JPS59126629A - Method and device for processing by charged particle beam - Google Patents

Method and device for processing by charged particle beam

Info

Publication number
JPS59126629A
JPS59126629A JP162483A JP162483A JPS59126629A JP S59126629 A JPS59126629 A JP S59126629A JP 162483 A JP162483 A JP 162483A JP 162483 A JP162483 A JP 162483A JP S59126629 A JPS59126629 A JP S59126629A
Authority
JP
Japan
Prior art keywords
particle beam
lens
charged particle
spot
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP162483A
Other languages
Japanese (ja)
Inventor
Tadao Suganuma
忠雄 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERIONIKUSU KK
Original Assignee
ERIONIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERIONIKUSU KK filed Critical ERIONIKUSU KK
Priority to JP162483A priority Critical patent/JPS59126629A/en
Publication of JPS59126629A publication Critical patent/JPS59126629A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems

Abstract

PURPOSE:To facilitate the formation of patterns in a highly accurate manner by a method wherein charged particle beam is spotted in a slender form utilizing the electrooptical characteristics of a quadrupole lens and an axially symmetric lens. CONSTITUTION:A charged particle beam processing device main body 1 has a radiation cylinder 2 with which a charged particle beam is made to irradiate on the material 5 to be processed, and a processing chamber 3 wherein the material 5 to be processed will be provided. The radiation cylinder 2 has a particle beam source 10, a focusing lens 11, a scanning device 14, a magnetic field type quadrupole lens 12 and an axially symmetric lens 13. When the charged particle beam 4 is focused using the focusing lens 4 only, its spot is formed into a circle, but when the quadrupole lens 12 is used, the spot is formed into a longitudinally slender shape or a laterally slender shape or a circular shape according to the position of the cross section. Besides, when the axially symmetric lens 13 is used, the focusing position of the spot can be adjusted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子線露光装置やマイクロイオンビーム装置
等、荷電粒子線を用いて被処理物に対し、露光、エツチ
ング、イオン注入等の加工を行なう処理方法及び装置に
関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention is applicable to electron beam exposure equipment, micro ion beam equipment, etc., which perform processing such as exposure, etching, and ion implantation on a processed object using a charged particle beam. The present invention relates to a processing method and apparatus.

従来技術 電子線やイオン線等の荷電粒子線を被処理物に照射して
被処理物上に所定のパターンを描くことにより、被処理
物を加工する露光装置等の荷電粒子線による処理装置は
、一般に、荷電粒子線を集束レンズにより被処理物上に
おいて微小な円形スポットに形成し、この状態で荷電粒
子線を走査して被処理物上に所定のパターンを描いてい
る。
Conventional technology Processing equipment using charged particle beams, such as exposure equipment, processes the workpiece by irradiating the workpiece with a charged particle beam such as an electron beam or ion beam to draw a predetermined pattern on the workpiece. Generally, a charged particle beam is formed into a minute circular spot on a workpiece using a focusing lens, and in this state, the charged particle beam is scanned to draw a predetermined pattern on the workpiece.

しかし、このような装置では、微小な円形の荷電粒子線
を用いるため、荷電粒子線を2次元的に走査しなければ
ならない。この場合、荷電粒子線の照射と非照射、走査
、及び帰線走査の繰返し等を行なう回数は多大になり、
パターンを描く為のプログラムは複雑になり、かつ描画
時間は長くなる欠点を有している。
However, since such a device uses a minute circular charged particle beam, the charged particle beam must be scanned two-dimensionally. In this case, the number of repetitions of charged particle beam irradiation and non-irradiation, scanning, retrace scanning, etc. becomes large.
A program for drawing a pattern has the disadvantage that it becomes complicated and takes a long time to draw.

上述の欠点を除去するために、荷電粒子線を発生し照射
する照射筒内にアパーチャ板を設けて荷電粒子線を比較
的大きな矩形にして1回の照射で所定のパターンを描く
ようにした装置が提案された。しかし、この装置は照射
局内にアパーチャ板を設けるため、照射系が複雑になり
、高価であるし、また直交づ−る2方向(縦と横)のパ
ターンは描けるが、斜めのパターンを描くことができな
い。
In order to eliminate the above-mentioned drawbacks, an aperture plate is installed in the irradiation cylinder that generates and irradiates the charged particle beam, making the charged particle beam a relatively large rectangle and drawing a predetermined pattern with one irradiation. was proposed. However, since this device has an aperture plate inside the irradiation station, the irradiation system is complicated and expensive, and although it can draw patterns in two orthogonal directions (vertical and horizontal), it cannot draw diagonal patterns. I can't.

また、荷電粒子線の寸法が比較的大きい為に、荷電粒子
線を連続的に発生した状態で走査すると、描かれたパタ
ーンの周縁部と中央部とて照射間に差を生じ、これを防
止するには一般に荷電粒子線を走査と同期しく間欠的に
発生しC被処理物上にJ5ける荷電粒子線の照射個所か
重畳しないように巳なけれはならず、このようにして多
数点に照射しなけれはならないから荷電粒子線の走査と
発生時の制御か複利になってしまう。
In addition, since the size of the charged particle beam is relatively large, if the charged particle beam is continuously generated and scanned, a difference will occur between the irradiation at the periphery and the center of the drawn pattern, which can be prevented. To do this, in general, a charged particle beam is generated intermittently in synchronization with the scanning, and it is necessary to avoid overlapping the irradiation points of the charged particle beam on the object to be processed.In this way, multiple points are irradiated. Because it has to be done, scanning the charged particle beam and controlling it when it is generated becomes compound interest.

発明の目的 本発明は、複雑な制御をづ°ることなしに、高速かつ高
精度で高安定にパターンを描くことができる荷電粒子線
による処理方法及び装置を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a processing method and apparatus using a charged particle beam that can draw patterns at high speed, with high precision, and with high stability without complicated control.

発明の構成 上記目的は、本発明によれば、4極子レンズと軸対称レ
ンズ(ダイナミックフォーカスレンズ)の電子光学的特
性を積極的に利用して、被処理物上、における荷電粒子
線の形状を細長い線状のスポットにし、かつ両レンズの
焦点距離を調節して前記スポットの幅方向の焦点を被処
理物面上に位置させることにより達成される。
According to the present invention, the above object is to actively utilize the electro-optical characteristics of a quadrupole lens and an axially symmetrical lens (dynamic focus lens) to determine the shape of a charged particle beam on a workpiece. This is achieved by forming a long and thin linear spot and adjusting the focal lengths of both lenses to position the focal point in the width direction of the spot on the surface of the object to be processed.

実施例 第1図において、1は荷電粒子線処理装置本体で、荷電
粒子線4を発生し被処理物5上に照射する照射筒2と、
被処理物5を設けた処理至3とを有している。照射筒2
には、電子銃のような粒子線源10と、磁界型電子レン
ズのような集束レンズ11と、荷電粒子線4を2次元的
に走査するための既知の走査装置14の他に、磁界型(
電界型でもよいが、以下の説明では磁界型とする。)の
既知の4極子レンズ12と軸対称レンズ13とを設けて
いる。
Embodiment In FIG. 1, reference numeral 1 denotes a main body of a charged particle beam processing apparatus, and an irradiation tube 2 that generates a charged particle beam 4 and irradiates it onto an object to be processed 5;
It has a processing section 3 in which a processing object 5 is provided. Irradiation tube 2
In addition to a particle beam source 10 such as an electron gun, a focusing lens 11 such as a magnetic field type electron lens, and a known scanning device 14 for two-dimensionally scanning the charged particle beam 4, a magnetic field type (
An electric field type may be used, but in the following description, a magnetic field type is used. ) is provided with a known quadrupole lens 12 and an axially symmetrical lens 13.

粒子線11n10は既知の粒子線源用電源20に、集束
レンズ11は手動調節可能な既知のレンズ電源21に、
4極子レンズ12はデジタル・アナログ(以下、DAと
いう)]ンバータ22の出力端子に、軸対称レンズ13
はDAコンバータ23の出力端子に、走査装置14は既
知の走査電源24に各々接続されており、電源20、D
Aコンバータ22,23及び走査電源24はインターフ
ェース25を介してコンピュータ等の制御lll装M2
6に接続されている。
The particle beam 11n10 is connected to a known particle beam source power source 20, the focusing lens 11 is connected to a known manually adjustable lens power source 21,
The quadrupole lens 12 is connected to an axially symmetrical lens 13 at the output terminal of the digital/analog (hereinafter referred to as DA) inverter 22.
is connected to the output terminal of the DA converter 23, and the scanning device 14 is connected to a known scanning power supply 24.
The A converters 22 and 23 and the scanning power supply 24 are connected to a control device M2 such as a computer via an interface 25.
6.

粒子線源10から放出された荷電粒子線4は集束レンズ
1つにより集束され、4極子レンス12及び軸対称レン
ズ13によりスポット形状を変更されて被処理物5に照
射され、走査装置14により被処理物5上にd3いて走
査される。
The charged particle beam 4 emitted from the particle beam source 10 is focused by one focusing lens, the spot shape is changed by the quadrupole lens 12 and the axially symmetrical lens 13, and the object to be processed 5 is irradiated with the beam. The object to be processed 5 is scanned at d3.

この装置にa5いて、荷電粒子線4を集束レンズ11の
みで集束りると、その縦断面は第2図<A)のようにな
り、また縦方向における位置a、b。
When the charged particle beam 4 is focused only by the focusing lens 11 in this device at a5, its longitudinal section becomes as shown in FIG.

c、dにあける横断面(スポット)形状は第2図(B)
のように円であり、位置Cで最小(正焦点位置)になる
。従って、集束レンズ1]のみを用いるときは、荷電粒
子線4が被処理物5上において最小となる励磁電流■0
になるように制御I装置26によりレンズ電源21を制
御して処理すればよい。
The shape of the cross section (spot) drilled at c and d is shown in Figure 2 (B).
It is a circle as shown in the figure, and becomes the minimum (positive focus position) at position C. Therefore, when using only the focusing lens 1], the excitation current ■0 at which the charged particle beam 4 becomes the minimum on the object 5 to be processed
The lens power supply 21 may be controlled by the control I device 26 so that the processing is performed.

これに対し、4極子レンズ12を用いると、第2図(B
)に示すスポット形状は、第2図(C)に示すように位
置Cではほぼ円であるが、その上方ではX方向に、下方
ではY方向に各々長い線条になり、また幅方向が最小に
なる幅方向の焦点位置すとdが位置Cの上下に存在する
。この場合、幅方向の焦点位置す、dの正焦点位置Cか
らの距離ΔF1は、4極子レンス12の励磁電流11に
比例するから、比例定数をK】とすると、ΔF I=K
 +・11 ・・・・・・・・・(1)になる。
On the other hand, if a quadrupole lens 12 is used, as shown in FIG.
The spot shape shown in ) is almost circular at position C as shown in Figure 2 (C), but it becomes a long line in the X direction above it and in the Y direction below it, and the spot shape is the smallest in the width direction. Focus positions d in the width direction exist above and below position C. In this case, the distance ΔF1 from the positive focal point C of the focal point position d in the width direction is proportional to the excitation current 11 of the quadrupole lens 12, so if the proportionality constant is K], ΔF I=K
+・11 ・・・・・・・・・(1).

更に、軸対称レンズ13を用いると、第2図(C)に示
すスポット形状は全体に上方向に移動して、第2図(D
)に示すように、位@bではほぼ円であるが、その上方
ではX方向に、下方ではY方向に各々長い線状になり、
また幅方向が最小となる幅方向の焦点位置a 、 Cが
位置もの上下に存在する。この場合、軸対称レンズ13
による焦点位置の移動距離ΔF2は、軸対称レンズ13
の励磁電流I2の2乗に比例するから、比例定数をに2
とすると、 ΔF 2=K 2・(I2)  ・・・・・・・・・(
2)になる。
Furthermore, if the axially symmetrical lens 13 is used, the spot shape shown in FIG.
), it is almost circular at position @b, but it becomes a long line above it in the X direction and below it in the Y direction,
Further, focal positions a and C in the width direction, where the width direction is minimum, exist above and below the positions. In this case, the axially symmetrical lens 13
The moving distance ΔF2 of the focal position due to the axis-symmetric lens 13 is
Since it is proportional to the square of the excitation current I2, the proportionality constant is 2
Then, ΔF 2=K 2・(I2) ・・・・・・・・・(
2) becomes.

4極子レンズ12と軸対称レンズ13の両者を用い、か
つ、ΔF1とΔF2が等しくなるように励磁電流II、
+2を設定すれば荷電粒子線4は被処理物5上に幅方向
の焦点を結ぶ。従っ−C11式と2式から、 11/(12)  =Kl/に2  ・・・・・・・・
・(3)を得ることができる。なお、第2図(D)はこ
のようにΔF1とΔF2を等しくした場合の図である。
Both the quadrupole lens 12 and the axially symmetrical lens 13 are used, and the excitation current II is set so that ΔF1 and ΔF2 are equal.
If +2 is set, the charged particle beam 4 focuses on the object 5 in the width direction. Therefore, from equations C11 and 2, 11/(12) = Kl/2...
- (3) can be obtained. Note that FIG. 2(D) is a diagram when ΔF1 and ΔF2 are made equal in this way.

被処理物5上における荷電粒子線4の長さを変え、るに
は4極子レンズ12用の励磁電流11を変えればよく、
このとき3式を満足するように拳対称レンズ13用の励
磁電流I2を調節すれば、常に被処理物5上に幅方向の
焦点を結ばせることができる。前記11.12は、3式
の演算を制御装@26に6いて行なうことにより、この
制御装置26から出力される。
By changing the length of the charged particle beam 4 on the workpiece 5, it is sufficient to change the excitation current 11 for the quadrupole lens 12.
At this time, if the excitation current I2 for the fist-symmetrical lens 13 is adjusted so as to satisfy Expression 3, the object to be processed 5 can always be focused in the width direction. 11 and 12 are outputted from the control device 26 by calculating the three equations in the control device @26.

この装置において、矩形パタ一ンを描くには、制御装置
26により3式を満足するように両レンズ12.13用
の励磁電流11と12を設定して、第3図(A>に示す
ように、荷電粒子線4の被処理物5上におけるスポット
形状を所定の長さの線状にし、この状態で荷電粒子線4
を第3図(A)における位@AIで発生してそのまま位
fiA2まで偏向し、位置A2に達したときに発生を中
止するように制御装置26により荷電粒子線源用電源2
0、DAコンバータ22.23及び走査電源24を制御
すればよい。このようにすれば荷電粒子線を発生したま
ま一方向に(1回)走査するだけで矩形パターンを描く
ことができる。この結果、制御装置26による簡単な描
画プロクラムで、所定のパターンを高速かつ高精度に描
くことができる。
In this device, in order to draw a rectangular pattern, the excitation currents 11 and 12 for both lenses 12 and 13 are set by the control device 26 so as to satisfy equation 3, and the excitation currents 11 and 12 are set as shown in FIG. First, the spot shape of the charged particle beam 4 on the workpiece 5 is made into a linear shape of a predetermined length, and in this state, the charged particle beam 4 is
The charged particle beam source power supply 2 is controlled by the control device 26 so that it is generated at the position @AI in FIG.
0, the DA converters 22 and 23 and the scanning power supply 24 may be controlled. In this way, a rectangular pattern can be drawn by simply scanning in one direction (once) while generating a charged particle beam. As a result, a predetermined pattern can be drawn at high speed and with high precision using a simple drawing program by the control device 26.

また、線状のパターンを描くには、制御装置26により
3式を満足するように励磁電流[1と12を設定して第
3図(B)に示すように、荷電粒子線4の被処理物5上
におけるスポット形状を所定の長さの線状にし、この状
態で荷電粒子線を第3図(B)における位置B1で所定
時間発生し、その後は位置3nに達□するまで位置B2
.B3のように荷電粒子線の長さえにほぼ等しい距離ず
つ階段状に偏向し、この偏向と同期して荷電粒子線4を
発生するように制御装置26により粒子線源用電源20
、DAコンバータ22.23及び走査電124を制御す
ればよい。
To draw a linear pattern, the controller 26 sets the excitation current [1 and 12] so as to satisfy the equation 3, and as shown in FIG. 3(B), the charged particle beam 4 is The spot shape on the object 5 is made into a line with a predetermined length, and in this state, a charged particle beam is generated at position B1 in FIG.
.. The particle beam source power supply 20 is controlled by the control device 26 to deflect the charged particle beam stepwise by a distance approximately equal to the length of the charged particle beam as shown in B3, and to generate the charged particle beam 4 in synchronization with this deflection.
, the DA converters 22 and 23, and the scanning voltage 124.

なお、上述の実施例において4楊子レンズをさらに1組
追加し、両4極子レンズを各磁極が互いに45度ずつ離
れた状態に設け、両4極子レンズに加える電流比を制御
装置26により制御すれば、荷電粒子線を第2図(E)
に示すように斜めの線状にすることができ、これにより
、斜めの方向に延びる矩形及び線状のパターンを描くこ
とができる。
In addition, in the above-described embodiment, one additional set of quadrupole lenses is added, and both quadrupole lenses are provided with their respective magnetic poles separated by 45 degrees from each other, and the current ratio applied to both quadrupole lenses is controlled by the control device 26. For example, the charged particle beam is shown in Figure 2 (E).
As shown in the figure, it is possible to form a diagonal linear pattern, thereby making it possible to draw rectangular and linear patterns extending in a diagonal direction.

また、上述の説明では被処理物上における粒子線の照射
と非照射の制御を、粒子線の発生そのも−のを制御して
行なう場合を示したが、一方、いわゆるブランキング置
を照射筒内に別途設けて、粒子線は発生したままに保ち
、ブランキング装置により粒子線の照射を制御する方法
でも同様にパターンを描くことができる。
In addition, in the above explanation, the case where the irradiation and non-irradiation of the particle beam on the object to be processed is controlled by controlling the generation of the particle beam itself, but on the other hand, the so-called blanking position is A pattern can be drawn in the same way by separately providing a particle beam inside the particle beam, keeping the particle beam as it is generated, and controlling the irradiation of the particle beam with a blanking device.

発明の効果 以上のように本発明は、4極子レンズと軸対称レンズと
を用いて荷電粒子線を線状のスポットに変形し、かつ両
レンズの焦点距離を制御して前記スポットの幅方向の焦
点を被処理物上に位置させるから、煩雑な荷電粒子線の
照射と非照射、走査、及び帰線走査の繰返し等を行なう
回数を最小限にとどめて、高速かつ高精度で、しかも高
安定に所定のパターンを描くことができる。
Effects of the Invention As described above, the present invention transforms a charged particle beam into a linear spot using a quadrupole lens and an axially symmetrical lens, and controls the focal length of both lenses to transform the spot in the width direction. Since the focus is placed on the object to be processed, the number of times the complicated charged particle beam irradiation and non-irradiation, scanning, and retrace scanning are repeated is minimized, resulting in high speed, high precision, and high stability. A predetermined pattern can be drawn on.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる処理装置の一実施例を示す電気
回路のブロック図、 第2図は荷電粒子線のスポット形状の説明図、第3図は
荷電粒子線の走査法の説明図である。 1:萄電粒子線処理装置本体、2:照射筒、3:処理室
、4:荷電粒子線、5:被処理物、10:粒子線源、1
1:集束レンズ、 12:4極子レンス、13:軸対称レンズ、14:走査
装置。 特許出願人  株式会社エリオニクス 第1 図 第2図 (B)
Fig. 1 is a block diagram of an electric circuit showing an embodiment of a processing device according to the present invention, Fig. 2 is an explanatory diagram of a spot shape of a charged particle beam, and Fig. 3 is an explanatory diagram of a scanning method of a charged particle beam. be. 1: Charged particle beam processing device main body, 2: Irradiation tube, 3: Processing chamber, 4: Charged particle beam, 5: Processed object, 10: Particle beam source, 1
1: Focusing lens, 12: Quadrupole lens, 13: Axisymmetric lens, 14: Scanning device. Patent applicant Elionix Co., Ltd. Figure 1 Figure 2 (B)

Claims (2)

【特許請求の範囲】[Claims] (1)4極子レンズと軸対称レンズとを用いて荷電粒子
線を線状のスポットに整形し、かつ両レンズに加える電
気信号を関連して制御することにより前記両レンズの焦
点距離を連動させて制御して、前記スポットの幅方向の
焦点を被処理物上に位置させることを特徴とする荷電粒
子線による処理方法。
(1) The charged particle beam is shaped into a linear spot using a quadrupole lens and an axially symmetrical lens, and the focal lengths of both lenses are linked by controlling the electrical signals applied to both lenses. A processing method using a charged particle beam, characterized in that the focal point in the width direction of the spot is positioned on the object to be processed by controlling the spot.
(2)4極子レンズと軸対称レンズとを荷電粒子線処理
装置本体に設け、両レンズに加える電気信号を関連して
制御i11することにより前記荷電粒子線のスポット形
状が被処理物上において線状になりかつ幅方向の焦点を
結ぶ状態に前記44fA子レンズと軸対称レンズの焦点
距離を連動して制御する手段を設けてなる荷電粒子線に
よる処理装置。
(2) A quadrupole lens and an axially symmetrical lens are provided in the main body of the charged particle beam processing apparatus, and the electric signals applied to both lenses are controlled i11 in conjunction with each other, so that the spot shape of the charged particle beam becomes a line on the object to be processed. A processing device using a charged particle beam, comprising means for controlling the focal lengths of the 44fA child lens and the axially symmetrical lens in conjunction with each other so that the 44fA child lens and the axially symmetrical lens are in a state where the 44fA child lens and the axially symmetrical lens are in a state where the 44fA child lens has a shape and focuses in the width direction.
JP162483A 1983-01-08 1983-01-08 Method and device for processing by charged particle beam Pending JPS59126629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP162483A JPS59126629A (en) 1983-01-08 1983-01-08 Method and device for processing by charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP162483A JPS59126629A (en) 1983-01-08 1983-01-08 Method and device for processing by charged particle beam

Publications (1)

Publication Number Publication Date
JPS59126629A true JPS59126629A (en) 1984-07-21

Family

ID=11506682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP162483A Pending JPS59126629A (en) 1983-01-08 1983-01-08 Method and device for processing by charged particle beam

Country Status (1)

Country Link
JP (1) JPS59126629A (en)

Similar Documents

Publication Publication Date Title
JPS62295347A (en) Ion beam fast parallel scanner
JPS5871545A (en) Variable forming beam electron optical system
JPS58190028A (en) Charged particle beam exposure device using variable line scanning
JPH07192669A (en) Adjusting method for electric field ionization type gas phase ion source
JPS6051261B2 (en) Charged particle beam lithography equipment
US4321468A (en) Method and apparatus for correcting astigmatism in scanning electron microscopes and similar equipment
JPS59126629A (en) Method and device for processing by charged particle beam
JPS63200434A (en) Ion beam generator
JPH05264797A (en) Method and device for beam irradiation
JPH063720B2 (en) Focused ion beam device
JP3397390B2 (en) Processing method using focused ion beam
JPS63216256A (en) Charged particle beam device
JPH01295419A (en) Method and apparatus for electron beam lithography
JP2002150989A (en) Electron-beam exposure, system and electron lens
JP2870858B2 (en) Linear electron beam irradiation method and apparatus
JPH025346A (en) Ion implanter and adjustment of ion beam
JP3318154B2 (en) Method and apparatus for projecting charged particle beam
JPH0135340B2 (en)
JPH0535540B2 (en)
JPS62219445A (en) Electron beam device
JPH0234414B2 (en)
JPH0210641A (en) Linear electron beam annealing device
JPS62242329A (en) Chaged beam lithography equipment
JPS6324061A (en) Ion implantation device
JPS63213249A (en) Ion implantation device