JPS59125018A - Encoder circuit - Google Patents

Encoder circuit

Info

Publication number
JPS59125018A
JPS59125018A JP23330182A JP23330182A JPS59125018A JP S59125018 A JPS59125018 A JP S59125018A JP 23330182 A JP23330182 A JP 23330182A JP 23330182 A JP23330182 A JP 23330182A JP S59125018 A JPS59125018 A JP S59125018A
Authority
JP
Japan
Prior art keywords
output
light
light emitting
circuit
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23330182A
Other languages
Japanese (ja)
Inventor
Kazuhiro Mishina
三品 一博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23330182A priority Critical patent/JPS59125018A/en
Publication of JPS59125018A publication Critical patent/JPS59125018A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/366Particular pulse shapes

Abstract

PURPOSE:To design a circuit which causes no malfunction even in case PLL control is executed by using an output of an encoder, and a direction is discriminated from two outputs which are shifted by 90 degrees by constituting a titled circuit so that a duty ratio of an output of a sqaure wave is not varied beyond 50% even at a high temperature. CONSTITUTION:An optical output from a light emitting element 1 is intermitted by a slit plate 3 and its light quantity is varied like a triangular wave. When it is photodetected by photodetector 2, a photodetecting output of an approximate sine wave is obtained. In order to make it to a sqaure wave, it is necessary to determine a suitable threshold level and to compare it with the pohtodetecting output. In this case, a temperature compensating diode 5 is connected to a comparator 4. In case an ambient temperature rises and reaches 100 deg.C, the photodetecting output is reduced by 20%, but the forward voltage of the temperature compensating diode 5 by which the threshold level is determined is varied by about -2mv/ deg.C, therefore, it is reduced by 28%. The drop of the photodetecting output is offset relatively, and as for the output, it is possible to make the duty ratio to about 50%.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、発光素子と受光素子との闇に設けたスリット
板の位置の変化をパルス列に変換するエンコータ回路に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an encoder circuit that converts changes in the position of a slit plate provided between a light emitting element and a light receiving element into a pulse train.

〔背景技術〕[Background technology]

従来のエンコータ回路は、第1図のように、光を発する
発光素子(発光ダイオード)(1)と受光素子Cフォト
タイオード)(2)との間にスリット板(3)を設け、
スリット板(3)の位置の変化により断続された光を受
光素子(2)で受光し第2図falのような近似正弦波
の受光出力を得て、この受光出力をコシパレータ(4)
の一方の入力に入力してコンパレータ(4)で基準電圧
と比較し、スレッショルドレベルを適当に設定すること
により出力に第2図(blのような矩形波出力を得てい
た。しかるに、発光素子(1)に用いる発光タイオード
は第3図のような温度特性を有し、受光素子(2)に用
いるフォトタイオードは第4図のような温度特性を有し
ており、J+’fl囲温度が上昇すると発光出力は低下
し、受光感度は上昇する。例えば、100°Cの場合、
発光出力は50%低下し、受光感度は30%上昇するた
め、総合的な受光出力は20%低下して第5図(a)の
ようになる。このため、出力の矩形波は第5図(b)の
ようになってデユーティ比が50%でなくなり、PLL
方式の速度制御を行なう場合又は位相の90゜ずれた出
力によって回転方向を検出する場合に不都合があった。
As shown in Fig. 1, the conventional encoder circuit includes a slit plate (3) between a light emitting element (light emitting diode) (1) that emits light and a light receiving element (photodiode) (2).
The light receiving element (2) receives the light that is interrupted by the change in the position of the slit plate (3), and obtains a light receiving output of an approximate sine wave as shown in Fig. 2 fal.
By inputting it into one input of the light emitting element and comparing it with the reference voltage using the comparator (4) and setting the threshold level appropriately, a rectangular wave output as shown in Fig. 2 (bl) was obtained. The light emitting diode used in (1) has the temperature characteristics as shown in Figure 3, and the photodiode used in the light receiving element (2) has the temperature characteristics as shown in Figure 4. When the
Since the light emitting output decreases by 50% and the light receiving sensitivity increases by 30%, the overall light receiving output decreases by 20%, as shown in FIG. 5(a). Therefore, the output rectangular wave becomes as shown in Fig. 5(b), and the duty ratio is no longer 50%, and the PLL
This is inconvenient when performing speed control using this method or when detecting the rotation direction using outputs that are out of phase by 90 degrees.

〔発明の目的J 本発明の目的とするところは、高温になっても矩形波出
力のデユーティ比が50%より変化しないようにしてエ
ンコータ出力を用いてPLL制御を行なう場合や90°
ずれた2つの出力より方向判別を行なう場合にも誤動作
のない回路を設計でき、全体の信頼性を向上することに
あり、他の目的とするところは、回路構成か簡単で安価
に温度補償をすることにあり、別の目的とするところは
、精度よく温度補償することにある。
[Objective of the Invention J The object of the present invention is to prevent the duty ratio of the rectangular wave output from changing below 50% even at high temperatures, and to perform PLL control using the encoder output or 90°
The purpose is to design a circuit that does not malfunction even when determining direction using two outputs that are shifted from each other, and to improve overall reliability.Another objective is to design a circuit that does not malfunction even when determining direction using two outputs that are shifted from each other, and to improve overall reliability. Another objective is to perform accurate temperature compensation.

〔発明の開示〕[Disclosure of the invention]

本発明は、受令光素子(2)、]コンパレータ4)等よ
り成る受光部、発光素子(1)より成る発光部に温度補
償機能を付加して高温になっても矩形波出力のデユーテ
ィ比が50%より変化しないようにしたものである。
The present invention adds a temperature compensation function to a light receiving section consisting of a receiving optical element (2), a comparator 4), etc., and a light emitting section consisting of a light emitting element (1), so that the duty ratio of the rectangular wave output can be maintained even at high temperatures. is set such that the change does not exceed 50%.

(実施例) 第6図は本発明の一実施例で、(1)は発光素子、(2
)は受光素子、(3)はスリット板、(4)はコンパレ
ータで、これらは第1図の従来例と同じである。(5)
は温度補償用タイオードで、コンパし一タ(4)の基準
電圧回路に接続し、スレッショルドレベルを決めるもの
である。(6)はボルテージフォロアによる出力バッフ
ァである。又、コンパレータ(4)は立上りを速くしノ
イズによる誤動作を防止するために出力から帰還しシュ
ミツト回路構成としてし)る。
(Example) FIG. 6 shows an example of the present invention, in which (1) is a light emitting element, (2
) is a light receiving element, (3) is a slit plate, and (4) is a comparator, which are the same as the conventional example shown in FIG. (5)
is a temperature compensation diode which is connected to the reference voltage circuit of the comparator (4) to determine the threshold level. (6) is an output buffer using a voltage follower. In addition, the comparator (4) is fed back from the output and configured as a Schmitt circuit in order to speed up the rise and prevent malfunctions due to noise.

(動 作) 発光素子(1)からの光出力はスリット板(3)で断続
されてその先爪は三角波的に変化する。これを受光素子
(2)で受光すれば前述のような近似正弦波の受光出力
が得られる。これを矩形波にするためには、適当なスレ
ッショルドしベルを決り)で受光出力とコンパレートす
る必要がある。ここで、]コンパレータ4)に第6図の
ように温度補償用タイオート(シリコシタイオード)(
5)を接続すると、温度補償用タイオード(5)は第7
図のような特性を有しているので、受光出力が“I]”
のときは第8図(alのような接続になり、“L″のと
きは第8図(L+1のようになり、V’rn−u (!
: VTH−Lの2つの電圧が得られ、シュミツト回路
が構成される。受光出力とスレッショルドレベルとの整
合は受光素子(2)の負荷RpLにより行ない、負荷R
pLが大きいときの出力電圧EI)L 、−Iは第9図
のように、負荷RpLが小さいときの出力電圧より大き
くなる。尚、第9図でRpL−+>RpL−2である。
(Operation) The light output from the light emitting element (1) is interrupted by the slit plate (3), and its tip changes in a triangular wave pattern. If this light is received by the light receiving element (2), a light receiving output of an approximate sine wave as described above can be obtained. In order to convert this into a rectangular wave, it is necessary to compare it with the light reception output using an appropriate threshold (determine the bell). Here, the comparator 4) is connected to a temperature compensation tie-out (silicon tie-off) (as shown in Fig. 6).
5), the temperature compensation diode (5) becomes the seventh
Since it has the characteristics shown in the figure, the received light output is “I”
When it is "L", the connection is as shown in Figure 8 (al), and when it is "L", it is as shown in Figure 8 (L+1), and V'rn-u (!
: Two voltages of VTH-L are obtained, and a Schmitt circuit is constructed. Matching of the light receiving output and the threshold level is performed by the load RpL of the light receiving element (2).
As shown in FIG. 9, the output voltage EI)L, -I when pL is large is larger than the output voltage when the load RpL is small. In addition, in FIG. 9, RpL-+>RpL-2.

周囲温度が上昇して100℃になった場合、前述のよう
に、受光出力は20%低下するが・スレッショルドレベ
ルを決めている温度補償用タイオード(5)の順方向電
圧が−2−べC程度で変化するので、iooocのとき
は、0.002X10910.7X100= 28 (
%)低下し、第10図(a)の実線で示すようになって
受光出力の低下を相対的に相殺し、出力は第10図(b
)ノヨうにデユーティ比がほぼ50%にできる。
When the ambient temperature rises to 100 degrees Celsius, the received light output will drop by 20% as mentioned above, but the forward voltage of the temperature compensation diode (5) that determines the threshold level will be -2-below C. It changes depending on the degree, so for ioooc, 0.002X10910.7X100=28 (
%) decreases as shown by the solid line in Figure 10(a), which relatively offsets the decrease in the received light output, and the output decreases as shown by the solid line in Figure 10(b).
) The duty ratio can be almost 50%.

(第2実施例) 第11図は本発明の他の実施例で、(7)はVBEマル
チづライセで、発光素子(1)に直列に接続して温度に
よって発光素子(1)に流す電流を調整するものである
。(2)は受光素子、(3)はスリット板であり、(4
)はコンパレータで、第6図の実施例と同様にシュミツ
ト回路構成としている。(6)は出力バッファである。
(Second Embodiment) Fig. 11 shows another embodiment of the present invention, in which (7) is a VBE multi-type licer, which is connected in series to the light emitting element (1) and allows current to flow through the light emitting element (1) depending on the temperature. This is to adjust the (2) is a light receiving element, (3) is a slit plate, and (4
) is a comparator, which has a Schmidt circuit configuration similar to the embodiment shown in FIG. (6) is an output buffer.

(動 作) 発光素子(1)からの光出力はスリット板(3)で断続
され、その光量は三角波的に変化し、これを受光素子(
2)で受光することにより近似正弦波の受光出力が得ら
れる。これを適当なスレッショルドレベルを決めてコシ
パレータ(4)に入力すると矩形波出力が得られる。周
囲温度が約100℃になった場合には、発光素子(1)
の光源は50%にまで低下し、受光素子(2)の感度上
昇を差引いても受光出力は20%低下する。そこで、発
光素子(1)に直列にVBEマルチプライt−(7)を
接続することにより、トランジスタQのVBHの低下に
伴なってVBEマルチプライ’F’ (7)の両端の電
圧も低下し、発光素子(1)の印加電圧が亮くなる。即
ち、vBEマルチプライセ(7)の両端電圧Vは、 ■−VBER1+R で表わされ、トラン5スタQのVBEが温度上昇により
低下するとVBEマ;ルチプライi’ (7)の両端電
圧Vも低下し、発光素子(1)の印加電圧が高くなる。
(Operation) The light output from the light emitting element (1) is interrupted by the slit plate (3), and the amount of light changes in a triangular wave pattern, which is transmitted to the light receiving element (
By receiving light in step 2), a light receiving output of an approximate sine wave can be obtained. By determining an appropriate threshold level and inputting this to the cosciparator (4), a rectangular wave output can be obtained. When the ambient temperature reaches approximately 100℃, the light emitting element (1)
The light source decreases to 50%, and even after subtracting the increase in sensitivity of the light receiving element (2), the light receiving output decreases by 20%. Therefore, by connecting the VBE multiply t-(7) in series with the light emitting element (1), as the VBH of the transistor Q decreases, the voltage across the VBE multiply 'F' (7) also decreases. , the voltage applied to the light emitting element (1) becomes brighter. That is, the voltage V across the vBE multiply (7) is expressed as -VBER1+R, and when the VBE of the transformer 5-star Q decreases due to temperature rise, the voltage V across the VBE multiply i' (7) also decreases, The voltage applied to the light emitting element (1) increases.

その結果、発光素子(1)のIli電流が増加し、発光
量と順電流とは第12図のような関係があるため、発光
量が増加し、高温での特性が補償できる。
As a result, the Ili current of the light emitting element (1) increases, and since the amount of light emitted and the forward current have a relationship as shown in FIG. 12, the amount of light emitted increases and the characteristics at high temperatures can be compensated.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように、受光部又は発光部に温度補償機
能をイ」加したから、府l温になっても矩形波出力のデ
ユーティ比が50%より変化しないようにでき、エンコ
ータ出力を用いてPLL制御を行なう場合や90°ずれ
た2つの出力より方向判別を行なう場合にも誤動作のな
い回路を容易に設計でき、全体の信頼性を向上でき、又
、コンパレータの基鵡i電圧回路Jこ温度補償用ダイオ
ードを接続したから、回路構成が簡単で、安価に温度補
fαでき、更に、発光素子に直列にVBEマ、ル゛チプ
ライヤを接続したから、精度よく温度補償力(できると
いう効果を奏するものである。
As described above, the present invention has added a temperature compensation function to the light receiving section or the light emitting section, so that the duty ratio of the rectangular wave output can be prevented from changing below 50% even when the temperature reaches 100 degrees, and the encoder output can be adjusted. It is possible to easily design a circuit that does not malfunction even when performing PLL control using PLL control or when determining direction from two outputs shifted by 90 degrees, improving overall reliability. Since a temperature compensation diode is connected here, the circuit configuration is simple and temperature compensation fα can be performed at low cost.Furthermore, since a VBE multiplier is connected in series with the light emitting element, temperature compensation power can be achieved with high accuracy. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエンコータ回路の回路図、第2図(a)
 (b)は同上の常温時の要部出力波形図、負13図は
同上の発生素子の温度特性図、第4図番よ[]−ヒの受
光素子の温度特性図、第5図(a) (b) Gま従来
のエンコータ回路の高温時の要部出力波形図、第6図は
本発明の一実施例の回路図、第7図は同上の温度補償用
タイオードの特性図、第8図(al (b) lよIr
−jl上の等価回路図、第9図は同上の受光素子の特性
図、第10図(a) (b)は第6図の実施例の高温時
の要(flII出力波形図、第11図は本発明の他の実
施例の回路図、第12図は同上の発光素子の特性図であ
る(1)・発光素子、(2)・・受光素子、(3)  
スリ・ント板、(4)・・コンパレータ、(5)・・・
温度補償用タイオード、(7)・・・VBEマルチづラ
イ1′。 代理人 弁理士  石 1)長 上 第 1図 第2図 一↑ 箇3図 囚団席度(”C) 第4図 第6閾 第9図 M2O図 −を 第11図 第12図 朋屯洗 手 続 補 正 書(自発) 昭和59年 1月30日 才・5許庁長宮殿 1、事件の表示 昭和57年特fF願第233301男 2、発 明の名称 エンコータ回路 3、補正をする者 事件との関係       特許出願人性  所  大
阪府門真市太字門真1048番地名 称 (583)松
下電工株式会社 代表者小 林  郁 4、代理人 5、補正命令の日付 92− 第9− 卯加電L(V)
Figure 1 is a circuit diagram of a conventional encoder circuit, Figure 2 (a)
(b) is a diagram of the main part output waveform at room temperature as above, Figure 13 is a temperature characteristic diagram of the generating element as above, Figure 4 is a temperature characteristic diagram of the light receiving element of number []-hi, Figure 5 (a) (b) Figure 6 is a circuit diagram of an embodiment of the present invention, Figure 7 is a characteristic diagram of the same temperature compensation diode, Figure 8 is a diagram of the output waveforms of main parts of a conventional encoder circuit at high temperatures. Figure (al (b) lyoIr
Fig. 9 is a characteristic diagram of the light-receiving element shown above, Fig. 10 (a) (b) shows the main points of the embodiment shown in Fig. 6 at high temperature (flII output waveform diagram, Fig. 11) 12 is a circuit diagram of another embodiment of the present invention, and FIG. 12 is a characteristic diagram of the same light emitting element as above. (1) Light emitting element, (2) Light receiving element, (3)
Sliding board, (4)... Comparator, (5)...
Temperature compensation diode, (7)...VBE multi-wire 1'. Agent Patent Attorney Ishi 1) Chief Figure 1 Figure 2 Figure 1 ↑ Figure 3 Prisoner's seat degree (''C) Figure 4 Figure 6 Threshold Figure 9 M2O Figure - Figure 11 Figure 12 Hotun Washing Hand Continuing amendment (self-motivated) January 30, 1980, 5th Minister's Palace 1, Indication of the case, 1988 Patent Application No. 233301 Man 2, Name of the invention Encoder circuit 3, Case of the person making the amendment Relationship with Patent Applicant Location 1048 Bold Kadoma, Kadoma City, Osaka Name (583) Matsushita Electric Works Co., Ltd. Representative Iku Kobayashi 4, Agent 5, Date of Amendment Order 92- No. 9- Den Uka L (V )

Claims (2)

【特許請求の範囲】[Claims] (1)光を発する発光素子と、スリット板により断続さ
れた光を受光する受光素子と、前記受光素子の受光出力
と基準電圧とを比較し矩形波を出力するコンパレータと
より成るエンコーダ回路において、受光部又は発光部に
温度補償機能を付加して成ることを特徴とするエンコー
タ回路。
(1) In an encoder circuit comprising a light-emitting element that emits light, a light-receiving element that receives light interrupted by a slit plate, and a comparator that compares the light-receiving output of the light-receiving element with a reference voltage and outputs a rectangular wave, An encoder circuit characterized in that a temperature compensation function is added to a light receiving section or a light emitting section.
(2)  コンパレータの基準電圧回路に温度補償用タ
イオードを接続して成ることを特徴とする特許絖して成
ることを特徴とする特許請求の範囲第1項記載のエンコ
ータ回路。
(2) The encoder circuit according to claim 1, characterized in that it is formed by connecting a temperature compensating diode to the reference voltage circuit of the comparator.
JP23330182A 1982-12-29 1982-12-29 Encoder circuit Pending JPS59125018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23330182A JPS59125018A (en) 1982-12-29 1982-12-29 Encoder circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23330182A JPS59125018A (en) 1982-12-29 1982-12-29 Encoder circuit

Publications (1)

Publication Number Publication Date
JPS59125018A true JPS59125018A (en) 1984-07-19

Family

ID=16952962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23330182A Pending JPS59125018A (en) 1982-12-29 1982-12-29 Encoder circuit

Country Status (1)

Country Link
JP (1) JPS59125018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248408A2 (en) * 1986-06-02 1987-12-09 OMRON Corporation A reflection type photo-electric switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897557A (en) * 1972-03-27 1973-12-12
JPS5355053A (en) * 1976-10-29 1978-05-19 Olympus Optical Co Ltd Photoelectric encoder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897557A (en) * 1972-03-27 1973-12-12
JPS5355053A (en) * 1976-10-29 1978-05-19 Olympus Optical Co Ltd Photoelectric encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248408A2 (en) * 1986-06-02 1987-12-09 OMRON Corporation A reflection type photo-electric switch
US4926049A (en) * 1986-06-02 1990-05-15 Omron Tateisi Electronics Company Reflection type photoelectric switch

Similar Documents

Publication Publication Date Title
US6232902B1 (en) Sigma-delta analog-to-digital converter
KR950002637B1 (en) Ion current sensing device
JPS6144360B2 (en)
JPS59125018A (en) Encoder circuit
US11262295B2 (en) Electronic arrangement, optical gas sensor including such an electronic arrangement, and method for combined photocurrent and temperature measurement using such an electronic arrangement
JPS6020655A (en) Optical detecting circuit
US20040164232A1 (en) Photocurrent-to-binary signal conversion apparatus capable of suppressing waveform distortion
GB2159286A (en) Voltage difference detector
JPS623625B2 (en)
KR920010216B1 (en) Bias circuit for analog/digital converter
KR20030084580A (en) A/d converter with noise elimination function
JPS5970328A (en) Amplifier circuit of received light
US20030233202A1 (en) Control loop apparatus, current measuring circuit apparatus and methods therefor
JP2511646B2 (en) Power supply circuit
JP2797375B2 (en) Zero cross detection circuit of AC power supply
JP2810597B2 (en) Distance sensor
JPS6018774A (en) Phase sequence detector
JPH01226539A (en) Sensitivity correcting equipment for label sensor
SU1332258A1 (en) Comparator
JP2690521B2 (en) Undervoltage detection circuit
JP2788661B2 (en) Optical logic operation gate
SU601827A1 (en) Logical threshold element
KR920001468Y1 (en) Photo sensor driver for fax
JPH01195841A (en) Detector for fingertip pulsation
SU596975A1 (en) Electro-optic computer