JPS59125A - Optical system - Google Patents

Optical system

Info

Publication number
JPS59125A
JPS59125A JP58089108A JP8910883A JPS59125A JP S59125 A JPS59125 A JP S59125A JP 58089108 A JP58089108 A JP 58089108A JP 8910883 A JP8910883 A JP 8910883A JP S59125 A JPS59125 A JP S59125A
Authority
JP
Japan
Prior art keywords
lens
semiconductor laser
spot
disk
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58089108A
Other languages
Japanese (ja)
Inventor
Keiji Kataoka
慶二 片岡
Seiji Yonezawa
米沢 成二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58089108A priority Critical patent/JPS59125A/en
Publication of JPS59125A publication Critical patent/JPS59125A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10861Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices sensing of data fields affixed to objects or articles, e.g. coded labels

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To read out correctly information, by arranging a coupling lens between a semiconductor laser which emits an ellipsoidal beam and an objective lens and forming a minute circular spot on a disk. CONSTITUTION:A beam from a semiconductor laser light source 1 which has a luminous area of a different light-width ratio and, therefore, whose emissive light distribution forms an ellipsoidal beam pattern is irradiated upon the whole surface of an objective lens 3 by means of a coupling lens 2 and a spot 4 stopped down on the surface of a disk 5 by the lenses 2 and 3 is adjusted to a half- value width of about 1mumphi. The optical system becomes more effective when a lens of an N.A of about 0.4-0.5 having 20-30-fold magnification is used for the lens 3 and a lens having seven-fold or less magnification is used for the lens 2.

Description

【発明の詳細な説明】 本発明は光学系、特に半導体レーザを用いて所定ディス
ク上に記録されたドツト情報を再生するのに好適な光学
系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system, and particularly to an optical system suitable for reproducing dot information recorded on a predetermined disk using a semiconductor laser.

ディスク上に記録さ扛たドツト情報は通常、1μmφか
ら2μmφ程度の大きさを有し、ディスク上にらせんあ
るいは同心円状に記録されでいる。
The dot information recorded on the disk usually has a size of about 1 .mu.m to 2 .mu.m, and is recorded in a spiral or concentric pattern on the disk.

したがっで、上記ドツト情報よシ信号を正確に再生する
ためには、レーザ光を1μmφ(半値幅)程度の円形状
スポットに絞シこむ必要がある。
Therefore, in order to accurately reproduce the dot information and signal, it is necessary to focus the laser beam into a circular spot with a diameter of about 1 μm (half width).

レーザ光の光源として半導体レーザ光源を用いるビデオ
ディスク再生装置においでは、従来、半導体レーザ発光
領域が1μm X 1μmの正方形状をした埋めこみペ
テロ構造のものが用いられ、第1図に示す光学系におい
てディスク上に1μmφ程度のスポットを得ていた。こ
こで1は半導体レーザ光源、2は第1のレンズ(カップ
リングレンズ)、3は第2のレンズ(オブジェクティブ
レンズ)、4は絞りこんだ光スポット、5はディスク、
である。かかる光学系においては、例えばカップリング
レンズおよびオブジェクティブレンズは共に、倍率25
倍、N、A(開口数)0.4のものが用いられでいる。
Conventionally, in a video disc playback device that uses a semiconductor laser light source as a laser light source, a buried Peter structure is used in which the semiconductor laser light emitting area has a square shape of 1 μm x 1 μm. A spot of about 1 μmφ was obtained on the top. Here, 1 is a semiconductor laser light source, 2 is a first lens (coupling lens), 3 is a second lens (objective lens), 4 is a focused light spot, 5 is a disk,
It is. In such an optical system, for example, both the coupling lens and the objective lens have a magnification of 25
A lens with a multiplication factor, N, and A (numerical aperture) of 0.4 has been used.

しかし、1μmx1μmの発光領域をもつレーザを用い
ると、絞りこんだスポット4は円形状になる利点がある
が、発光領域が小さいためレーザ光出力が小さいという
欠点も存在する。発光領域が小さいと高倍率でしかも高
いNAのレンズが必要となるので、光学系の調整、特に
カップリングレンズの位置の調整が困難であるという欠
点も生じる。したがって、ドツト情報よシ信号を再生す
る場合、安定でしかも高い信号対雑音比を有する信号が
、得られない欠点があった。かかる点を考慮し、従来は
大きなレーザ出力を得るため、発光領域が縦方向1μm
、横方向が3μmから5μmの半導体レーザを用いるビ
デオディスク装置においで、ディスク上に絞りこんだス
ポットを円形状に近づけるために円筒レンズを用いでい
る、しかし、円筒レンズは工作上の精度が出にくく、高
価であること光学系の配置が複雑になることの欠点があ
り、また、尤スポットを1μmの円形状スポットに収束
することは、円筒レンズを使用しているために非点収差
が大きく影響しで、困難である。
However, if a laser with a 1 μm x 1 μm light emitting area is used, the narrowed spot 4 has the advantage of being circular, but it also has the disadvantage that the laser light output is small because the light emitting area is small. If the light emitting area is small, a lens with high magnification and high NA is required, which also causes the disadvantage that it is difficult to adjust the optical system, especially the position of the coupling lens. Therefore, when reproducing dot signals from dot information, a stable signal having a high signal-to-noise ratio cannot be obtained. Considering this point, conventionally, in order to obtain a large laser output, the light emitting area was reduced to 1 μm in the vertical direction.
In video disc devices that use semiconductor lasers with a width of 3 μm to 5 μm in the lateral direction, a cylindrical lens is used to make the narrowed spot on the disc close to a circular shape. It has the disadvantage that it is difficult and expensive, and the arrangement of the optical system becomes complicated.Also, converging the spot into a circular spot of 1 μm has a large astigmatism due to the use of a cylindrical lens. It is difficult because of the influence.

かかる欠点を除去するため、本発明は縦・横比の異なる
発光領域をもち[7たがって出射光分布が楕円形状のビ
ームパターンである半導体レーザを光源に用いてしかも
上記楕円形状のビームパターンの縦方向の光分布パター
ンを横方向の光分布パターンよりも多くけることにょっ
C、ディスク上に微小な円形状スポットを形成すること
を可能とし、もってディスク上のドツト情報から正確に
信ある。
In order to eliminate such drawbacks, the present invention uses a semiconductor laser as a light source, which has light emitting areas with different aspect ratios [7, and therefore has an elliptical beam pattern with an emitted light distribution]. By having more light distribution patterns in the vertical direction than in the horizontal direction, it is possible to form a minute circular spot on the disk, thereby accurately relying on the dot information on the disk.

以下、本発明を実施例によって説明する。Hereinafter, the present invention will be explained by examples.

第2図において、レンズ2.3によってディスク5面上
に、絞りこんだスポット4が半値幅で1μmφ程度(円
形開口と゛した場合の回折光分布の零点をスポット径と
すると2.5μmφ程度になる)になるためには次の条
件を満足しなければならない。
In Fig. 2, a spot 4 narrowed down by a lens 2.3 on the surface of the disk 5 has a half-width of about 1 μmφ (if the zero point of the diffracted light distribution in the case of a circular aperture is taken as the spot diameter, the diameter is about 2.5 μmφ). ), the following conditions must be met.

1.22λ/n′  ≦ 2.5μm(1)ここで、λ
は光の波長であり半導体レーザの場合0.83μmであ
υ、n/はレンズ3のN、A、であるから、(1)式よ
シn/≧0.4となる。
1.22λ/n' ≦ 2.5μm (1) Here, λ
is the wavelength of light, which is 0.83 μm in the case of a semiconductor laser, υ, and n/ is N and A of the lens 3, so according to equation (1), n/≧0.4.

レンズ3としでN、Aが0.4以上のものを用いるとす
ると通常は、顕微鏡対物レンズとして20倍以上の倍率
のものを用いることになる。ところが、一般に倍率とN
、A、の大きいものを用いると焦点深度が浅くなり、第
2図においてディスク5の回転中のブレによシ、焦点が
ポケることになシ良好な再生信号は得られにくくなる。
If a lens 3 with N and A of 0.4 or more is used, a microscope objective lens with a magnification of 20 times or more is usually used. However, in general, the magnification and N
, A, the depth of focus will be shallow, and as shown in FIG. 2, the focus will be lost due to vibration during rotation of the disk 5, making it difficult to obtain a good reproduced signal.

したがってレンズ3としては20〜30倍の倍率を有す
る、N、A、0.4〜0.5のものが適しでいる。
Therefore, as the lens 3, a lens having a magnification of 20 to 30 times, N, A, 0.4 to 0.5 is suitable.

第2においでレンズ3の倍率をm’、N、A、をn′と
すると第2図に示したN、A、を定める角度u4とn′
の間に次式で表わされる関係が一般式に成立する。
In the second step, if the magnification of the lens 3 is m' and N and A are n', the angles u4 and n' that define N and A shown in FIG.
The relationship expressed by the following equation holds true in the general equation.

sin (u4) = n’      f2Jレンズ
3によシ絞りこみスポットが十分小さいためには、レン
ズ3全而に半導体レーザ1よりの光が照射しでいる必要
がある。この条件を満たすためには、次の(3)式を満
足する必要がある。
sin (u4) = n' f2J In order for the focused spot of the lens 3 to be sufficiently small, the entire lens 3 must be irradiated with the light from the semiconductor laser 1. In order to satisfy this condition, it is necessary to satisfy the following equation (3).

ここで、m’は20〜301n’は0.4〜0.5であ
るから(3)式の右辺の最小値は0.0133となる。
Here, since m' is 20 to 301n' is 0.4 to 0.5, the minimum value on the right side of equation (3) is 0.0133.

而しで、第2図に示した、光源1からの半導体レーザの
出射角u2とu3の間には次式の関係がある。
Therefore, the following relationship exists between the emission angles u2 and u3 of the semiconductor laser from the light source 1 shown in FIG.

u2 =mu3          (41ここで、m
はレンズ2の倍率である。
u2 = mu3 (41 where m
is the magnification of lens 2.

式(3)、式(4)より倍率mは、次の(5)式で示さ
れる。
From equations (3) and (4), the magnification m is expressed by the following equation (5).

U。U.

(5)式のu2を定めるために第2図の光源1からの半
導体レーザ光の特性の一例を第3図に示す。第3図は横
軸に出射角n2(度)及び縦軸に光強度(任意単位)を
定めてあり、例えば発光領域が縦1μm×横3.5μm
程度からの半導体レーザの遠視野像(far fiel
d pattern )を示している。
In order to determine u2 in equation (5), an example of the characteristics of the semiconductor laser light from the light source 1 in FIG. 2 is shown in FIG. In Figure 3, the horizontal axis shows the emission angle n2 (degrees) and the vertical axis shows the light intensity (arbitrary unit). For example, the light emitting area is 1 μm long x 3.5 μm wide.
A far field image of a semiconductor laser from a degree
d pattern).

第3図において、縦方向、横方向の半値幅はそれぞれ3
4.5°、 10’であり、また縦1μm×横5μm程
度の発光領域の場合、遠視野像は34.5°、7°程度
となる。
In Figure 3, the half-width in the vertical and horizontal directions is 3
4.5°, 10', and in the case of a light-emitting region of about 1 μm in length x 5 μm in width, the far-field pattern is about 34.5°, 7°.

式(5)のu2として第3図に示した横方向遠視野像の
半値幅を与える角度に設定する。というのは、u2を以
上のように設定すると、半導体レーザの出射光分布は縦
方向、横方向とも、角度02以内ではほぼ円形状の光分
布と扱かえ、レンズ3に入射する光分布も円形状となり
まだ、絞りこんだスポット4も円形状になる。しだがっ
て、u2 はラジアン単位で表示すると、 とになる。ただし、半導体レーザ光源1の横方向発光領
域を3.5/1mから5μmとし7でいる。
The angle u2 in equation (5) is set to give the half width of the lateral far-field pattern shown in FIG. This is because when u2 is set as above, the output light distribution of the semiconductor laser is treated as a nearly circular light distribution within an angle of 02 in both the vertical and horizontal directions, and the light distribution incident on the lens 3 is also circular. The narrowed spot 4 also has a circular shape. Therefore, when u2 is expressed in radians, it becomes. However, the lateral light emitting area of the semiconductor laser light source 1 is set to 7 from 3.5/1 m to 5 μm.

u2として大きい方の角度5 を取り、式(5)より 
     m ≦ 6.6 したがって、レンズ2とし、では7倍以下の倍率のレン
ズを用いることが有効である。
Taking the larger angle 5 as u2, from equation (5)
m≦6.6 Therefore, it is effective to use a lens with a magnification of 7 times or less as lens 2.

またレンズ2のN、A、は、u2の小さい方の角度35
°を取り5in3.5°=006 より大きいことは必
要である。
Also, N and A of lens 2 are the smaller angle 35 of u2.
It is necessary that the angle be larger than 5in3.5°=006.

レンズ2としてこれ以上の倍率のものを用いると、ディ
スク上に絞りこまJ’したスポット4は、円形状ではな
く楕円形状となってしまう。
If a lens 2 with a magnification higher than this is used, the spot 4 narrowed down on the disk by J' will have an elliptical shape instead of a circular shape.

以上説明したごとく本発明によれば、比較的太くない半
導体レーザ光源を用いて、円形状の光スポットに絞りこ
むことが可能でありディスクより良好な再生信号が得ら
れる。
As described above, according to the present invention, it is possible to focus the light into a circular light spot using a relatively small semiconductor laser light source, and a better reproduction signal than that from a disc can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る光学系の構成を説明す
る図、第3図は半導体レーザよりの遠視野像を示す図で
ある。 ・、−/′ 美 l 園 嵩 3 圀
FIGS. 1 and 2 are diagrams for explaining the configuration of an optical system according to the present invention, and FIG. 3 is a diagram showing a far-field image from a semiconductor laser.・、-/′ Beauty l Sonodake 3 Kuni

Claims (1)

【特許請求の範囲】 楕円形状のビームを放出する半導体レーザと、上記レー
ザかもの光を全面に照射されているオブジェクティブレ
ンズと、 上記オブジェクティブレンズと上記レーザとの間に配置
されたカップリングレンズとからなる光学系。
[Claims] A semiconductor laser that emits an elliptical beam, an objective lens whose entire surface is irradiated with the laser beam, and a coupling lens disposed between the objective lens and the laser. An optical system consisting of
JP58089108A 1983-05-23 1983-05-23 Optical system Pending JPS59125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58089108A JPS59125A (en) 1983-05-23 1983-05-23 Optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089108A JPS59125A (en) 1983-05-23 1983-05-23 Optical system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11139977A Division JPS5445156A (en) 1977-09-16 1977-09-16 Optical system

Publications (1)

Publication Number Publication Date
JPS59125A true JPS59125A (en) 1984-01-05

Family

ID=13961692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089108A Pending JPS59125A (en) 1983-05-23 1983-05-23 Optical system

Country Status (1)

Country Link
JP (1) JPS59125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948249A (en) * 1987-06-23 1990-08-14 Hopkins Manufacturing Corporation Headlight aiming and light pattern testing apparatus and method
EP0575893A1 (en) * 1992-06-23 1993-12-29 WARNER MUSIC MANUFACTURING EUROPE GmbH Bar-code reading device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445156A (en) * 1977-09-16 1979-04-10 Hitachi Ltd Optical system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445156A (en) * 1977-09-16 1979-04-10 Hitachi Ltd Optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948249A (en) * 1987-06-23 1990-08-14 Hopkins Manufacturing Corporation Headlight aiming and light pattern testing apparatus and method
EP0575893A1 (en) * 1992-06-23 1993-12-29 WARNER MUSIC MANUFACTURING EUROPE GmbH Bar-code reading device

Similar Documents

Publication Publication Date Title
US4635244A (en) Optical beam shaping system
US4272651A (en) Optical system having diode laser light source
US7151737B2 (en) Optical head and optical disc apparatus for focusing a collimated laser beam
JPS6352334A (en) Optical type scanner
US5940360A (en) Optical pickup device for reproducing discs of two types with different densities by double beam focuses of different sizes
US4235507A (en) Optical system to condense light from a semiconductor laser into a circular spot
US4564268A (en) Optical system for semiconductor laser
US4969142A (en) Reproduction of optically recorded signal
US5355361A (en) Optical pickup apparatus for reproducing signals recorded on an optical disk
JPS59124A (en) Optical system
JPS59125A (en) Optical system
JPS6211327B2 (en)
JP2740732B2 (en) Optical pickup using lamp
JPS6043569B2 (en) Optical recording and reproducing device using a semiconductor laser as a light source
JPS59123A (en) Optical system
JPS592242A (en) Optical information reproducer
JPH0954971A (en) Optical pickup and reproducing device
JPS592241A (en) Optical system
JP2538192B2 (en) Optical disk drive
JPS63269131A (en) Parallel light forming device
JPS6313142A (en) Optical type recording and reproducing device
JPH065581B2 (en) Optical head
JPS6129802A (en) Optical element
JPS6161450B2 (en)
JPH0127489B2 (en)