JPS59127378A - Leak current preventing method in electrode reaction equipment - Google Patents

Leak current preventing method in electrode reaction equipment

Info

Publication number
JPS59127378A
JPS59127378A JP58001687A JP168783A JPS59127378A JP S59127378 A JPS59127378 A JP S59127378A JP 58001687 A JP58001687 A JP 58001687A JP 168783 A JP168783 A JP 168783A JP S59127378 A JPS59127378 A JP S59127378A
Authority
JP
Japan
Prior art keywords
electrolyte
pipe
main pipe
bubbles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58001687A
Other languages
Japanese (ja)
Other versions
JPH0157469B2 (en
Inventor
Takeshi Nozaki
健 野崎
Takeo Ozawa
小沢 丈夫
Hidetaka Omichi
大道 秀邁
Yoshinori Takada
高田 義憲
Osamu Hamamoto
修 浜本
Hidetaka Izawa
伊沢 英孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Mitsui Zosen KK
Original Assignee
Agency of Industrial Science and Technology
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Agency of Industrial Science and Technology
Priority to JP58001687A priority Critical patent/JPS59127378A/en
Publication of JPS59127378A publication Critical patent/JPS59127378A/en
Publication of JPH0157469B2 publication Critical patent/JPH0157469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fuel Cell (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To increase electric resistance in a passage and prevent leak current by mixing bubbles to a liquid in an electrolyte path connecting between cells. CONSTITUTION:An electrolytic bath is constructed with a positive chamber 1 and a negative chamber 2 which are stacked in series with a separator interposed, a main pipe 4 which supplies electrolyte 3 to the positive and negative chambers, and a branch pipe 12 and a branch pipe 5A which are branched from the main pipe 4. Bubbles are fed to the main pipe 4 in such a way that a gas supply pipe 8A which is connected to a gas cylinder 8 is inserted into a electrolyte path (main pipe) 4, or a set of electrodes 11 are faced in a path 10 of the electrolyte 3 and gas is directly generated and mixed to the electrolyte. The main pipe 4 is arranged above an electrolyte inlet of a unit cell. When electrolyte is supplied through U-shaped pipe which connects the main pipe 4 to the unit cell, bubbles are trapped with the U-shaped pipe to prevent entering to the unit cell.

Description

【発明の詳細な説明】 本発明は、電極反応装置における漏洩電流防止方法に関
し、さらに詳しくは正極室および負極室にそれぞれ外部
から電解液が送入され、電極反応が行なわれたのち流出
する構造を有する液流通型の電解槽または電池等の電極
反応装置における漏洩電流の防止方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing leakage current in an electrode reaction device, and more specifically to a structure in which an electrolytic solution is introduced from the outside into a positive electrode chamber and a negative electrode chamber, and flows out after an electrode reaction. The present invention relates to a method for preventing leakage current in an electrode reaction device such as a liquid flow type electrolytic cell or battery.

従来、この種の電極反応装置は、第1図に示すように、
正極室1と負極室2とが隔膜をはさんで直列に積層され
た単セル群と、該単セル群にそハ後の液を電極室から流
出させるだめの分岐管5Aおよび7Aと、これらが接続
された主管5およびツから主に構成されている。
Conventionally, this type of electrode reaction device, as shown in FIG.
A single cell group in which a positive electrode chamber 1 and a negative electrode chamber 2 are stacked in series with a diaphragm in between, branch pipes 5A and 7A for allowing the liquid to flow out from the electrode chamber into the single cell group, and these. It is mainly composed of a main pipe 5 and a main pipe 5 to which are connected.

上記従来の装置においては、各単セルコ−および2に電
解液が並列に送入、流出する場合、電流は正極室と負極
室の間に設けらfLだ隔膜を通って流れ、電極反応に消
費されるが、この他に正極室と負極室を連絡している電
解液流路、すなわち主管4.6.5および7、分岐管4
A、6A、5Aおよび7A内の電解液中にも流れ、これ
らの多くは系外に流出して漏洩電流となる。このような
電流は、正、負極室内で起こる電気化学反応とは通常関
係なく、そのまま電力の損失となる場合が多い。
In the above-mentioned conventional device, when the electrolyte is fed into and out of each single cell column and 2 in parallel, the current flows through the diaphragm provided between the positive electrode chamber and the negative electrode chamber, and is consumed in the electrode reaction. However, in addition to this, there are also electrolyte flow paths connecting the positive electrode chamber and the negative electrode chamber, that is, main pipes 4, 6, 5 and 7, and branch pipe 4.
It also flows into the electrolytes in A, 6A, 5A, and 7A, and most of them flow out of the system and become leakage current. Such current is usually unrelated to the electrochemical reactions that occur within the positive and negative electrode chambers, and often results in power loss as it is.

このような漏洩電流の割合は単セル数を多くすると10
%程度にも達することがあるが、従来はほとんど無視さ
れていたものである。またその対策としては、電解液流
路の長さを長くとるか、その径を小さくしてその部分の
電気抵抗を増加させ、漏洩電流を小さくする程度の試み
がなされていたにすぎない。従ってこのような処置では
漏洩電流の大幅な低減は困難であり、長期間運転する場
合、そのエネルギー損失は莫大なものになる。
The rate of such leakage current increases to 10 when the number of single cells is increased.
%, but it has been largely ignored in the past. As a countermeasure to this problem, attempts have been made to reduce the leakage current by increasing the length of the electrolyte flow path or decreasing its diameter to increase the electrical resistance at that portion. Therefore, with such measures, it is difficult to significantly reduce the leakage current, and when operating for a long period of time, the energy loss becomes enormous.

本発明の目的は上記従来技術の欠点を解消し、漏洩電流
を簡単な方法で効果的に減少させることができる方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of the prior art described above and to provide a method for effectively reducing leakage current in a simple manner.

上記目的を達成するため本発明者らは、電極反応装置の
電解液流路内に気泡を混入すると、その流路内の電気抵
抗が増加し、漏洩電流が防止されることを見出し、本発
明に到達したものである。
In order to achieve the above object, the present inventors discovered that when air bubbles are mixed into the electrolyte flow path of an electrode reaction device, the electrical resistance within the flow path increases and leakage current is prevented. has been reached.

すなわち本発明は、正極室および負極室を有する複数の
単セルが隔膜を介して構成され、電解液が該セル中に流
通されて電極反応を行なう装置において、前記単セル間
を連通ずる電解質液通路の老 少くとも一部の液中に気液を混入することを特徴とする
That is, the present invention provides an apparatus in which a plurality of single cells each having a positive electrode chamber and a negative electrode chamber are arranged via a diaphragm, and an electrolytic solution is passed through the cells to perform an electrode reaction. It is characterized by mixing gas and liquid into at least part of the liquid in the passage.

本発明において、電解液流路中に発生させる気泡は、細
かいほど、またその量が多いほど電液庶断の効果が犬き
くなシ、漏洩電流が流れにくくなる。また、比較的、径
の小さい流路中であれば、一つの気泡で、流路断面全域
をおおうよう忙することも効果的である。電解液中に混
入される気泡は、電解液流路の少なくとも一部で混入さ
れればよく、好ましくは電解液の流入側から気泡を発生
または導入させ、その後の流路において長く存在させる
ことが好ましい。また気泡が単セル、すなわち正極室ま
だは負極室に入るのを防止するため、電解液と気泡の比
重差、すなわち気泡の浮力を利用して電極室内に気泡が
極力入らないような配管構成とすることが好ましい。
In the present invention, the smaller the bubbles and the larger the amount of bubbles generated in the electrolyte flow path, the stronger the effect of cutting off the electrolyte, and the more difficult it is for leakage current to flow. Furthermore, if the flow path is relatively small in diameter, it is also effective to cover the entire cross section of the flow path with a single bubble. The bubbles mixed into the electrolyte only need to be mixed in at least a part of the electrolyte flow path, and preferably the bubbles are generated or introduced from the inflow side of the electrolyte and allowed to exist for a long time in the subsequent flow path. preferable. In addition, in order to prevent air bubbles from entering the single cell, that is, the positive electrode chamber and the negative electrode chamber, the piping structure is designed to prevent air bubbles from entering the electrode chamber as much as possible by utilizing the difference in specific gravity between the electrolyte and the air bubbles, that is, the buoyancy of the air bubbles. It is preferable to do so.

本発明における気泡の導入一方法としては、電解液流路
中に直接コンプレッサーを用いてガスを送入する方法、
ガス発生用の電解槽で発生したガスを送入する方法、電
解液流路中に直接ガス発生用の電極を配置し、気泡を発
生させる方法、卑金属を水系電解液等に添加して水素ガ
スを発生させる等、化学反応を利用して気泡を混入する
方法、高温電解の電解液等のように溶媒自身の蒸気を気
泡として利用する方法、電解液流路中に低沸点溶媒を送
入するプヒめのキャピラリー等を置き、そこで溶媒を気
化させて導入する方法等が用いられる。
One method of introducing bubbles in the present invention is to directly introduce gas into the electrolyte flow path using a compressor;
A method of supplying gas generated in an electrolytic tank for gas generation, a method of placing an electrode for gas generation directly in the electrolyte flow path to generate bubbles, a method of adding base metals to an aqueous electrolyte, etc. to generate hydrogen gas A method of mixing air bubbles using a chemical reaction such as generating , a method of using the vapor of the solvent itself as bubbles as in the electrolyte of high-temperature electrolysis, a method of sending a low-boiling point solvent into the electrolyte flow path A method is used in which a small capillary or the like is placed and the solvent is vaporized and introduced therein.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第2図は、本発明に用いる気泡送入装置の一実施例を示
すもので、ガスボンベ(例えば窒素ガス)8に連結され
たガス導入管8Aを電解液流路(主管)4内に挿入した
ものである。この場合は、ガス導入管8Aを雪解液流路
4に挿入するだけでよいので構造が簡単であシ、また任
意の箇所に設けることができる利点がある。なお、第2
図の実施例において電解液流路(配管)4内が外気等と
比べて減圧状態のときは調整弁を通じて外気を流路内に
混入してもよい。
FIG. 2 shows an embodiment of the bubble introduction device used in the present invention, in which a gas introduction pipe 8A connected to a gas cylinder (for example, nitrogen gas) 8 is inserted into the electrolyte flow path (main pipe) 4. It is something. In this case, the structure is simple because it is only necessary to insert the gas introduction pipe 8A into the snow melt flow path 4, and there is an advantage that it can be provided at any location. In addition, the second
In the illustrated embodiment, when the inside of the electrolyte flow path (piping) 4 is in a reduced pressure state compared to the outside air, outside air may be mixed into the flow path through the regulating valve.

次に第3図は、本発明の他の実施例を示すもので、単セ
ル群が上段セル92と下段セル91に分けられる場合に
、下段セル91では副反応等を利用して、本発明を実施
するに充分なガスを電解によシ発生させ、連絡管9Aを
通して上段のセル92群に送入するものである。この実
施例では、連絡管9A以降の漏洩電流は防止されるが、
T膜セル91の配管群での漏洩電流の生成は避けられな
い。
Next, FIG. 3 shows another embodiment of the present invention, in which when a single cell group is divided into an upper cell 92 and a lower cell 91, the lower cell 91 uses a side reaction etc. to perform the present invention. Sufficient gas is generated by electrolysis to carry out this process, and the generated gas is sent to the upper group of cells 92 through the connecting pipe 9A. In this embodiment, leakage current from the connecting pipe 9A onward is prevented, but
The generation of leakage current in the piping group of the T membrane cell 91 is unavoidable.

さらに第4図の実施例は、電解液3の流路IQ内に一対
の電極11を対向させて配置し、ここで直接ガスを発生
させて電解液中に混入するものでを)る。との実施例は
電解液流路内に単に電極を突出配置させるだけでよいの
で、安価な費用で容易に実施することができる。
Furthermore, in the embodiment shown in FIG. 4, a pair of electrodes 11 are arranged to face each other in the flow path IQ of the electrolytic solution 3, and gas is directly generated here and mixed into the electrolytic solution. The embodiment described above can be easily implemented at low cost because it is sufficient to simply dispose the electrode in a protruding manner within the electrolyte flow path.

さらに第5図は、単セル群を直列に配置した電解槽の電
解液流通用配管の好適な配置例を示したものである。図
において、この装置は、隔、膜を介して直列に積層され
た正極室1および負極室2と、該正極室まだは負極室(
単セル)に電解液3を送入するだめの主管4と、該主管
4から分岐して前記単セルに接続されるU字型の分岐管
12と、上記単セルの上部に直立して設けられた分岐管
5Aと、これらの分岐管に連結される主管5と、前記流
入側の主管4と出口側の主管5を単セル群の一方の端部
においてバイパスする連絡管13から主に構成される。
Further, FIG. 5 shows a preferred arrangement of electrolyte distribution piping in an electrolytic cell in which single cell groups are arranged in series. In the figure, this device consists of a positive electrode chamber 1 and a negative electrode chamber 2, which are stacked in series with a partition or a membrane in between, and the positive electrode chamber and the negative electrode chamber (
A main pipe 4 for feeding electrolyte 3 into the single cell, a U-shaped branch pipe 12 branching from the main pipe 4 and connected to the single cell, and a U-shaped branch pipe 12 provided upright above the single cell. Mainly composed of branch pipes 5A, main pipes 5 connected to these branch pipes, and a communication pipe 13 that bypasses the main pipe 4 on the inflow side and the main pipe 5 on the outlet side at one end of the single cell group. be done.

この場合、主管4は単セルの電解液流入口よりも上方に
配置され、該主管4と単セルとを連結するU字管を通し
て液が流入する際、気泡がU字管部でトラップされ、単
セル内に入らないようになっている。すなわち、電解液
と気泡との比重差(気泡の浮力)によJUU字管通って
電解液流入口に到る間に気泡が上昇分離され、従って気
泡が単セル内に入シ込むことなく主に主管4、連絡管1
3および出口側の主管5を通って系外に排出される。こ
の場合、電流の遮断効果を高めるため、連絡管13の一
部13Aを径小にすることが望ましい。
In this case, the main pipe 4 is arranged above the electrolyte inlet of the single cell, and when the liquid flows through the U-shaped pipe connecting the main pipe 4 and the single cell, air bubbles are trapped in the U-shaped pipe, It is designed not to enter a single cell. In other words, the difference in specific gravity between the electrolyte and the bubbles (the buoyancy of the bubbles) causes the bubbles to rise and separate while passing through the JUU tube and reaching the electrolyte inlet. Main pipe 4, connecting pipe 1
3 and the main pipe 5 on the outlet side to be discharged to the outside of the system. In this case, in order to enhance the current blocking effect, it is desirable to reduce the diameter of the portion 13A of the communication pipe 13.

上記実施例によれば、気泡を電解液が流通する主管3、
連絡管13および主管5に限定して混入することによシ
ミ流遮断効果が大幅に向上し、漏洩電流を効果的に防止
することができる。また気泡が単セル1−!たけ2内に
入らガいので、電解槽の動作も安定化する効果も得られ
る。
According to the above embodiment, the main pipe 3 through which the electrolyte flows through the bubbles;
By mixing only the connecting pipe 13 and the main pipe 5, the stain flow blocking effect is greatly improved, and leakage current can be effectively prevented. Also, the air bubble is single cell 1-! Since it does not enter the tank 2, the operation of the electrolytic cell can also be stabilized.

上記実施例において、主管4と単セル1まだは20間の
気液分離手段としてU字管12を用いたが、その他の気
液分離手段、例えば連絡管12Aにガス抜き孔を設けた
液溜を設けることができる。
In the above embodiments, the U-shaped tube 12 was used as a gas-liquid separation means between the main pipe 4 and the single cell 1 or 20, but other gas-liquid separation means, such as a liquid reservoir provided with a gas vent hole in the communication pipe 12A, were used. can be provided.

以上、本発明によれば、電解層や電池等の電極反応装置
における漏洩電流を効果的に防止し、これらの装置の省
エネルギー化を図ることができる。
As described above, according to the present invention, leakage current in electrode reaction devices such as electrolytic layers and batteries can be effectively prevented, and energy saving of these devices can be achieved.

以下、本発明の実施例および具体的実施例を述べる。Examples and specific examples of the present invention will be described below.

実施例 長さ1m1内径−1011111のポリ塩化ビニル製チ
ューブの両端に白金網を入れ、その白金網間の抵抗を交
流ブリッジ法および回路試験器で測定した。
Example A platinum mesh was placed at both ends of a polyvinyl chloride tube having a length of 1 m and an inner diameter of -1011111 mm, and the resistance between the platinum meshes was measured using an AC bridge method and a circuit tester.

前記チューブには電解液と′してl規定硫酸水溶液を毎
分100dの流量で流した。第2図に示すガス(空気)
を導入する方法によ多硫酸水溶液中に気泡を作ったとこ
ろ、測定された抵抗値はガス導入前の約50倍となった
。次に第4図に示す電解法で硫酸水溶液中に気泡を作っ
たところ、測定された抵抗値はガス導入前の約30倍と
なった。これらの結果から電解液流路の電気抵抗が著し
く増大し、漏洩電流の減少に効果のあることが明らかに
なった。
A 1N sulfuric acid aqueous solution was flowed through the tube as an electrolyte at a flow rate of 100 d/min. Gas (air) shown in Figure 2
When bubbles were created in a polysulfuric acid aqueous solution using a method of introducing gas, the measured resistance value was about 50 times that before gas introduction. Next, when bubbles were created in the sulfuric acid aqueous solution using the electrolytic method shown in FIG. 4, the measured resistance value was about 30 times that before the gas was introduced. These results revealed that the electrical resistance of the electrolyte flow path increased significantly and was effective in reducing leakage current.

実施例1 第5図に示す電解液流路を有する、20個の単セルから
なる電解槽を作シ、塩酸酸性、塩化鉄、水溶液の電解実
験を行った。正、負極液共に1規定塩酸酸性1モル/2
塩化第一鉄および1モル/ぶ塩化第二鉄水溶液を25 
oMl1分の流量で、この電解槽の単セル群に送り、4
Aの定電流で電解を行い、電解槽の入口と出口の電解液
中の鉄の2価、3価の割合をポルタンメトリーで測定し
た。なお電解中にガス発生など副反応と考えられる現象
は一切認められなかった。通電量と電解を受けた鉄量か
ら計算した所要電流値との比は約1対0.97であシ、
電解液流路を通って流れる漏洩電流は約3%と考えられ
た。
Example 1 An electrolytic cell consisting of 20 single cells having the electrolyte flow path shown in FIG. 5 was constructed, and electrolysis experiments using acidic hydrochloric acid, iron chloride, and aqueous solutions were conducted. Both positive and negative electrode liquids are 1N hydrochloric acid acidic 1 mol/2
25% of ferrous chloride and 1 mol/b ferric chloride aqueous solution
oMl is sent to the single cell group of this electrolytic cell at a flow rate of 1 minute, and 4
Electrolysis was performed at a constant current of A, and the proportions of divalent and trivalent iron in the electrolytic solution at the inlet and outlet of the electrolytic cell were measured by portammetry. Furthermore, no phenomena considered to be side reactions such as gas generation were observed during electrolysis. The ratio of the required current value calculated from the amount of current applied and the amount of iron subjected to electrolysis is approximately 1:0.97,
The leakage current flowing through the electrolyte channel was thought to be about 3%.

次に、同条件での電解実験中に、正、負極液の電解槽入
口側流路4内に窒素ボンベによシガスを導入した。その
結果、上記漏洩電流は0.5%以下に減少した。
Next, during an electrolysis experiment under the same conditions, a nitrogen gas was introduced into the electrolytic tank inlet side flow path 4 for the positive and negative electrode liquids using a nitrogen cylinder. As a result, the leakage current was reduced to 0.5% or less.

また、電解によりガスを発生させる方法として、電解液
流路中に白金線を巻いたものを陰極として置き、一方、
電解液流路の外に隔膜を介して対極室(陽極室)を設け
、通電して陰極より水素ガスを発生させた。白金陰極に
よる鉄(3価)自身や反応および水素ガスと鉄(3価)
との反応が起っていると考えられるため、漏洩電流の減
少を精度よく検出するのは困難であったが、ガス発生に
要する電流が小さいので、その効果は充分に測定するこ
とができ、その結果、少なくとも、漏洩電流は1%以下
になることが分った。
In addition, as a method of generating gas by electrolysis, a platinum wire wound around the electrolyte flow path is placed as a cathode, while
A counter electrode chamber (anode chamber) was provided outside the electrolyte flow path via a diaphragm, and electricity was applied to generate hydrogen gas from the cathode. Iron (trivalent) itself and reaction with hydrogen gas and iron (trivalent) by platinum cathode
It was difficult to accurately detect the reduction in leakage current because it is thought that a reaction with As a result, it was found that at least the leakage current was 1% or less.

実施例2 長さltn、内径−Lo+tn++のレツ素樹脂製チュ
ーブの両端に白金網を入れ、その白金網間の抵抗を交流
ブリッジ法および回路試験器で測定した。上記チューブ
には、沸点近くに加熱した1モル/1.硫酸す) IJ
ウム水溶液を毎分100 mgの流量で流し込んだ。水
溶液のチューブ入口側にニクロム線を内装し、通電して
、ニクロム線近傍の水溶液を部分的に沸騰させて水蒸気
の気泡を作成し、該水溶液中に混入させた。ニクロム線
通電後の白金網間抵抗は、通電後の値と比較して約20
倍の抵抗値の上昇がみられ、漏洩電流が著しく減少する
ことが分った。
Example 2 A platinum mesh was placed at both ends of a resin tube having a length of ltn and an inner diameter of -Lo+tn++, and the resistance between the platinum meshes was measured using an AC bridge method and a circuit tester. The above tube contains 1 mol/1. sulfuric acid) IJ
Aqueous solution of aluminum was poured into the chamber at a flow rate of 100 mg/min. A nichrome wire was installed on the inlet side of the aqueous solution tube, and electricity was applied to partially boil the aqueous solution near the nichrome wire to create water vapor bubbles, which were mixed into the aqueous solution. The resistance between the platinum wire mesh after energizing the nichrome wire is approximately 20% compared to the value after energizing.
It was found that the resistance value doubled and the leakage current decreased significantly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、正極室と負極室が電気的に直列に積層された
単セル群からなる従来の電極反応装置を示す説明図、第
2図、第3図および第4図は、それぞれ本発明における
気泡混入方法を説明する図、第5図は、本発明のさらに
他の実施例を示す電極反応装置の説明図である。 1・・・・・正極室(単セル)、2・・・・・・負極室
(単セル)、3・・・・・・電解液の流れ、4・・・・
・・電解液流路、8・・・・・・ガスボンベ、11・・
・・・・ガス発生電極。 代理人 弁理士 川 北 武 長
FIG. 1 is an explanatory diagram showing a conventional electrode reaction device consisting of a group of single cells in which a positive electrode chamber and a negative electrode chamber are electrically stacked in series, and FIGS. 2, 3, and 4 are illustrations of the present invention, respectively. FIG. 5 is an explanatory diagram of an electrode reaction apparatus showing still another embodiment of the present invention. 1...Positive electrode chamber (single cell), 2...Negative electrode chamber (single cell), 3...Flow of electrolyte solution, 4...
... Electrolyte flow path, 8 ... Gas cylinder, 11 ...
...Gas generation electrode. Agent Patent Attorney Takeshi Kawakita

Claims (1)

【特許請求の範囲】 (1)正極室および負極室を有する複数の単セルが隔膜
を介して構成され、電解液が該セル中に流通されて電極
反応を行なう装置において、前記単セル間を連通ずる電
解質液通路の少くとも一部の液中に気泡を混入すること
を4?徴とする電極反応装置における漏洩電流防止方法
。 (2、特許請求の範囲第1項において、電解液中に混入
する気泡が電解法によって発生させたものであることを
特徴とする、電極反応装置における漏洩電流防止方法。 (3)特許請求の範囲第1項に2いて、前記セル内に気
泡が入らないように、セル入口で気泡を分離して電解液
通路に気泡を混入することを特徴とする、電極反応装置
における漏洩電流防止方法。
[Scope of Claims] (1) In an apparatus in which a plurality of single cells each having a positive electrode chamber and a negative electrode chamber are arranged with a diaphragm interposed therebetween, and an electrolytic solution is caused to flow through the cells to perform an electrode reaction, a connection between the single cells is provided. 4? Is it possible to mix air bubbles into at least a part of the electrolyte liquid passage that communicates with it? A method for preventing leakage current in an electrode reaction device. (2. A method for preventing leakage current in an electrode reaction device according to claim 1, characterized in that the bubbles mixed into the electrolytic solution are generated by an electrolytic method. (3) Claim 1 2. A method for preventing leakage current in an electrode reaction device, which falls within the scope of item 1 and 2, and includes separating air bubbles at a cell inlet and mixing the air bubbles into an electrolyte passage so as to prevent air bubbles from entering the cell.
JP58001687A 1983-01-11 1983-01-11 Leak current preventing method in electrode reaction equipment Granted JPS59127378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001687A JPS59127378A (en) 1983-01-11 1983-01-11 Leak current preventing method in electrode reaction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001687A JPS59127378A (en) 1983-01-11 1983-01-11 Leak current preventing method in electrode reaction equipment

Publications (2)

Publication Number Publication Date
JPS59127378A true JPS59127378A (en) 1984-07-23
JPH0157469B2 JPH0157469B2 (en) 1989-12-06

Family

ID=11508424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001687A Granted JPS59127378A (en) 1983-01-11 1983-01-11 Leak current preventing method in electrode reaction equipment

Country Status (1)

Country Link
JP (1) JPS59127378A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
JP2003073879A (en) * 2001-09-04 2003-03-12 Sumitomo Metal Mining Co Ltd Control device for flow rate in supplying electrolytic solution, and method for manufacturing starting sheet using the device
JP2016149355A (en) * 2015-02-13 2016-08-18 台湾ナノカーボンテクノロジー股▲ふん▼有限公司 Stepwise-stacked parallel connection type seawater battery
WO2019031099A1 (en) * 2017-08-10 2019-02-14 京セラ株式会社 Flow battery
WO2019031033A1 (en) * 2017-08-10 2019-02-14 京セラ株式会社 Flow battery
JP2019532475A (en) * 2016-10-19 2019-11-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Redox flow battery including a system for reducing bypass current
IT201900003845A1 (en) * 2019-03-15 2020-09-15 Leonardo Spa VALVE SYSTEM FOR AN ELECTROCHEMICAL POWER SOURCE, IN PARTICULAR FOR AN UNDERWATER VESSEL, AND RELATED ELECTROCHEMICAL POWER SOURCE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938897A (en) * 1972-08-17 1974-04-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938897A (en) * 1972-08-17 1974-04-11

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
JP2003073879A (en) * 2001-09-04 2003-03-12 Sumitomo Metal Mining Co Ltd Control device for flow rate in supplying electrolytic solution, and method for manufacturing starting sheet using the device
JP2016149355A (en) * 2015-02-13 2016-08-18 台湾ナノカーボンテクノロジー股▲ふん▼有限公司 Stepwise-stacked parallel connection type seawater battery
JP2019532475A (en) * 2016-10-19 2019-11-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Redox flow battery including a system for reducing bypass current
WO2019031099A1 (en) * 2017-08-10 2019-02-14 京セラ株式会社 Flow battery
WO2019031033A1 (en) * 2017-08-10 2019-02-14 京セラ株式会社 Flow battery
CN110998948A (en) * 2017-08-10 2020-04-10 京瓷株式会社 Flow battery
CN111033853A (en) * 2017-08-10 2020-04-17 京瓷株式会社 Flow battery
CN110998948B (en) * 2017-08-10 2022-10-25 京瓷株式会社 Flow battery
IT201900003845A1 (en) * 2019-03-15 2020-09-15 Leonardo Spa VALVE SYSTEM FOR AN ELECTROCHEMICAL POWER SOURCE, IN PARTICULAR FOR AN UNDERWATER VESSEL, AND RELATED ELECTROCHEMICAL POWER SOURCE
EP3709395A1 (en) * 2019-03-15 2020-09-16 LEONARDO S.p.A. Valve system for an electrochemical power source, in particular for an underwater vessel, and its electrochemical power source
US11211674B2 (en) 2019-03-15 2021-12-28 Leonardo S.P.A. Valve system for an electrochemical power supply source, in particular for an underwater vehicle, and corresponding electrochemical power supply source

Also Published As

Publication number Publication date
JPH0157469B2 (en) 1989-12-06

Similar Documents

Publication Publication Date Title
KR102569814B1 (en) PEM Water Electrolyzer System, PEM Water Electrolyzer Cells, Stacks and Methods of Producing Hydrogen in the System
CN107849713B (en) The reduction method and electrolysis system of carbon dioxide are utilized for electrochemistry
JP5422083B2 (en) Non-flow redox battery
CN114574903B (en) Synchronous hydrogen and oxygen production separation system
JPS59127378A (en) Leak current preventing method in electrode reaction equipment
CN102201588B (en) Device and method for treating tail gas of fuel cell
CN103370449A (en) Electrolyser having a spiral inlet tube
JPS61156641A (en) Zinc-bromine battery
CN115732726B (en) Fuel cell anode tail gas treatment system device and tail gas treatment method thereof
CN113113636A (en) Manifold device for fuel cell and stack
CN106784955B (en) Oxyhydrogen fuel cell
CN109638309A (en) A kind of gas phase adverse current without diaphragm metal-oxygen-containing gas flow battery
JPH02125888A (en) Bipolar type electrolytic cell of water
JPS63152880A (en) Electrolyte concentration control system of liquid electrolyte type fuel cell
US7410715B1 (en) Fuel cell system
CN216947232U (en) Separate power supply type hydrogen enriching, purifying and pressurizing electrochemical hydrogen pump system
CN215116012U (en) Electrolytic cell testing system
CN218710900U (en) Hydrogen-oxygen separation electrolytic tank of integrated water tank
CN221028701U (en) Gas preparation system
CN219547111U (en) Hydrogen peroxide generating device with modified cation exchange membrane
KR200225287Y1 (en) Electrolytic device for producing oxygen and hydrogen gases
CN214936322U (en) Lead to and join in marriage type hydrogen-rich adapter device
CN219315097U (en) Alkaline water electrolysis device
JP2011127208A (en) Water electrolyzer
JP3169975B2 (en) Electrochemical device using ion exchange resin membrane