JPS59126758A - Martensitic stainless cast steel for casting strain inducing body of load cell - Google Patents

Martensitic stainless cast steel for casting strain inducing body of load cell

Info

Publication number
JPS59126758A
JPS59126758A JP195583A JP195583A JPS59126758A JP S59126758 A JPS59126758 A JP S59126758A JP 195583 A JP195583 A JP 195583A JP 195583 A JP195583 A JP 195583A JP S59126758 A JPS59126758 A JP S59126758A
Authority
JP
Japan
Prior art keywords
casting
load cell
cast steel
strain inducing
inducing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP195583A
Other languages
Japanese (ja)
Other versions
JPS6142778B2 (en
Inventor
Toshiaki Morichika
森近 俊明
Akio Ninomiya
二宮 章夫
Kazuyuki Inui
一幸 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP195583A priority Critical patent/JPS59126758A/en
Publication of JPS59126758A publication Critical patent/JPS59126758A/en
Publication of JPS6142778B2 publication Critical patent/JPS6142778B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titled cast steel which yields a strain inducing body having good dimensional accuracy and a desired shape when adequately machined by incorporating C, Si, Mn, Ni, Cr, Mo, Cu and Nb respectively at prescribed proportions, and the balance composed of the Fe and unavoidable impurities. CONSTITUTION:A titled martensitic stainless cast steel consists of 0.02-0.1% C, 0.4-2.0% Si, 0.2-1.5% Mn, 4.5-8.5% Ni, 8.5-10.5% Cr, 1.0-3.0% Mo, 1.0- 3.0% Cu, 0.2-0.5% Nb, and the balance Fe and unavoidable impurities. The production of a strain inducing body of a load cell by using such cast steel is accomplished by making a casting having a desired shape by an ordinary casting method, and homogenizing the same by heating and holding at 1,050-1,150 deg.C then subjecting the casting to furnace cooling. The furnace cooled casting is subjected to a solution heat-treatment consisting of holding at 900-1,100 deg.C and oil cooling and to a heat treatment consisting of holding at 400-600 deg.C and air cooling after an aging treatment. As a result, the strain inducing body of the load cell provided with various good characteristics such as strength, impact resistance, linearity within the elastic limit, hysteresis or the like is obtd.

Description

【発明の詳細な説明】 本発明は、ロードセル起歪体の鋳造に使用されるマルテ
ンサイト系析出硬化型ステンレス鋳鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a martensitic precipitation hardening stainless steel cast steel used for casting a load cell strain body.

ロードセル起歪体は、負荷する荷重をそれに比例する電
気信号に変える重量センサーであり、従来、SNCM4
39 (0,4C−0,25Si −0,75Mn−1
,8Ni −0,8Cr −0,23Mo −Fe )
の鍛圧材を素材とし、これを機械加工して所定の形状に
削り出すか、またはいくつかの鍛圧部品をボルト締めに
て所定の形状に組立てる方法により製作されている。し
かし、削り出し方式は加工コストが極めて高くつくのが
難点であり、一方組立て方式では、製作工程が煩雑なこ
と、起歪体の形状が大きくなり、重量増を避は得ないこ
と、また使用中ボルト締付はトルクのゆるみによる精度
低下を生じる、などの欠点がある。加えて、いづれの方
式においても、製作可能な形状に制限があり、ロードセ
ル起歪体として最適の形状を有するものを得ることは不
可能であり、あるいは極めて複雑な加工々程を余儀なく
される。もし、起歪体を鋳造により製作することができ
れば、上記の問題は一挙に解消し、設計のバリエーショ
ンを拡大することも可能となる。
A load cell strain body is a weight sensor that converts the applied load into an electrical signal proportional to it.
39 (0,4C-0,25Si-0,75Mn-1
,8Ni-0,8Cr-0,23Mo-Fe)
It is manufactured by using forged press material as a material and cutting it into a predetermined shape by machining it, or by assembling several press parts into a predetermined shape by tightening bolts. However, the disadvantage of the machining method is that the processing cost is extremely high, while with the assembly method, the manufacturing process is complicated, the shape of the strain-generating body becomes large, and the weight inevitably increases. Tightening medium bolts has drawbacks such as a decrease in accuracy due to torque loosening. In addition, in either method, there is a limit to the shape that can be manufactured, and it is impossible to obtain a load cell strain body with an optimal shape, or extremely complicated machining steps are required. If the strain-generating body could be manufactured by casting, the above problems would be solved all at once, and it would also be possible to expand the variety of designs.

しかるに、従来使用されてきたー、SNCM439など
の合金からなるこれまでのロードセル起歪体は、それが
鍛工品か鋳造品かの違いによって、起歪体としての特性
、とくに直線性、ヒステリシス性、マイクロクリープ性
などが著しく異なり、鋳造品の特性は、鍛圧量にくらべ
劣悪である。例えば、SNCM439の鍛圧量からなる
起歪体であれば、178000の精度が得られるのに対
し、同じ合金を用いた鋳造品のそれは、わずかに1/1
000程度に過ぎず、結局鋳造によって、精度のよい起
歪体を製作することは不可能であった。
However, the conventional load cell strain bodies made of alloys such as SNCM439 have different characteristics as a strain body, especially linearity, hysteresis, and micro- Creep properties are significantly different, and the properties of cast products are inferior to the amount of forging. For example, a strain body made of SNCM439 with a forging amount can achieve an accuracy of 178,000, whereas a cast product made from the same alloy has an accuracy of only 1/1.
In the end, it was impossible to manufacture a highly accurate strain body by casting.

本発明者等は、上記実情に対処するために、既出願にお
いて、鍛圧量と同等の精度を有する起歪体を鋳造により
製作し得る合金を提供した(特願昭57−1402;’
?3号)。
In order to deal with the above-mentioned situation, the present inventors have provided an alloy in which a strain-generating body having an accuracy equivalent to the amount of forging can be manufactured by casting in a previous application (Japanese Patent Application No. 57-1402;
? No. 3).

本発明は上記合金の特性を更に改善するために化学成分
組成について種々検討を加えた結果、Cr量を低減する
ことにより、材料組織内に残る残留オーステナイトをな
くし、弾性限度下位部における直線性、ヒステリシス性
およびマイクロクリープ特性を向上させたものである。
In order to further improve the properties of the above-mentioned alloy, the present invention has conducted various studies on the chemical composition. By reducing the amount of Cr, residual austenite remaining in the material structure has been eliminated, and the linearity in the lower part of the elastic limit has been improved. It has improved hysteresis and microcreep characteristics.

本発明合金は、マルテンサイト組織を有する析出硬化型
ステンレス鋳鋼であって、Co、02〜0.1%、Si
O,4〜2.0%、Mn O12〜1.5%、Ni 4
.5〜8.5%、Cr 8.5〜10.5%、Mo1.
0〜3.0%、Cu 1.0〜3.0%、Nb0.2〜
0.5%、残部Feおよび不可避的に混入する不純物か
らなる化学成分組成を有する。
The alloy of the present invention is a precipitation hardening stainless steel cast steel having a martensitic structure, containing Co, 02 to 0.1%, and Si.
O, 4-2.0%, Mn O12-1.5%, Ni 4
.. 5-8.5%, Cr 8.5-10.5%, Mo1.
0~3.0%, Cu 1.0~3.0%, Nb0.2~
It has a chemical composition consisting of 0.5%, the balance Fe and unavoidably mixed impurities.

本発明合金は、鋳造後、後記の熱処理を施すことにより
、ロードセル起歪体として必要な緒特性を具備し、1/
1”0000に達する精度を保証することができる。本
発明合金の成分組成は、ロードセル起歪体の種々の使用
条件に対応し得るように機械的性質および耐食性等をも
考慮して規定されたものである。
After casting, the alloy of the present invention can be heat-treated as described below to provide the necessary properties as a strain-generating body for a load cell.
Accuracy reaching 1"0,000 can be guaranteed. The composition of the alloy of the present invention was determined taking into consideration mechanical properties, corrosion resistance, etc., so that it can correspond to various usage conditions of load cell strain bodies. It is something.

以下、本発明合金の成分限定理由を説明する。The reasons for limiting the components of the alloy of the present invention will be explained below.

なお、「%」は重量%である。Note that "%" is % by weight.

C:0.02〜0.1% Cは材料の硬度を高めるが、0.02%に満たないとそ
の効果が不足する。C量の増加とともに、硬度は増すが
、多過ぎると、耐衝撃性、加工性等が悪化するので、0
.1%以下とする。
C: 0.02-0.1% C increases the hardness of the material, but if it is less than 0.02%, its effect is insufficient. Hardness increases as the amount of C increases, but if it is too large, impact resistance, workability, etc. will deteriorate, so
.. 1% or less.

Si:0.4〜2.0% Siは合金溶製時の脱酸剤として加えられる。Si: 0.4-2.0% Si is added as a deoxidizing agent during alloy melting.

含有量が0.4%に満たないと、脱酸効果が不足し、一
方2.0%をこえると、耐衝撃性、靭性が損なわれる。
If the content is less than 0.4%, the deoxidizing effect will be insufficient, while if it exceeds 2.0%, impact resistance and toughness will be impaired.

Mn  : 0.2〜1.5% Mnは合金溶湯を清浄化し、材質を改善する。Mn: 0.2-1.5% Mn cleans the molten alloy and improves the material quality.

含有量が0.2%に満たないとその効果が発揮されず、
一方1.5%をこえると、耐衝撃性が低下する。
If the content is less than 0.2%, the effect will not be exhibited,
On the other hand, if it exceeds 1.5%, impact resistance decreases.

Ni:4.5〜8.5% 高い弾性限度1.高い引張強度を確保するために、少く
とも4.5%の含有を必要とする。しかし、多量の含有
はコスト増大のみならず、鋳造性の悪化を招くので、8
.5%を上限とする。
Ni: 4.5-8.5% High elastic limit 1. A content of at least 4.5% is required to ensure high tensile strength. However, containing a large amount not only increases cost but also deteriorates castability.
.. The upper limit is 5%.

Cr : 8.5〜10.5% 高い弾性限度、高い引張強度を得るために、8.5%以
上を要す″るが、あまり多くなると、マルテンサイト組
織が得られず、弾性限界下位部分における直線性、ヒス
テリシス性、マイクロクリープ特性の低下を引起す。ま
た、多量の含有はコスト的にも不利である。よって、1
0.5%を上限とする。
Cr: 8.5-10.5% In order to obtain a high elastic limit and high tensile strength, 8.5% or more is required, but if it is too large, a martensitic structure cannot be obtained and the lower part of the elastic limit This causes deterioration of linearity, hysteresis, and microcreep characteristics in the 1.
The upper limit is 0.5%.

Mo : 1.0〜3.0% Moは弾性限度および引張強度の向上に有効である。し
かし、1.0%に満たないと効果が不足し、一方3.0
%をこえると、耐衝撃性、伸び、絞りが減する。
Mo: 1.0 to 3.0% Mo is effective in improving the elastic limit and tensile strength. However, if the concentration is less than 1.0%, the effect will be insufficient;
If it exceeds %, impact resistance, elongation, and drawing capacity decrease.

Cu : 1.0〜8.0% CuはCu ’)ツチ層による析出硬化によって弾性限
度お主び引張強さの向上をもたらす。その効果を得るた
めに、1.0%以上の含有を要するが、3.0%をこえ
ると、耐衝撃性が低下し、伸び、絞りが減する。
Cu: 1.0 to 8.0% Cu (Cu') improves the elastic limit and tensile strength through precipitation hardening due to the thick layer. In order to obtain this effect, a content of 1.0% or more is required, but if the content exceeds 3.0%, impact resistance decreases, elongation, and aperture decrease.

Nb:0.2〜0.5% Nbは機械的性質、ことに弾性限度の向上に寄与するが
、0.2%未満では効果が不足し、一方0.5%をこえ
ると耐衝撃性が低下する。
Nb: 0.2 to 0.5% Nb contributes to improving mechanical properties, especially the elastic limit, but if it is less than 0.2%, the effect is insufficient, while if it exceeds 0.5%, impact resistance decreases. descend.

本発明合金は通常の溶製技術上不可避的に混入する不純
物を随伴するが、機械的性質を高めるために、Po、0
3%以下、80.03%以下に規制することか望ましい
The alloy of the present invention is accompanied by impurities that are unavoidable due to ordinary melting technology, but in order to improve mechanical properties, Po, 0
It is desirable to regulate it to 3% or less and 80.03% or less.

本発明合金を用いてロードセル起歪体を製造するには、
通常の鋳造法により所要の形状を有する    ゛鋳造
品を得、これを温度1050〜1150°Cの加熱保持
にて均質化したのち炉冷しく冷却速度約0.6〜1.2
°C/分)、ついで900〜1100°Cに保持して油
冷(約15〜45°C/秒)する溶体化処理を行い、更
に400〜600°Cに保持して時効処理したのち空冷
(約3〜7°C/秒)することからなる熱処理が施こさ
れる。上記熱処理によって、強度、耐衝撃性や弾性限度
内での直線性、ヒステリシス性などの良好な緒特性が付
与される。
To manufacture a load cell strain body using the alloy of the present invention,
A cast product having the desired shape is obtained by a normal casting method, homogenized by heating and holding at a temperature of 1050 to 1150°C, and then furnace cooled at a cooling rate of approximately 0.6 to 1.2
°C/min), then solution treatment by holding at 900-1100°C and oil cooling (approx. 15-45°C/sec), then aging treatment by holding at 400-600°C, followed by air cooling. (approximately 3-7°C/sec). The above heat treatment imparts good properties such as strength, impact resistance, linearity within elastic limits, and hysteresis.

また、本発明合金からなる鋳造品は、上記熱処理過程に
おいて、必要に応じ加工々程を付加することができる。
Furthermore, the cast product made of the alloy of the present invention can be subjected to additional working steps as necessary during the heat treatment process.

従来材であるSNCM439の鋳造品の場合は、熱処理
の段階で加工を加えると大きな歪みが生じ、所要の寸法
精度を出すことができない。また、歪を回避するために
、すべての熱処理を終えたのちに加工を行なおうとして
も、硬くて加工は極めて困難である。1本発明合金では
、加工が容易で、かつ加工後の熱処理においても歪は極
めて少ないので、適宜機械加工を加えることによって寸
法精度のよい所望の形状を有する起歪体に仕上げること
ができる。
In the case of a cast product of SNCM439, which is a conventional material, if processing is applied during the heat treatment stage, large distortions occur, making it impossible to achieve the required dimensional accuracy. Furthermore, even if one attempts to process the material after all heat treatments have been completed in order to avoid distortion, the material is hard and extremely difficult to process. 1. The alloy of the present invention is easy to process and has very little distortion even during heat treatment after processing, so by applying appropriate machining, it can be finished into a strain-generating body having a desired shape with good dimensional accuracy.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 第1表に示す成分組成の合金からなる鋳造品を熱処理す
るとともに機械加工を加えて第1図に示す形状を有する
ボックス型ロードセル起歪体(L:14(h++m、W
 : 67mm、 T : 50mm、孔径(Dt )
:20M、孔径(D2): 20mm )を製作した。
EXAMPLE A box-type load cell strain body (L: 14 (h++m, W
: 67mm, T: 50mm, hole diameter (Dt)
: 20M, hole diameter (D2): 20mm).

賦香(1)〜(3)は本発明例、(10)および(11
)は比較例である。比較例(10)は、Cr量が本発明
の上限規定から逸脱するもの、(11)はSNCM43
9NC相である。
Flavoring (1) to (3) are examples of the present invention, (10) and (11).
) is a comparative example. Comparative example (10) is one in which the Cr amount deviates from the upper limit stipulation of the present invention, and (11) is SNCM43
It is a 9NC phase.

上記熱処理は、賦香(1)〜・(3)および(10)に
ついては、r1100°CX2時間・炉冷→1000°
C×2時間・油冷−480°CX2時間・空冷]であり
、賦香(11)は、SNCM439についてのJIS’
規定による焼入れ・焼もどしく焼入れ温度870°C1
焼もどし温度580°C)である。
The above heat treatment was performed at r1100°C for 2 hours, furnace cooling → 1000° for fragrance (1) to (3) and (10).
C x 2 hours, oil cooling -480°C x 2 hours, air cooling], and the fragrance (11) is JIS' for SNCM439.
Quenching and tempering according to regulations Quenching temperature 870°C1
The tempering temperature is 580°C).

各供試起歪体の重量センサーとしての精度の測定結果を
第1表に示す。SNCM439の鋳造品からなる賦香(
11)の起歪体の精度は、わずかに1/1000に過ぎ
ず、またCr量の高い賦香(10)の起歪体が1/80
00であるのに対し、本発明合金の鋳造品からなる賦香
(1)〜(3)の起歪体は1/9000m6精度を有す
る。この精度は、従来のSNC’M439鍛圧品からな
る起歪体の精度(約1/8.000程度)を十分上回る
ものである。
Table 1 shows the measurement results of the accuracy of each test strain body as a weight sensor. Incense made of cast SNCM439 (
The accuracy of the flexure element 11) is only 1/1000, and the accuracy of the flexure element 10, which has a high Cr content, is 1/80.
00, whereas the strain-generating bodies (1) to (3) made of cast products of the alloy of the present invention have an accuracy of 1/9000 m6. This accuracy sufficiently exceeds the accuracy (approximately 1/8.000) of the conventional strain body made of SNC'M439 pressed product.

また、各供試鋳造品(2)、(10)および(11)(
いづれも前記熱処理材)から試験片を調製し、機械試験
を行った結果を第2表に示す。本発明合金は、従来のS
NCM439などに比し、伸び、絞りは低いが、ロード
セル起歪体として必要な性能を具備し、特に強度にすぐ
れていることがわかる。
In addition, each test casting product (2), (10) and (11) (
Table 2 shows the results of mechanical tests on test pieces prepared from the above-mentioned heat-treated materials. The alloy of the present invention is similar to conventional S
Although it has lower elongation and aperture than NCM439 etc., it is clear that it has the performance necessary as a load cell strain body and is particularly strong.

以上のように、本発明合金は、鋳造によって、従来のS
NCM439鍛圧品からなるものよりすぐれた精度を有
するロードセル起歪体を製造することができる。従って
、鍛圧量を素材とする従来の製造法に比し、設計の自由
度が大きく、かつ加工々数の減少による工程の簡略化・
製造コストの低減をもたらす。また、熱処理過程での加
工が容易で、加工に因る歪も少いから、機械加工によっ
て所望に応じた最適の形状を有する起歪体を寸法精度よ
く仕上げることができる。むろん、鋳造により一体物と
して形成できるので、従来、のボルト締めによる組み立
て方式のものに比し、小型化・軽量化も可能である。
As described above, the alloy of the present invention can be made by casting the conventional S
It is possible to manufacture a load cell strain body having a higher precision than that made of NCM439 pressed product. Therefore, compared to conventional manufacturing methods that use forged presses as raw materials, there is a greater degree of freedom in design, and the process can be simplified by reducing the number of machining operations.
Brings down manufacturing costs. Further, since processing in the heat treatment process is easy and distortion caused by processing is small, a strain-generating body having an optimal shape according to a desired shape can be finished with high dimensional accuracy by machining. Of course, since it can be formed as a single piece by casting, it can be made smaller and lighter than the conventional assembly method using bolts.

なお、本発明合金は、前記のように強度等の機械的性質
にすぐれ、またステンレス鋳鋼として高耐食性をも兼備
するので、これらの特性が要求される各種構造用材料と
しても好適である。
The alloy of the present invention has excellent mechanical properties such as strength as described above, and also has high corrosion resistance as cast stainless steel, so it is suitable for various structural materials that require these properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〔1]は実施例関係のロードセル起歪体の形状を
示す平面図、 [II]は側面図である。 第1図 288−
FIG. 1 [1] is a plan view showing the shape of a load cell strain body related to an embodiment, and [II] is a side view. Figure 1 288-

Claims (1)

【特許請求の範囲】[Claims] +l)  CO,02〜0.1%、S i O,4〜−
2,0%、Mn0、2〜1.5%、Ni 4.5〜8.
5%、Cr8.5〜10.5%、Mo 1.0〜3.0
%、Cu 1.0〜8.0%、NbO,2〜0.5%、
残部Feおよび不可避の不純物からなるロードセル起歪
体鋳造用マルテンサイト系析出硬化型ステンレス鋳鋼。
+l) CO, 02~0.1%, S i O, 4~-
2.0%, Mn0, 2-1.5%, Ni 4.5-8.
5%, Cr8.5-10.5%, Mo 1.0-3.0
%, Cu 1.0-8.0%, NbO, 2-0.5%,
A martensitic precipitation-hardening stainless steel cast steel for casting a load cell strain body, the balance being Fe and unavoidable impurities.
JP195583A 1983-01-10 1983-01-10 Martensitic stainless cast steel for casting strain inducing body of load cell Granted JPS59126758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP195583A JPS59126758A (en) 1983-01-10 1983-01-10 Martensitic stainless cast steel for casting strain inducing body of load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP195583A JPS59126758A (en) 1983-01-10 1983-01-10 Martensitic stainless cast steel for casting strain inducing body of load cell

Publications (2)

Publication Number Publication Date
JPS59126758A true JPS59126758A (en) 1984-07-21
JPS6142778B2 JPS6142778B2 (en) 1986-09-24

Family

ID=11516014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP195583A Granted JPS59126758A (en) 1983-01-10 1983-01-10 Martensitic stainless cast steel for casting strain inducing body of load cell

Country Status (1)

Country Link
JP (1) JPS59126758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130463A (en) * 1984-11-28 1986-06-18 Kubota Ltd Martensitic stainless cast steel for strain-generating material for load cell
EP0945717A1 (en) * 1998-03-26 1999-09-29 Mettler-Toledo GmbH Elastically deformable element and method for its manufacture
RU2656912C1 (en) * 2017-09-26 2018-06-07 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Method of thermal processing of cast parts made of high-manganese steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130463A (en) * 1984-11-28 1986-06-18 Kubota Ltd Martensitic stainless cast steel for strain-generating material for load cell
EP0945717A1 (en) * 1998-03-26 1999-09-29 Mettler-Toledo GmbH Elastically deformable element and method for its manufacture
US6409845B1 (en) 1998-03-26 2002-06-25 Mettler-Toledo Gmbh Elastic component for a precision instrument and process for its manufacture
RU2656912C1 (en) * 2017-09-26 2018-06-07 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Method of thermal processing of cast parts made of high-manganese steel

Also Published As

Publication number Publication date
JPS6142778B2 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
US6562153B1 (en) Strain-induced type martensitic steel having high hardness and having high fatigue strength
JP5464214B2 (en) Ultra-high strength stainless steel alloy strip, method of manufacturing the same, and method of using the strip to manufacture a golf club head
US2850380A (en) Stainless steel
JP2001512787A (en) High strength notched ductile precipitation hardened stainless steel alloy
US4272305A (en) Ferritic-austentitic chromium-nickel steel and method of making a steel body
EP2677052A1 (en) Titanium alloy product having high strength and excellent cold rolling property
US5254184A (en) Corrosion resistant duplex stainless steel with improved galling resistance
JPS5935412B2 (en) Manufacturing method of stainless steel material for precipitation hardening springs
EP0249855A1 (en) Hot work tool steel
US3128175A (en) Low alloy, high hardness, temper resistant steel
JP2000017395A (en) Fe SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION
JPS59126758A (en) Martensitic stainless cast steel for casting strain inducing body of load cell
JPS59126757A (en) Stainless cast steel of precipitation hardening type for casting strain inducing body of load cell
GB1583786A (en) Precipitation hardenable stainless steel
US4353755A (en) Method of making high strength duplex stainless steels
JPS63171857A (en) Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
JPS59126760A (en) Special cast steel for casting strain inducing body of load cell
JPS61143523A (en) Manufacture of rotor for geothermal energy turbine
JPS625226B2 (en)
US2677610A (en) High temperature alloy steel and articles made therefrom
JP4302480B2 (en) High hardness steel with excellent cold workability
JP3623313B2 (en) Carburized gear parts
JPH02290922A (en) Production of high strength weld nut
JPS625225B2 (en)
CA2061765A1 (en) Martensitic stainless steel article and method for producing the same