JPS59125666A - Semiconductor pressure sensor and manufacture thereof - Google Patents

Semiconductor pressure sensor and manufacture thereof

Info

Publication number
JPS59125666A
JPS59125666A JP34083A JP34083A JPS59125666A JP S59125666 A JPS59125666 A JP S59125666A JP 34083 A JP34083 A JP 34083A JP 34083 A JP34083 A JP 34083A JP S59125666 A JPS59125666 A JP S59125666A
Authority
JP
Japan
Prior art keywords
type
layer
type silicon
pressure sensor
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34083A
Other languages
Japanese (ja)
Inventor
Eiichi Iwanami
岩浪 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP34083A priority Critical patent/JPS59125666A/en
Publication of JPS59125666A publication Critical patent/JPS59125666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To form a diaphragm of a semiconductor pressure sensor having good reproducibility by empolying the combination of silicon epitaxial growth technique and anodic growth technique. CONSTITUTION:An N type buried layer 5 is selectively arranged on a P type silicon substrate 1, and an N type epitaxial layer 6 is formed. Then, a P type isolating layer 7 formed to reach the substrate 1 from the main surface of the layer 6 to surround a position to become a thin plate part of a diaphragm later. Subsequently, a resistor 8 as a strain gauge and a base 8' of an N-P-N type transistor capable of being simultaneously formed are formed by boron ion implanting or diffusing, and further the emitter 9 of an N-P-N type transistor and the collector 9' of an N-P-N type transistor capable of being simultaneously formed are formed by arsenic or phosphorus ion implanting or diffusing. Thereafter, an insulating film 10 such as an SiO2 or Si3N4 film to become a mask of anodic reaction is arranged, an anodic reaction is performed, the substrate 1 is formed in porous state from the back surface scale, and the porous region 11 is partitioned by the layer 6. Then, the entire main surface of the layer 6 is covered with antioxidative insulating film such as Si3N4 film, the entire region 11 is oxidized in steam atmosphere or the like, and the oxidized film is then removed.

Description

【発明の詳細な説明】 本発明に半導体圧カセンサに係ケもので、特にシリコン
ダイヤフラムの耕規な構造と製造方法(て関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor pressure sensor, and in particular to a simple structure and manufacturing method of a silicon diaphragm.

半4体圧カセンサは、辻占ノリコンダイヤフラム全形成
し、その表面に拡散などで半5N体ピエゾ抵抗歪ゲージ
ヶ作り込む。そしてターイヤフラムが受圧した時、ダイ
ヤフラムの板薄部が歪み、歪みゲージである抵抗がピエ
ゾ抵抗効果で変動することを利用したものである。
The half 4-body pressure sensor is made entirely of a Tsujisamu Noricon diaphragm, and a half 5N piezoresistive strain gauge is built on its surface by diffusion. This method takes advantage of the fact that when the tire diaphragm receives pressure, the thin plate of the diaphragm is distorted, and the resistance, which is a strain gauge, fluctuates due to the piezoresistance effect.

このよりな半導体圧カセンサr医用1例えば人体内各機
関圧、あるい(は皿圧測足などに応用する場合、その検
出信号げ4.シめて微弱であるため受圧部でろるダイヤ
フラムの板薄部の1享σは10〜60μmである必要が
あり、かつ、その種度も厳しいものが装求されている。
This type of semiconductor pressure sensor r medical use 1 For example, when applied to various internal body pressures or plate pressure measurements, the detection signal is very weak, so the diaphragm plate is used as a pressure sensor. The σ of the thin part needs to be 10 to 60 μm, and the degree of graininess is also required to be strict.

上記ダイヤフラムの仮薄Btlk形成するのに従来シリ
コンの鮎晶面方位(10(11面全+ 110 )方向
に沿ってマスクし水酸化カリウム系、あるいはエチレン
ーンアミン系のアルカリ溶液で異方向性エツチングする
のが通常である。このflIを第1図によりm)単に説
明する。第1図(!1)は異方向性エツチング全行9前
のシリコン肋面図で、n型シリコン基4?i i l/
c p型の歪ゲージ2が形成され、その表面には全面6
1 i o2  もしくはS i3 N4などの杷は膜
6が形成はれ、n型シリコン基板1の裏面にはシリコン
エッチングヶ行うべき開孔部を残しで表面と同梱の絶隊
膜4が選択的に形成されている。第1図(b)は前記し
たようなエツチング液、向えば水酸化カリウム、イソプ
ロピルアルコール、エチルアルコール、水溶液音用い高
温でエツチング処理した後のシリコン断面園である。こ
の方法で第1図(1)) K示しfc、J:’>なテー
パ状のシリコン私−仮支Yq部を待つダイヤフラムがt
形成できるわけTあるが、この半埼体圧カセンサは次の
よ′)なlX戦を待っている。
To form the temporary thin Btlk of the above diaphragm, conventionally, it is masked along the Ayu crystal plane orientation (10 (all 11 planes + 110) direction) of silicon and anisotropically made with a potassium hydroxide-based or ethylene-amine-based alkaline solution. This flI will be simply explained with reference to FIG. Figure 1 (!1) is a silicon rib surface view before all rows 9 of anisotropic etching, with an n-type silicon group 4? i i l/
A p-type strain gauge 2 is formed, and the entire surface 6
1 Io2 or S i3 N4, etc., the film 6 is formed, and the back side of the n-type silicon substrate 1 is left with an opening for silicon etching, and the surface and the included Zetsutai film 4 are selectively etched. is formed. FIG. 1(b) shows a cross-sectional view of silicon after etching at high temperature using the aforementioned etching solution, such as potassium hydroxide, isopropyl alcohol, ethyl alcohol, or aqueous solution. In this way, the diaphragm waiting for the tapered silicon I-temporary support Yq section (Fig. 1 (1))
There is no way it can be formed, but this semi-solid pressure sensor is waiting for the next IX battle.

(1)エツチング液のMl成、エツチング雰囲気、エツ
チング塩#、は1v1これねばlらない。
(1) The Ml composition of the etching solution, the etching atmosphere, and the etching salt # must be 1v1.

(2+  (11の配置はを行なった上でもエツチング
の際何度かエッチングノ、γ′?!−即]ポし、エツチ
ングの進行状61全チエツクす、る必′浸がある。
(2+ (Even after carrying out the arrangement of 11, it is necessary to pop the etching hole several times during etching, and check the entire etching progress 61).

(3)  シリコン基数円の欠陥、あるいに残留金属の
再往で部分的にエツチングが44行しな(bことがある
(3) Due to defects in the silicon base circle or reoccurrence of residual metal, 44 lines may not be partially etched (b).

(4ンエツチング液中の水酸化カリウムは半壱体の信頼
性上清ガであり、便用に際してはf14用の設備全段は
十分な・1?理全行なう必彎がある。
(Potassium hydroxide in the 4-inch etching solution is a semi-reliable supernatant, and when using it, all stages of the F14 equipment must be fully cleaned.

本発明の目的は、以上の入点がなく、かつ低コストで半
勇体圧カセンザが襞、貨Tきる方法とその構造を提供す
ることであ、5゜ 本発明の特徴は、シリコンエビクキシャルj灰長技術と
陽極化成員技術の租み合わせ?用いて古川性の良い半樽
体圧力センサのダイーA′フラム全形Dkすることであ
る。
The object of the present invention is to provide a method and structure for folding and folding a semi-heavy pressure capacitor without the above-mentioned points and at low cost. A combination of Shall J gray technology and anodization member technology? By using Furukawa's good half-barrel pressure sensor, a full-length flammable die A' is used.

以下図面シζ従って本発明を祝用する。The following drawings ζ will therefore be used to illustrate the present invention.

第2図(a)はP型シリコン基板1に選択的に1q型埋
込み層5全配しn型エピタキシャルrQi 6を形成し
た図である。ここで埋込み層5は歪ゲージとモノシリツ
クに温度補償回路、増幅回路、1g号変調回路全形成す
る場合のIIPN)ランジスタの埋込みコレクタとして
作用するもので必ずしも必要ではない。了た図で埋込み
層5の11]の中天部に後にダイヤフラムの板薄部全形
成する場所であるが、ここに埋込み層5と同じN型の埋
込み層全傾択的に配してもか1わな(ハ。但1〜板薄都
の厚さが10μm程度全快求される場合に、本冥施例の
欅に配さないことが好1[7い。エビクキシャル気相成
長(’l: SiO!−4すどのシリコン塩化物の水累
分解で行なえるが、この場合その厚さ全±2%以内に抑
えることができる。またSiH4の熱分解音用いれば更
によい制御が可能である。
FIG. 2(a) is a diagram in which an n-type epitaxial layer rQi 6 is selectively formed on a p-type silicon substrate 1 with a 1q-type buried layer 5 all over. Here, the buried layer 5 acts as a buried collector of the IIPN transistor when the temperature compensation circuit, amplifier circuit, and 1g modulation circuit are all formed monolithically with the strain gauge, and is not necessarily necessary. In the figure shown above, the entire thin plate part of the diaphragm will be formed later in the middle of the buried layer 5 (11). However, if the thickness of the thin plate is about 10 μm, it is preferable not to place it on the keyaki of this example. : This can be done by water cumulative decomposition of silicon chloride such as SiO!-4, but in this case the total thickness can be kept within ±2%.Furthermore, even better control is possible by using the thermal decomposition sound of SiH4. .

m2図(b)fは後にダイヤプラムの仮薄部となるべき
場所を囲うようにn型エピタキシャル)@6の工面から
P邪シリコン基板1に達するように形成したP型分離層
7全形成しL図である。P型分陪層は通常のボロンの拡
散で形成出来るが、形状はダイヤフラムの板薄部全完全
に囲うよりにするのが好ましい。
Figures (b) and (f) show the complete formation of the P-type separation layer 7, which was formed so as to reach the P-type silicon substrate 1 from the surface of the n-type epitaxial) @6 so as to surround the area that would later become the temporary thinned part of the diaphragm. This is a diagram L. The P-type dividing layer can be formed by ordinary boron diffusion, but it is preferable to have a shape that completely surrounds the entire thin part of the diaphragm.

12図(C)は歪ゲージである抵抗8、及び同時に形成
出来るNPNI−ランジスタのベース8′tボロンのイ
オン注入、るるいは拡14夕で形成し、(死vこNPN
トランジスタのエミッタ9、及び同時に形成出来るNP
Nトランジスタのコ1/クタソ′示ヒン、豆たは、リン
のイオン注入、あるいは拡i女で形成した図である。
Figure 12 (C) shows a resistor 8 which is a strain gauge, and a base 8' of an NPNI transistor which can be formed at the same time.
Emitter 9 of the transistor and NP that can be formed at the same time
This is a diagram showing an N transistor formed by ion implantation of phosphorus, or by ion implantation.

第2図((1)は陽極化成のマスクとなる8i02゜s
 i3 N4 ′fr、どの杷縁膜10を配(7た図で
、絶纏1摸10はP型動離層7の内周より小ざくかつ抵
抗8よりP型動系層よりに開孔11がめるよりに定める
Figure 2 ((1) shows the 8i02°s mask for anodization.
i3 N4 'fr, which diaphragm membrane 10 is arranged (7) In the figure, the hole 10 is smaller than the inner circumference of the P-type dynamic layer 7 and the opening 11 is closer to the P-type dynamic layer than the resistor 8. Determined based on the results.

聞2図(e)は陽極化成を実施し%P型シリコン基板1
がj長面i11!l小ら多孔式化σれn ig’iエビ
ク電・7ヤル層6で多孔質碩域11が凶界てれているこ
とを示す図でを)る。陽極化成の災施の方ン宏/!c第
6図の陽極化成模式図で説明する。rib−31%iは
P型動離層7、P型シリコン−tIy:仮19反応数1
2.幽電極13゜[ヒ成′亀源14から陽極IL成反応
系が44・τ戚されてプ?す、反応はfヒ成電諒14に
よってP型動離層7から正孔がP型シリコン基板1へ注
入でれ絶縁膜100開札部へ向かって流れることによっ
て進行する。
Figure 2 (e) shows a %P-type silicon substrate 1 after anodization.
is j long side i11! This is a diagram showing that the porous subterranean region 11 is exposed in the layer 6 of the 7th layer. Hiroshi Hiroshi of Disaster Management of Anodization/! This will be explained using the schematic diagram of anode formation shown in Fig. 6. rib-31%i is a P-type dynamical layer 7, P-type silicon-tIy: tentative 19 reaction number 1
2. The anode IL formation reaction system is related to 44 τ from the ghost electrode 13° The reaction progresses as holes are injected from the P-type movable layer 7 into the P-type silicon substrate 1 by the thermal conductor 14 and flow toward the opening portion of the insulating film 100.

そ1.て陽極IL成反応の進行に伴いP型シリコン基板
1の多孔質化が絶−線膜1oの開孔部がら尋方的に進む
。P型シリコン基板1の厚さが500μmの場合、反応
(仮を50%沸酸水溶液、化成’it流約400Δ/腎
で化成時間35分でP型シリコン基板1の多孔質化l」
n型エピタキシャル層乙の境界−まで達する。n型エピ
タキシャルIfI6には化成電流に基づく正札(ζ注入
されないのでn型エピタキシャル層6が多孔・値化≧れ
ること(ケ無(ハ。またP型ノリコン基数6の1黄方向
への多孔度化Qよ号方向に化1jXが進ひので絶縁膜1
0の橡から見ると略々四分の一円形状になる。
Part 1. As the anode IL formation reaction progresses, the P-type silicon substrate 1 becomes more porous starting from the openings in the insulating film 1o. When the thickness of the P-type silicon substrate 1 is 500 μm, the P-type silicon substrate 1 becomes porous in a reaction time of 35 minutes using a 50% hydrofluoric acid aqueous solution and a chemical formation flow rate of about 400 Δ / kidney.
It reaches the boundary of the n-type epitaxial layer B. Since the n-type epitaxial IfI6 is not injected with ζ based on the chemical formation current, the n-type epitaxial layer 6 is not porous or porosity (c). Since the chemical 1jX advances in the Q direction, the insulating film 1
When viewed from the square 0, it is approximately quarter circle shaped.

第21’J(f)はn型エビタキ7ヤル増乙の主面全体
を5L3N4  などの耐酸化性絶縁膜で斗j夏った後
、水蒸気雰囲気などで前=>多孔′に領域11全俸奮酸
化し、その後l′Iq化膜全除去した最終的なシリコン
部全坏の断面構造全示す図である。多孔17(部の酸化
は単結晶部(で比べて選択的に進行するので、タイヤフ
ラムの板薄部の厚さはeまぼエピタキシャル層乙の厚さ
と弄しく決定孕れろ。
No. 21'J(f) is after coating the entire main surface of the n-type Ebitaki 7 layer with an oxidation-resistant insulating film such as 5L3N4, and then covering the entire area 11 in the front => porous area in a water vapor atmosphere. FIG. 3 is a diagram showing the entire cross-sectional structure of the final silicon portion after intensive oxidation and subsequent complete removal of the l'Iq film. Since the oxidation of the pores 17 proceeds selectively compared to the single crystal part, the thickness of the thin plate part of the tire flam should be determined carefully with the thickness of the epitaxial layer B.

上記の実施例では1w極化成、1悄1ヒ?すべての半4
体領域が形成で力、た後行なつ7ンが、不発明はこれに
限定されるものではなく、例え(/i′2’lJ 2図
(b)が形成された後陽極化成、1唆イヒを行い、′1
−ベーCの半導体領域が形成された1麦陽極化成酸化V
全Pr去する工程とすることも1丁目しである。
In the above example, 1w polar formation, 1w 1hi? all half 4
Although the body region is formed by force, the invention is not limited to this, for example (/i'2'lJ Perform Ihi, '1
- 1 barley anodic chemical oxidation V in which a semiconductor region of BeC is formed
It is also a step to remove all the Pr.

上記の実施例の説明から、本発明の圧カセンザはダイヤ
フラムの仮薄部がP、!4′屯M唄域で囲わiz、板薄
部全支えるシリコン基板支峙邪の内側1ur面が四分の
一円の形状金持つことが理解びれる。
From the description of the above embodiments, it can be seen that in the pressure sensor of the present invention, the false thin portion of the diaphragm is P,! It can be seen that the inner surface of the silicon substrate supporting the entire thin plate area surrounded by the 4' m area has the shape of a quarter circle.

以上不発明によれば、P、n型シリコンの選択的酸化に
より従来の半傅俸ゾq竜工程と11j1峙、半斃俸圧カ
センサ鯛造のバッチ処理が01it:となり、オた半4
体にとって上書な薬品全使用する必・堤がなく、かつl
た半導体圧カセンザの化ゲージ部の他に湛度袖偵l!2
1路9増1陽回銘、及び1ぎ号変調回路の集積化も容易
であり、半榊俸圧カセンサの低価f6化9高機能化[貢
献することが司並である。
According to the above invention, due to the selective oxidation of P and n-type silicon, the batch process of half-pressure Kasensa Taizo becomes 01it:, which is 11j1 compared to the conventional half-pressure Zoqryu process.
There is no need to use any chemicals that are harmful to the body, and l
In addition to the gauge part of the semiconductor pressure sensor, there is also a full sleeve inspection! 2
It is easy to integrate the 1-way, 9-increase, 1-input modulation circuit, and the 1-digit modulation circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

211図(a)と(b)4従米の半祷俸圧カセンサの製
造法全説明するill、第2図(a)〜(f)は不発明
の半導体j王カセンサの製直法km明する工程順の断面
図。 第5図(l工場+、y fe、 hiを説明するための
模式図である。 1・・・ P型シリコン基θ2.8・プ・・・歪ゲージ
抵抗4.10 ・・・、絶縁膜     6・・・n型
エピタキシャル層7・・・・・P型分離層   11・
・・・・・多孔質領域12・・・・・・反応漱    
 13・・・・・化成陰電極14・・・・・・化成電源 以上 出願人 株式会社 吊二梢工舎 代理人弁理士最上  6 第2図(d)
211 (a) and (b) fully explain the manufacturing method of the 4-year-old pressure sensor, and Figures 2 (a) to (f) show the direct manufacturing method of the uninvented semiconductor sensor. Cross-sectional view of process order. Fig. 5 (schematic diagram for explaining l factory +, y fe, hi. 1... P-type silicon base θ2.8 pu... strain gauge resistance 4.10..., insulating film 6... N-type epitaxial layer 7... P-type separation layer 11.
... Porous region 12 ... Reaction slag
13...Chemical cathode 14...Casei Power Supply and above Applicant: Sunikou Kosha Co., Ltd. Patent Attorney Mogami 6 Figure 2 (d)

Claims (2)

【特許請求の範囲】[Claims] (1)受圧部がダイヤフラムであるシリコン圧力センサ
vCかいて、平面上で前記受圧部の周囲がP導電型領域
で囲われていると共に、前記受圧部全文えるシリコン基
板支持部の内側断面?はぼ四分の−の円形状に形成した
こと全特徴とする半4体圧カセンサ。
(1) In a silicon pressure sensor vC in which the pressure receiving part is a diaphragm, the periphery of the pressure receiving part is surrounded by a P conductivity type region on a plane, and the inner cross section of the silicon substrate support part from which the entire pressure receiving part can be seen? A half-quadruple body pressure sensor characterized by being formed into a quarter-circle shape.
(2)P型シリコン基板にn型シリコン?エピタキシャ
ル気相成長する工程と、前記n型シリコンの主面より前
記P型シリコン基板に達するP型分離層金選択的に形成
する工程と、PiiT自己P型シリコンの裏面に選択的
に絶!・象膜を形成する工程と、前管己P型分離t=全
一方の電極とし他の金属電極と前記P型シリコンの間に
沸酸溶液を入れ前記P型シリコン全選択的に陽極化成す
る工程と、陽極化成烙れた前記P型シリコン領域を酸化
した後除去する工程刀1ら成る半4不圧カセンサの製造
方伝。
(2) N-type silicon on a P-type silicon substrate? A step of epitaxial vapor phase growth, a step of selectively forming a P-type isolation layer from the main surface of the n-type silicon to the P-type silicon substrate, and a step of selectively forming a P-type isolation layer on the back surface of the P-type silicon by itself.・The process of forming a diaphragm, and separating the P-type from the front tube (t=all one electrode), inserting a hydrofluoric acid solution between the other metal electrode and the P-type silicon, and selectively anodizing all the P-type silicon. A manufacturing method of a half-four non-pressure sensor consisting of a process and a process for oxidizing and then removing the P-type silicon region that has been anodized.
JP34083A 1983-01-05 1983-01-05 Semiconductor pressure sensor and manufacture thereof Pending JPS59125666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34083A JPS59125666A (en) 1983-01-05 1983-01-05 Semiconductor pressure sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34083A JPS59125666A (en) 1983-01-05 1983-01-05 Semiconductor pressure sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59125666A true JPS59125666A (en) 1984-07-20

Family

ID=11471143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34083A Pending JPS59125666A (en) 1983-01-05 1983-01-05 Semiconductor pressure sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59125666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273161A (en) * 1988-09-08 1990-03-13 Honda Motor Co Ltd Semiconductor sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273161A (en) * 1988-09-08 1990-03-13 Honda Motor Co Ltd Semiconductor sensor

Similar Documents

Publication Publication Date Title
US4672354A (en) Fabrication of dielectrically isolated fine line semiconductor transducers and apparatus
US5242863A (en) Silicon diaphragm piezoresistive pressure sensor and fabrication method of the same
JP3151816B2 (en) Etching method
US4814856A (en) Integral transducer structures employing high conductivity surface features
US3962052A (en) Process for forming apertures in silicon bodies
US6388279B1 (en) Semiconductor substrate manufacturing method, semiconductor pressure sensor and manufacturing method thereof
US5002901A (en) Method of making integral transducer structures employing high conductivity surface features
WO2000034754A1 (en) Semiconductor pressure sensor and its manufacturing method
US5604144A (en) Method for fabricating active devices on a thin membrane structure using porous silicon or porous silicon carbide
US7833405B2 (en) Micromechanical component and corresponding production method
JPS59125666A (en) Semiconductor pressure sensor and manufacture thereof
JPH09186347A (en) Sensor and manufacture thereof
JPH07115209A (en) Semiconductor pressure sensor, its manufacture thereof and tactile sensation sensor
JP2680800B2 (en) SOI wafer and method of manufacturing the same
JPH0626254B2 (en) Method for manufacturing semiconductor pressure sensor
JPS62136022A (en) Manufacture of semiconductor device
JPH01136378A (en) Manufacture of pressure transducer
JP3494022B2 (en) Manufacturing method of semiconductor acceleration sensor
JP2701845B2 (en) Manufacturing method of silicon thin film
JPS6092671A (en) Manufacture of semiconductor accelerating senser
JPS59172778A (en) Manufacture of pressure sensor
JPS60210876A (en) Manufacture of semiconductor device
JPH11126910A (en) Manufacture of semiconductor substrate for pressure sensor
JPH01170054A (en) Manufacture of semiconductor pressure sensor
JPH10148592A (en) Production of pressure detector