Günter et al. High-sensitivity read-write volume holographic storage in reduced KNbO 3 crystals
Land Bistable Optical Information Storage Using Antiferroelectric‐Phase Lead Lanthanum Zirconate Titanate Ceramics
Lee et al. Photochromic effect in near-stoichiometric LiNbO 3 and two-color holographic recording
EP0316909B1 (en) Semiconductor optical apparatus
Lee et al. Photoinduced charge transfer in near-stoichiometric LiNbO 3
JP3060875B2 (en) Optoelectronic device, circuit pattern forming method, and optical diffraction grating forming method
Staebler Oxide optical memories: Photochromism and index change
JPH02221915A (en) Thin film type optical image element
US5847851A (en) Double-doped BaTiO3 crystal for holographic storage
Kräutzig Photorefractive effects in electrooptic crystals
US4945514A (en) Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
JP2535271B2 (en) Method for manufacturing optical information recording medium
Rouchon et al. Electrooptical properties and photoinduced effects in PLZT ceramics applications to optical storage and processing of information
US5105302A (en) Spatial light modulator
JP3476059B2 (en) Method for producing hologram recording material
JP2645664B2 (en) Thin-film optical imaging device