JPH0234414B2 - - Google Patents
Info
- Publication number
- JPH0234414B2 JPH0234414B2 JP57113734A JP11373482A JPH0234414B2 JP H0234414 B2 JPH0234414 B2 JP H0234414B2 JP 57113734 A JP57113734 A JP 57113734A JP 11373482 A JP11373482 A JP 11373482A JP H0234414 B2 JPH0234414 B2 JP H0234414B2
- Authority
- JP
- Japan
- Prior art keywords
- ion
- charged particle
- filter
- magnetic field
- particle beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 description 24
- 238000010884 ion-beam technique Methods 0.000 description 19
- 230000005284 excitation Effects 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 5
- 229910001338 liquidmetal Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000006023 eutectic alloy Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 101700004678 SLIT3 Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/05—Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Tubes For Measurement (AREA)
Description
本発明は観察試料又は加工材料に照射する荷電
粒子線の種類を容易に切換えることのできる荷電
粒子線装置に関する。
半導体集積回路の製造に用いられる微細加工用
イオンビーム装置がイオンマイクロアナライザー
等の荷電子粒子線装置では、加工材料や観察試料
に照射すべきイオンビームの種類をその目的に応
じて切換えることが要求される。この要求に対し
て従来装置では、加工材料や観察試料を固定した
ままの状態で、照射イオンビームの種類を短時間
に且つ容易に走査によつて切換えることは困難で
あつた。
本発明はこのような困難を解決して、容易且つ
短時間に照射イオンビームの切換えを可能とする
ことを目的とするもので、その構成は光軸Zに沿
つて入射する荷電粒子線を集束レンズと偏向手段
を通して観察試料又は加工材料に照射する装置に
おいて、Z軸を含む面に垂直な磁場を形成するた
めの二枚の磁極板を有するフイルターと、該フイ
ルターの周囲に該フイルターの磁場と垂直な方向
から荷電粒子線を入射させる複数の荷電粒子源
と、前記フイルターに選択的に入射する荷電粒子
線の種類に応じて前記フイルターの磁場の極性と
強さ及び前記二枚の磁極板の電位を可変する手段
を設けたことを特徴とするものである。
図面は本発明の一実施例装置の構成を示すブロ
ツク図で、イオン源1A,1B、電子銃1D、フ
イルター磁極板2、フイルター・スリツト3、静
電レンズ、偏向手段5、加工材料6及び二次電子
検器7は真空に保たれた容器内に収納されてい
る。フイルター磁極板2は図では一方しか示され
ていないが、光軸Zを挟んで配置された二枚の板
状磁性体から構成され、該磁極板2の外側に取り
付けられる励磁コイル8に電流電源9から励磁電
流を供給することにより両磁極板間に光軸Zに垂
直な磁場が形成される。該磁極板2の光軸Z上方
には電子銃1Dが、又光軸Zと前記磁場に垂直な
方向には二つのイオン源1A及び1Bが光軸Zに
関して対称に配置されている。磁極板2とフイル
ター絞り3は周囲の部材と絶縁されておりその電
位は直流源10の出力によつて与えられる。各イ
オン源1A,1Bと電子銃1Dへは直流高電圧電
源11から選択的に加速電圧Vcが印加され、加
速電圧Vcで加速されたイオンビーム或るいは電
子線はフイルター磁場内を通つて、フイルター絞
り3を通過する。フイルター絞りを通過したイオ
ンビーム又は電子線はレンズ電源12から電圧
Vlの与えられた静電レンズ4によつて集束作用
を、又偏向手段5によつて偏向作用を受けて加工
材料6を照射する。イオンビームよる微細加工を
行う場合には、材料上の加工パターンに応じて偏
向信号を偏向手段5へ供給する。又、材料6の表
面形状に関する走査像を観察しようとする場合に
は走査信号発生回路13からの走査信号を可変幅
器14を介して偏向手段5へ供給すると共に同じ
走査信号発生回路13からの信号が供給される陰
極線管15の輝度変調信号として材料6の近傍に
設けられた二次電子検器7の出力を用いれば、陰
極線管15に走査像が表示される。
所で、シリコンウエハ等の加工材料に直接イオ
ンビームを照射して加工しようとする場合にはボ
ロン(B)、リン(P)、ヒ素(As)等比較的融点の
高い元素のイオンビームが要求されることが多い
ため、液体金属を用いるタイプのイオン源ではこ
れらの元素を含んだ共晶合金を使用して融点を下
げることが多い。ところが、共晶合金を使用する
と目的とするイオン種以外のイオン種も一緒にイ
オンビームとして取り出されることになるので、
質量分離器即ちマス・フイルターを用いてイオン
ビーム中から不要なイオン種を取り除くとが必要
となる。図面に示す実施例装置ではフイルター用
磁極板2のZ軸方向外の周縁部にイオン源1A,
1Bが設置されているので、これらのイオン源と
して共晶合金を使用した液体金属イオン源を用い
たときに、フイルター磁場の極性(向き)と強さ
を調整することによつて目的とするイオン種のイ
オンビームのみをフイルター絞り3へ導くことが
可能となる。又、電子銃1Dから発生する電子線
に対してはフイルターを通過させる必要がないの
で、フイルター磁場を零にして使用する。更に電
子銃1Dの位置に単一元素の液体金属イオン源を
設けることも可能である。
図面に示す実施例装置には、16で示す中央制
御回路が設けられているが、これは荷電粒子線源
1A,1B,1Dのどれを用いるかを指定する信
号P、フイルターを通させるべき荷電粒子線の比
電荷を指定する信号Q、荷電粒子線の荷電極性を
指定する信号R及び荷電粒子線の加速電圧の加速
電圧を指定する信号S等の入力信号に基づいて、
直流高電圧電源11、電流電源9、直流電源1
0、レンズ電源12及び可変増幅器14を制御し
て、どの荷電粒子線源を用いても加工材料6上に
おいて荷電粒子線が正しく集束した状態で照射さ
れるように設定するためのものである。次に示す
表は、イオン源1Aからある正極性イオンビーム
を取り出す場合と、イオン源1Bからある負極性
イオンビームを取り出す場合と、電子銃1Dから
電子ビームを取り出す場合における加速電圧Vc、
磁極板2に印加される電圧Vf及びレンズ電源1
2の出力Vlの値の具体例を示す一例をまとめた
ものである。
The present invention relates to a charged particle beam device that can easily switch the type of charged particle beam irradiated onto an observation sample or processing material. In charged particle beam devices such as ion microanalyzers, which are ion beam devices for microfabrication used in the manufacture of semiconductor integrated circuits, it is necessary to switch the type of ion beam to be irradiated onto the processing material or observation sample depending on the purpose. be done. In response to this requirement, with conventional apparatuses, it has been difficult to easily switch the type of irradiation ion beam by scanning in a short time while the processing material or observation sample remains fixed. The purpose of the present invention is to solve these difficulties and make it possible to switch the irradiation ion beam easily and in a short time. In an apparatus for irradiating an observation sample or a processed material through a lens and a deflection means, a filter having two magnetic pole plates for forming a magnetic field perpendicular to a plane including the Z axis, and a magnetic field of the filter and a magnetic field arranged around the filter are provided. A plurality of charged particle sources that enter charged particle beams from perpendicular directions, and the polarity and strength of the magnetic field of the filter and the strength of the two magnetic pole plates depending on the type of charged particle beam that selectively enters the filter. It is characterized by providing means for varying the potential. The drawing is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, which includes ion sources 1A and 1B, an electron gun 1D, a filter magnetic pole plate 2, a filter slit 3, an electrostatic lens, a deflection means 5, and a processing material 6 and 2. The electronic detector 7 is housed in a container kept in vacuum. Although only one of the filter magnetic pole plates 2 is shown in the figure, it is composed of two plate-shaped magnetic bodies placed on both sides of the optical axis Z, and a current power source is connected to the excitation coil 8 attached to the outside of the magnetic pole plate 2. By supplying an excitation current from 9, a magnetic field perpendicular to the optical axis Z is formed between both magnetic pole plates. An electron gun 1D is arranged above the optical axis Z of the magnetic pole plate 2, and two ion sources 1A and 1B are arranged symmetrically with respect to the optical axis Z in a direction perpendicular to the optical axis Z and the magnetic field. The magnetic pole plate 2 and the filter aperture 3 are insulated from surrounding members, and their potential is given by the output of a DC source 10. An accelerating voltage Vc is selectively applied to each ion source 1A, 1B and electron gun 1D from a DC high voltage power supply 11, and the ion beam or electron beam accelerated by the accelerating voltage Vc passes through a filter magnetic field, Passes through filter aperture 3. The ion beam or electron beam that has passed through the filter aperture is supplied with a voltage from the lens power source 12.
The material to be processed 6 is irradiated with a focusing effect by an electrostatic lens 4 given Vl and a deflecting effect by a deflecting means 5. When performing fine processing using an ion beam, a deflection signal is supplied to the deflection means 5 in accordance with the processing pattern on the material. In addition, when observing a scanning image regarding the surface shape of the material 6, the scanning signal from the scanning signal generating circuit 13 is supplied to the deflection means 5 via the variable width device 14, and the scanning signal from the same scanning signal generating circuit 13 is A scanned image is displayed on the cathode ray tube 15 by using the output of the secondary electron detector 7 provided near the material 6 as the brightness modulation signal of the cathode ray tube 15 to which the signal is supplied. However, when processing materials such as silicon wafers by directly irradiating them with an ion beam, an ion beam of an element with a relatively high melting point such as boron (B), phosphorus (P), or arsenic (As) is required. Therefore, ion sources using liquid metals often use eutectic alloys containing these elements to lower the melting point. However, when a eutectic alloy is used, ion species other than the target ion species are also extracted as an ion beam.
It is necessary to remove unwanted ion species from the ion beam using a mass separator or mass filter. In the embodiment shown in the drawings, an ion source 1A,
1B is installed, so when a liquid metal ion source using a eutectic alloy is used as an ion source, the target ion can be obtained by adjusting the polarity (direction) and strength of the filter magnetic field. It becomes possible to guide only the seed ion beam to the filter aperture 3. Furthermore, since there is no need for the electron beam generated from the electron gun 1D to pass through a filter, the filter magnetic field is set to zero before use. Furthermore, it is also possible to provide a single element liquid metal ion source at the position of the electron gun 1D. The embodiment shown in the drawings is equipped with a central control circuit 16, which controls a signal P specifying which of the charged particle beam sources 1A, 1B, and 1D is to be used, and a signal P that specifies which of the charged particle beam sources 1A, 1B, and 1D is to be used, as well as a signal P that specifies which of the charged particle beam sources 1A, 1B, and 1D is to be used, and a signal P that specifies which of the charged particle beam sources 1A, 1B, and 1D is to be used. Based on input signals such as a signal Q specifying the specific charge of the particle beam, a signal R specifying the charge polarity of the charged particle beam, and a signal S specifying the accelerating voltage of the charged particle beam,
DC high voltage power supply 11, current power supply 9, DC power supply 1
This is to control the lens power source 12 and the variable amplifier 14 so that the charged particle beam is irradiated onto the workpiece 6 in a correctly focused state no matter which charged particle beam source is used. The following table shows the acceleration voltage Vc when taking out a certain positive polarity ion beam from the ion source 1A, when taking out a certain negative polarity ion beam from the ion source 1B, and when taking out an electron beam from the electron gun 1D,
Voltage Vf applied to magnetic pole plate 2 and lens power supply 1
This is a summary of specific examples of the values of the output Vl of No. 2.
【表】
尚、イオン源1A,1Bから取り出されるイオ
ンビームの極性が互いに逆である場合には、フイ
ルターの励磁コイル8に供給する励磁電流の極性
は同じでよいが、イオン源1A,1Bから取り出
されるイオンビームの極性が同じ場合には励磁コ
イル8に供給する電流の極性が互いに逆に設定さ
れる。
所で、本発明は以上の実施例装置に限定される
ものではなく、例えばフイルターの周縁に設けら
れるイオン源の数を増やすためにはイオン源1
A,1Bと電子銃1Dの間に新たなイオン源を設
けるようにすればよい。又イオン源としては液体
金属を使用するタイプに限定されるものではな
く、デユオプラズマイオン源その他のイオン源を
用いることができることは言うまでもない。
以上のように、本発明によれば磁場型のマス・
フイルターを採用してイオンビームを対する偏向
作用と不要イオン除去という二つの機能を利用す
ることにより、複数種類のイオンビームと電子ビ
ームとを装置の電気回路を制御するのみで切換え
ることが可能となるため、イオンビームを用いた
微細加工装置等に適用して大きな効果が得られ
る。[Table] Note that if the polarities of the ion beams taken out from the ion sources 1A and 1B are opposite to each other, the polarity of the excitation current supplied to the excitation coil 8 of the filter may be the same; When the polarities of the extracted ion beams are the same, the polarities of the currents supplied to the excitation coil 8 are set to be opposite to each other. However, the present invention is not limited to the above-described embodiments; for example, in order to increase the number of ion sources provided around the periphery of the filter, the ion source 1
A new ion source may be provided between A, 1B and the electron gun 1D. Further, the ion source is not limited to the type that uses liquid metal, and it goes without saying that a dual plasma ion source and other ion sources can be used. As described above, according to the present invention, a magnetic field type mass
By employing a filter and utilizing the dual functions of deflecting the ion beam and removing unnecessary ions, it becomes possible to switch between multiple types of ion beams and electron beams simply by controlling the device's electrical circuit. Therefore, great effects can be obtained when applied to microfabrication devices using ion beams.
図面は本発明の一実施例装置を示すブロツク図
である。
1A,1B:イオン源、1D:電子銃、2:フ
イルター磁極板、5:偏向手段、6:加工材料、
7:二次電子検出器、8:励磁コイル、9:電流
電源、10:直流電源、11:直流高電圧電源、
12:レンズ電源、13:走査信号発生回路、1
4:可変増幅器。
The drawing is a block diagram showing an apparatus according to an embodiment of the present invention. 1A, 1B: ion source, 1D: electron gun, 2: filter magnetic pole plate, 5: deflection means, 6: processing material,
7: Secondary electron detector, 8: Excitation coil, 9: Current power supply, 10: DC power supply, 11: DC high voltage power supply,
12: Lens power supply, 13: Scanning signal generation circuit, 1
4: Variable amplifier.
Claims (1)
ンズと偏向手段を通して観察試料又は加工材料に
照射する装置において、Z軸を含む面に垂直な磁
場を形成するための二枚の磁極板を有するフイル
ターと、該フイルターの周囲に該フイルターの磁
場と垂直な方向から荷電粒子線を入射させる複数
の荷電粒子源と、前記フイルターに選択的に入射
する荷電粒子線の種類に応じて前記フイルターの
磁場の極性と強さ及び前記二枚の磁極板の電位を
可変する手段を設けたことを特徴とする荷電粒子
線装置。1. In a device that irradiates a charged particle beam incident along the optical axis Z onto an observation sample or processing material through a focusing lens and a deflection means, two magnetic pole plates are installed to form a magnetic field perpendicular to the plane containing the Z axis. a plurality of charged particle sources that cause charged particle beams to be incident on the periphery of the filter from a direction perpendicular to the magnetic field of the filter; A charged particle beam device comprising means for varying the polarity and strength of the magnetic field and the potential of the two magnetic pole plates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113734A JPS595551A (en) | 1982-06-30 | 1982-06-30 | Charged corpuscular ray apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113734A JPS595551A (en) | 1982-06-30 | 1982-06-30 | Charged corpuscular ray apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS595551A JPS595551A (en) | 1984-01-12 |
JPH0234414B2 true JPH0234414B2 (en) | 1990-08-03 |
Family
ID=14619778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57113734A Granted JPS595551A (en) | 1982-06-30 | 1982-06-30 | Charged corpuscular ray apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS595551A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59151740A (en) * | 1983-02-18 | 1984-08-30 | Seiko Instr & Electronics Ltd | Fine processing equipment using plural number of ion sources |
JPH0727768B2 (en) * | 1985-09-09 | 1995-03-29 | 東京エレクトロン株式会社 | Ion implanter |
JPH06318443A (en) * | 1994-03-31 | 1994-11-15 | Hitachi Ltd | Ion beam device |
-
1982
- 1982-06-30 JP JP57113734A patent/JPS595551A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS595551A (en) | 1984-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4215282B2 (en) | SEM equipped with electrostatic objective lens and electrical scanning device | |
US4649316A (en) | Ion beam species filter and blanker | |
EP2365514B1 (en) | Twin beam charged particle column and method of operating thereof | |
EP0156913A1 (en) | Ion microbeam implanting apparatus | |
JP2810797B2 (en) | Reflection electron microscope | |
US4835399A (en) | Charged particle beam apparatus | |
JPS62108438A (en) | High current mass spectrometer employing space charge lens | |
JPH0234414B2 (en) | ||
JP2000133183A (en) | Charged-particle beam device | |
JPS6334844A (en) | Method and apparatus for ion analysis of insulating material | |
JPH0378739B2 (en) | ||
US5736742A (en) | Objective lens and charged particle beam system | |
RU2144237C1 (en) | Optical particle-emitting column | |
JPS63216256A (en) | Charged particle beam device | |
US20240170248A1 (en) | Particle beam system | |
JP2700002B2 (en) | Charged particle optics | |
JPH11250843A (en) | Focusing ion beam device | |
JP2002150989A (en) | Electron-beam exposure, system and electron lens | |
JPH063720B2 (en) | Focused ion beam device | |
JP2003007238A (en) | Beam separator and reflection electron microscope | |
JPS61114453A (en) | Charged particle ray device | |
JPH0562419B2 (en) | ||
JPS6199254A (en) | Adjusting method of focusing lens in charged particle beam equipment | |
JPS613098A (en) | Charged beam device | |
JPS58169856A (en) | Charged particle beam device |