JPS59123286A - Carbon acid gas laser device - Google Patents

Carbon acid gas laser device

Info

Publication number
JPS59123286A
JPS59123286A JP23201882A JP23201882A JPS59123286A JP S59123286 A JPS59123286 A JP S59123286A JP 23201882 A JP23201882 A JP 23201882A JP 23201882 A JP23201882 A JP 23201882A JP S59123286 A JPS59123286 A JP S59123286A
Authority
JP
Japan
Prior art keywords
gas
laser
pressure
carbon dioxide
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23201882A
Other languages
Japanese (ja)
Inventor
Shigenori Fujiwara
藤原 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23201882A priority Critical patent/JPS59123286A/en
Publication of JPS59123286A publication Critical patent/JPS59123286A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Abstract

PURPOSE:To improve the output stability at the time of starting the operation and thus avoid the generation of output variation even after passing a long time by controlling the exhaust amount of a laser gas exhaust device which exhausts the mixed gas in a laser oscillating device, and providing a controlling device which continuously changes the inner pressure of the laser oscillating device. CONSTITUTION:Helium gas, nitrogen gas, and carbon gas are taken in a laser gas supplying device 4, and the ratio of mixture is kept constant. The mixed gas is introduced to the laser oscillating device 6 via a valve 5, thus increasing the pressure to a constant pressure. The laser is oscillated by generating glow discharge by the electric power from a power source 9 in the device 6, resulting in starting the operation. On the other hand, the mixed gas in the device 6 is exhaust-treated by means of the laser gas exhaust device 8 through an electromagnetic valve 7. The electromagnetic valve 7 is controlled by the controlling device 10, and constantly controls the gas pressure 3 in the device. Further, mixed gas is continuously introduced to the device at a constant ratio of mixture also after that point, and the gas pressure in the device 6 is kept constant in accordance with the action of the electromagnetic valve 7.

Description

【発明の詳細な説明】 [発明の技術多ン野1 本発明は出力を安定化し1qる炭酸ガスレーリ゛駁置p
関づる。
[Detailed Description of the Invention] [Technical Field of the Invention 1] The present invention provides a carbon dioxide gas relay positioning system that stabilizes the output and stabilizes the output.
Related.

[発明の技術的前車] 一般に、炭酸力スレーリ゛装置においては、第1図に図
示するように、標準の体積7TI13圧力150気圧C
充填したヘリウムカスボンベ1、窒素ガスボンベ2おJ
:び重量 30 kg+充填した炭酸ガスボンベ3から
レーザの発振気体として各カスをレーザガス供給装置4
に受け、このレーザガス供給装置4によりそれぞれのガ
スの混合比を適切に設定したうえ、弁5を通してレーク
“発振装置6に導入する。
[Technical forerunner of the invention] Generally, in a carbonic acid sleigh system, as shown in FIG.
1 filled helium gas cylinder, 2 nitrogen gas cylinders
:Weight: 30 kg+ Each dreg is transferred from the filled carbon dioxide gas cylinder 3 to the laser gas supply device 4 as the laser oscillation gas.
In response to this, the mixing ratio of each gas is appropriately set using the laser gas supply device 4, and then introduced into the rake oscillation device 6 through the valve 5.

このようにし”Cレーザ発振装置6に封じ込められた混
合カスは、電磁弁7を通してレーザガス排気装置8へ送
られ、排気処理される。
The mixed dregs thus confined in the C laser oscillation device 6 is sent to the laser gas exhaust device 8 through the electromagnetic valve 7 and is exhausted.

また、レーザ用電源9からは電力がレーザ発振装置Oに
供給され、この電力によりレーザ発振装置6においてク
ロー放電を発生させ、そこに光共振器を構成覆ることに
よってレーリ゛光が発生させられる。
Further, power is supplied from the laser power supply 9 to the laser oscillation device O, and this power generates a claw discharge in the laser oscillation device 6, which forms an optical resonator and generates Rayleigh light.

ざらに具体的に上記のシー11発振装置の動作を説明す
れは、まずヘリウムガス、窒素ガス、炭酸ガスのそれぞ
れのガスボンベ1.2.3より供給された混合ノ」スは
、レーザガス供給装置4の弁5により制御され、真空状
態ないしO、l 1 torrにされたレーザ発振装置
G内に1−(e :N2 :CO2のモル分比率が32
:15:3の割合に35 torrまで導入される。こ
のレーザ発振装置6への混合ガスの封入が完了した後、
電磁弁7が働きレーリ゛ガスIJI気装置8によりレー
ザ発振装置6中よりこの混合カスは排気、放出される。
To briefly explain the operation of the oscillator 11 described above, first, the mixed gas supplied from the respective gas cylinders 1.2.3 of helium gas, nitrogen gas, and carbon dioxide is supplied to the laser gas supply device 4. The mole ratio of 1-(e:N2:CO2 is 32
:15:3 ratio up to 35 torr. After filling the mixed gas into the laser oscillation device 6 is completed,
The electromagnetic valve 7 operates, and the mixed scum is exhausted and discharged from the laser oscillation device 6 by the laser gas IJI device 8.

この時排気のみを行なうと、レーザ発振装置6内の圧力
が下がるので、レーザガス供給装置4により、混合ガス
を1−1e:3.2λ/分、N2 : 1.5β/分、
CO2:0゜3j2/分の比率で合計5℃7′分導入覆
る。この時レーザ発振装置6内部の圧力は排気側の電磁
弁7の開開により35 tor+’に一定に保たれる。
If only exhaust is performed at this time, the pressure inside the laser oscillation device 6 will drop, so the mixed gas is supplied by the laser gas supply device 4 to 1-1e: 3.2λ/min, N2: 1.5β/min,
CO2: Introduced for a total of 5°C and 7' minutes at a ratio of 0°3j2/min and covered. At this time, the pressure inside the laser oscillation device 6 is kept constant at 35 torr+' by opening and opening the electromagnetic valve 7 on the exhaust side.

[前照技術の問題点] 一般に、炭酸ガスレーザ装置は上述のように動作するが
、このような動作では第2図に図示するような不安定な
出力特性を示J−0 すなわち、第2図のグラフの場合は、放電入力にd3い
て電流フィードバックを行ない、放電入力を一定に保っ
た定格出力2,5kwの場合のレーザ出力の時間特性で
あるが、レーザ発振開始時におりる急激な出力変化が見
られ、初1■の10分間において定格出力の約20%の
出力変動が発生しており、また発振開始後時間の経過と
ともに緩慢な出力変化が見られ約4時間後には約10%
の出ツクの低下が生じている。
[Problems with front illumination technology] In general, carbon dioxide laser devices operate as described above, but such operations exhibit unstable output characteristics as shown in FIG. In the case of the graph above, the time characteristics of the laser output are shown when d3 is at the discharge input and current feedback is performed, and the discharge input is kept constant at a rated output of 2.5 kW, but there is a sudden change in the output at the start of laser oscillation. An output fluctuation of approximately 20% of the rated output occurred in the first 10 minutes, and a slow output change was observed as time passed after the oscillation started, and approximately 10% after approximately 4 hours.
There has been a decline in output.

一ト述の如〈従来の炭酸ガスレーザ装置においては、運
転開始時の出力変ゝ動が大きく、さらにその後の出力の
経時変化も大きいという欠点があった。
As mentioned above, conventional carbon dioxide laser devices have the disadvantage that output fluctuations are large at the start of operation, and that subsequent changes in output over time are also large.

[発明の目的] 本発明I(ilかかる従来の事情に対処してなされたも
ので、運転開始時における出力安定性がよく、ざらに長
時間経過しても出力変化の生じない炭酸)jスレーザ装
置を提供しようとするものである。
[Object of the Invention] The present invention I (a carbonic acid laser that has been made in response to the above conventional circumstances, has good output stability at the start of operation, and does not cause output changes even after a long period of time) The aim is to provide equipment.

し発明の概要] すなわら本発明は、ヘリウムガス、窒素ガスおJ:び炭
酸ガスの少なくとも三種類の混合ガス中でグロー放電を
行なわせレーデ光を発生させるレーザ発振装置と、前記
混合ガスの混合比を変えながら混合ガスを前記レーザ発
振装置へ供給するレーザガス供給装置と、前記レーザ発
振開始時の混合カスを排気するレーザガス排気装置と、
この排気装置の排気量を制御し前記レーザ発振装置の内
部圧力を連続的に変化せしめる制御装置と、前記レーザ
発振装置へ電力を供給する電源とからなることを特徴と
する炭酸ガスレーザ発振装置である。
[Summary of the Invention] In other words, the present invention provides a laser oscillation device that generates LED light by performing glow discharge in a mixture of at least three types of gases: helium gas, nitrogen gas, and carbon dioxide gas, and a laser gas supply device that supplies a mixed gas to the laser oscillation device while changing the mixing ratio of the laser oscillation device; and a laser gas exhaust device that exhausts the mixed residue at the time of starting the laser oscillation.
A carbon dioxide laser oscillation device comprising: a control device that controls the exhaust amount of the exhaust device and continuously changes the internal pressure of the laser oscillation device; and a power source that supplies power to the laser oscillation device. .

[発明の実施例] 以下本発明の詳細を図面に示J−実施例につ、(7λで
説明する。
[Embodiments of the Invention] The details of the present invention are shown in the drawings below and will be explained in reference to J-Embodiments (7λ).

まず本発明の詳細な説明する。First, the present invention will be explained in detail.

初めに、炭酸ガスレーザ装置に関づる基本的な実験デー
タにつき説明する。
First, basic experimental data regarding carbon dioxide laser equipment will be explained.

第3図はヘリウムガス、窒素ガスおよび炭酸カスを32
 : 15 、: 3の混合比において、35 tor
rの圧力までレーザ発振装置に封入し高速て循環さl、
その中に約30kWのグIII 7 n’l電を生じさ
け、かつその放電により発生した熱を熱交換器で冷却し
た場合の炭酸ガスレーリ“装置の運転開始時からの経過
時間と封入ガス圧力の変化について示した゛しのである
。これによれば、放電開始後数分間tこおいてガス圧は
急激に変化し、さらに数時間にわたって徐々に変化する
Figure 3 shows helium gas, nitrogen gas and carbon dioxide 32
At a mixing ratio of : 15 and : 3, 35 tor
It is sealed in a laser oscillation device up to a pressure of r and circulated at high speed.
The elapsed time from the start of operation of the carbon dioxide gas relay system and the pressure of the sealed gas when approximately 30 kW of electricity is generated in the system, and the heat generated by the discharge is cooled by a heat exchanger. The changes are shown below.According to this, the gas pressure changes rapidly several minutes after the start of discharge, and then gradually changes over several hours.

第4図は、ヘリウムカス、窒素ガスおよび炭酸ガスを3
2:15:3の混合比において、レーザ発振装置に35
 torrまて封入し、さらに毎分1−18:3.2℃
、N、!:1.5β、CO2:0.3℃の出導入しかう
同量の排気を行ない、レーザ光振装(行内の圧力を35
 torrに保ちながら、前述と同様に約30kWのグ
ローhk電入力を行なった際に、炭酸カスのモル分圧を
1llll定して運転開始後の経過時間について示した
グラフである。この場合にも炭酸〕Jスのモル分圧は、
初期の数分間で急激に変化し、その後の数時間にa3い
て徐々に変化している。
Figure 4 shows helium gas, nitrogen gas and carbon dioxide gas.
At a mixing ratio of 2:15:3, 35
torr and further sealed at 1-18:3.2℃ per minute.
,N,! : 1.5β, CO2: 0.3℃ and the same amount of exhaust gas,
This is a graph showing the elapsed time after the start of operation when the molar partial pressure of carbon dioxide sludge was fixed at 1llllll when a glow hk electric power input of about 30kW was applied in the same way as described above while maintaining the torr. In this case as well, the molar partial pressure of JS carbonate is
It changes rapidly in the first few minutes, and gradually changes in the next few hours.

第5図は第4図の関係を単位体偵当りの炭酸ガスのモル
数への換障を行なって示した経過時間に対するカス圧ツ
ノのグラフである。
FIG. 5 is a graph of the scum pressure angle versus elapsed time, which shows the relationship shown in FIG. 4 by converting it into the number of moles of carbon dioxide per unit body.

以上第3図〜第5図に示したデータに基づいて、次のよ
うなことがわかる。
Based on the data shown in FIGS. 3 to 5 above, the following can be understood.

まず、第3図における初期の圧力の急激な変化は、1り
人ガスの温度変化によるものであり、例えば△]−−6
0°にの変化があれば、その圧力Pは1)を11人ガス
のモル数、kを気体定数、王を絶対温度として、一般に p  −nl(−Y” と表わされるから、絶対温度To度Kにお(〕る圧力P
のは、 P  o  =  nko  T  Oどなり、ざらに
絶対温度がTo度KからΔ−■度にだり上背した時の圧
力P′は P’=nk(To  + Δ 丁 ) とイ5る。従って、 P’ / P o −(T o A−△−r’ ) /
 T 。
First, the rapid change in initial pressure in Figure 3 is due to the temperature change of the lone gas, for example △]--6
If there is a change to 0°, the pressure P is generally expressed as p −nl(-Y”, where 1) is the number of moles of gas, k is the gas constant, and y is the absolute temperature, so the absolute temperature To Pressure P at degree K
That is, P o = nko TO, and the pressure P' when the absolute temperature rises from To degrees K to Δ-■ degrees is P' = nk(To + Δ ding). Therefore, P'/P o -(T o A-△-r')/
T.

どなり、 To=293°に とすれば、 P’ /Po −(293°i〈460’ K〉/’2
’)3°1<−1=1.20 となり、20%程度の圧力上昇を引き起こす。
If To = 293°, then P' /Po - (293°i〈460'K〉/'2
')3°1<-1=1.20, which causes a pressure increase of about 20%.

それに続く緩慢な圧ツノTRは放電の影響による炭酸ガ
スの分解によると考えられ、 COz#c O’+ (1/ 2 ) 02の反応が生
じていると推測できる。
The subsequent slow pressure horn TR is considered to be due to the decomposition of carbon dioxide gas due to the influence of discharge, and it can be inferred that the reaction COz#c O'+ (1/2) 02 is occurring.

同様に第4図、第5図においては、圧カ一定のコン1〜
ロールを行なっているため、温度変化に伴って封入カス
のモル数が変化し、次の関係式が成り立つ。
Similarly, in Figures 4 and 5, the pressure is constant
Since rolling is performed, the number of moles of the enclosed dregs changes as the temperature changes, and the following relational expression holds true.

Po=nkT。Po=nkT.

Pa =n’ k  (To+Δ丁) 従って、 n ’ 7’n =−r o / (To+Δ丁)どな
り、 To=293°K、ΔT=60’ K とづるど n ’ /n 止0.83 どなり、炭酸カス分子は17%程度の密度の減少を引ぎ
起こす。
Pa = n' k (To + Δt) Therefore, n '7'n = -r o / (To + Δt) roar, To = 293°K, ΔT = 60' K and n' / n stop 0.83 roar , carbonate scum molecules cause a decrease in density of about 17%.

第6図は定常状態での運転時にお【プる1−1e:N2
.:CO2の混合比、32:15:3における全流量5
β/分でのガス圧力とレーザ出力との関係を示したグラ
フである。この場合、レーザ出力はほぼガス圧力に比例
する。
Figure 6 shows [Pull 1-1e: N2] during steady state operation.
.. :CO2 mixing ratio, total flow rate 5 at 32:15:3
2 is a graph showing the relationship between gas pressure and laser output in β/min. In this case, the laser output is approximately proportional to the gas pressure.

また、この関係をガス圧カ一定の場合の炭酸ガス分子の
モル故に対して求めたものが第7図で・あり、この場合
もほぼ炭酸ガス分子のモル数とレーザ出力(ま比例する
ことが判明した。
Figure 7 shows this relationship obtained for the mole of carbon dioxide molecules when the gas pressure is constant. found.

本発明は以上の基本的な実験ガータに基づいてなされた
ものであり、次のJとうな理論に基づく。
The present invention was made based on the above basic experimental results, and is based on the following theory.

tなりち炭酸ガスレーザ装置の出力は、第7図に示した
J−うに単位体積当りの炭酸ガス分子のモル故に比例リ
−るのて、でさるだ(プ単位体偵当りの炭酸ガス分子の
モル数を一定にするにうに寸ればK M9刀スレーリ゛
!!i faの出力の安定化が1gられる。
The output of the carbon dioxide laser device is proportional to the moles of carbon dioxide molecules per unit volume, as shown in Figure 7. If you adjust the number of moles to be constant, the output of KM9 sword sleri!!ifa will be stabilized by 1g.

一般に、従来の炭酸ガスレーザ装置においては、その運
転時にcl−、> lプるヘリウムガス、窒素ガスおに
び炭酸ガスの混合比は一定でありかつその設定圧力も一
定であった。そのためレーザ発振装置に45(プる封入
ガスの圧力Pは時間(の関数として、kl、1く2、α
、βを定数として次のように表わされる。
Generally, in a conventional carbon dioxide laser device, during its operation, the mixing ratio of Cl−, >l helium gas, nitrogen gas, and carbon dioxide gas was constant, and the set pressure was also constant. Therefore, the pressure P of the filler gas in the laser oscillation device is 45 (P) as a function of time (kl, 1 × 2, α
, β is a constant, and is expressed as follows.

P=Po  (e    +α)  (e −”t+f
J )−h、t 」上式において、Poはレーザ発振開始時の圧力であり
、 上式の第1項(e−k・ゝ+α) は初期の熱入力により温痘上昇が生じて起こる炭酸カス
分子のモル数の減少である。
P=Po (e + α) (e −”t+f
J)-h, t'' In the above equation, Po is the pressure at the start of laser oscillation, and the first term (e-k・ゝ+α) in the above equation is the carbon dioxide caused by the rise in smallpox caused by the initial heat input. This is a decrease in the number of moles of dregs molecules.

また第2項(e−に、t+β) は炭酸ガス分子の分解により生ずる炭酸ガス分子のしル
数の減少である。そして、この第1項かだI激な変化を
示し、第2項が緩慢な変化を示J−のである。
The second term (e-, t+β) is a decrease in the number of carbon dioxide molecules caused by the decomposition of carbon dioxide molecules. The first term shows a rapid change, and the second term shows a slow change.

(こで、このにうな第1項および第2項のそれぞれの逆
関数に相当するような項、つまり一に代 1/   (e         +  α >   
、  1/   (e   ”a−’+  β )のよ
うな物理的な現象を加えれば、 P−Pa  (e −” +α)  (e−’lt+(
3) X (1/ (e−kIt+cn ) X (1
/ (e−)LL%+β))−P。
(Here, we have a term that corresponds to the inverse function of each of the first and second terms, that is, 1/(e + α >
, 1/ (e ``a-'+ β ) If we add physical phenomena like P-Pa (e - '' + α) (e-'lt+(
3) X (1/ (e-kIt+cn)
/ (e-)LL%+β))-P.

どなり、単位体積当りの炭酸ガス分子のモル数を一定に
保つことができ、従ってレーザの出力を一定に保つこと
ができる。
As a result, the number of moles of carbon dioxide molecules per unit volume can be kept constant, and therefore the output of the laser can be kept constant.

以」二のような考察に基づき本発明においては、まず第
1項の急激な変化を打ら消8JグJ宋を持つ項として、
運転開始時の設定ノJス圧力より運転開始後数分後の設
定圧力が高くなるよう【こ装置を構成した。
Based on the above considerations, in the present invention, we first cancel the sudden change in the first term by using a term with 8JguJ Song,
This equipment was constructed so that the set pressure several minutes after the start of operation was higher than the set pressure at the start of operation.

また、第2項の緩慢な変化を打ら消J−効果を持つ項と
しては、運転開始時に封入するヘリウムガス、窒素ガス
および炭酸ガスの混合比と運転開始後導入するヘリウム
ガス、窒素ガスおよび炭酸ガスの混合比を異ならしめる
ようにし、特に運転開始後の炭酸ガスの)昆合比率を高
めるように装置を構成した。
In addition, the terms that have the J-effect that cancel out the slow change in the second term are the mixing ratio of helium gas, nitrogen gas, and carbon dioxide gas sealed at the start of operation, and the mixture ratio of helium gas, nitrogen gas, and carbon dioxide gas introduced after the start of operation. The mixing ratio of carbon dioxide gas was varied, and the apparatus was configured to increase the aggregation ratio (particularly of carbon dioxide gas) after the start of operation.

以上のような原111に基づく本発明の一実施例の構成
を第8図に示ず。なお、第8図にJ5いては第1図の従
来の炭酸ガスレーザ装置の構成と同じ部分には同一の筒
用が伺されている。
The structure of an embodiment of the present invention based on the above-mentioned original 111 is not shown in FIG. In addition, in FIG. 8, J5 has the same cylinder in the same part as the conventional carbon dioxide laser device shown in FIG. 1.

図において符81.2.3はそれぞれヘリウムガス、窒
素ガス、炭酸ガスの各ガスボンベを示しており、これら
の各ガスボンベ1.2.3中のガスはレーザカス供給装
置4中に取り出されて混合ガスどされる。
In the figure, reference numerals 81.2.3 indicate gas cylinders for helium gas, nitrogen gas, and carbon dioxide gas, respectively, and the gas in each of these gas cylinders 1.2.3 is taken out into the laser scum supply device 4 and turned into a mixed gas. be thrown away.

この混合ガスを取り出すレーザガス供給装置4は各ガス
の混合比を時間の経過とともに自由に変え冑る不図示の
手段を有し、このレーザガス供給装@4中で混合された
混合ガスは弁5を経由して1ノ一リ゛発振装@6中へ封
入される。
The laser gas supply device 4 that takes out this mixed gas has a means (not shown) that freely changes the mixing ratio of each gas over time, and the mixed gas mixed in this laser gas supply device @4 passes through a valve 5. The oscillator is then sealed into the 1-no-1 oscillator @6.

レーザ発振装置6は前記混合ガスを導入排気しながらク
ロー放電を発生させ、レーザ光を発生さける。このレー
ザ発4&装置6中の混合ガスは電磁弁7を介してレーザ
ガス排気装置8により排気処1g1される。
The laser oscillation device 6 generates claw discharge while introducing and exhausting the mixed gas, thereby avoiding generation of laser light. The mixed gas in the laser emitting device 4 and device 6 is exhausted by a laser gas exhaust device 8 via a solenoid valve 7.

レーザ発振装置6に接続された電磁弁7はこの電磁弁7
に接続されIζ制御装置10によりその動作を制御され
、レーザ発振装置6中の混合ガスの圧力を調整する。
The solenoid valve 7 connected to the laser oscillation device 6 is
Its operation is controlled by the Iζ control device 10, and the pressure of the mixed gas in the laser oscillation device 6 is adjusted.

なお符局9はレーザ発振波El 6に電力を供給する電
源を示してd5す、この電源より供給された電力により
レーザ発振装置6中でグロー放電を発生せしめる。
Note that the reference numeral 9 indicates a power source d5 that supplies power to the laser oscillation wave El 6, and the power supplied from this power source causes glow discharge to occur in the laser oscillation device 6.

次に上述の実施例の動作を実際の数値例を示しながら説
明する。
Next, the operation of the above-described embodiment will be explained by showing actual numerical examples.

なお、本実施例の炭酸ガスレーザ装置の定格出力は2.
5.l\Wであるとする。
The rated output of the carbon dioxide laser device of this example is 2.
5. Suppose that l\W.

より“、本炭酸ガスレーリ゛装置の運転間9f目1vに
は、l\リウムガスボンベ1、窒素ガスボンベ2および
炭酸ガスボンベ3よりヘリウムガス、窒素ガスおよび炭
酸ガスをレーザカス供給装置4中に受り、このレーザカ
ス供給装置4中(・ヘリウムガス、窒ス4ガスおよび炭
酸ガスの各ガスの混合比を32゜1 b : 3に混合
刃る。混合ガスは弁5を経由し−Cレーザ発振装置6中
に導入され、このレージ“発振装置6中の圧力を35 
torrまて高める。イしてレージ“発振装置G中で電
源9からの電力ににリグロー放電を発生ざゼレーザを発
振させ、炭酸ガスレーザ装置の運転を開始する。運転開
始直後よりレーザカス供給装置4中での各ガスの混合比
を変化せしめ、1−1e  :3.05R/分、N2 
: 1.50ぶ7分、CO2:0.45β/′分の混合
比率の混合ガスの上記分量をレーザ発振装置6中に連続
的に導入し、レーザ発振装置6中のガス圧を約5分間で
39 torrに達するようにする。
Therefore, at 9th f 1v during the operation of this carbon dioxide gas relay device, helium gas, nitrogen gas and carbon dioxide gas are received into the laser scum supply device 4 from the l\ium gas cylinder 1, nitrogen gas cylinder 2 and carbon dioxide gas cylinder 3, and this In the laser scum supply device 4 (the mixing ratio of helium gas, nitrogen 4 gas, and carbon dioxide gas is 32° 1:3).The mixed gas is passed through the valve 5 into the -C laser oscillation device 6. is introduced into the oscillator 6, and the pressure in this laser oscillator 6 is increased to 35
Increase the torr. Then, a re-glow discharge is generated in the laser oscillator G using the power from the power source 9 to cause the laser to oscillate, and the operation of the carbon dioxide laser device is started. Immediately after the start of operation, each gas in the laser scum supply device 4 is Varying the mixing ratio, 1-1e: 3.05R/min, N2
: The above amount of mixed gas with a mixing ratio of 1.50 to 7 minutes and CO2 to 0.45 β/' was continuously introduced into the laser oscillation device 6, and the gas pressure in the laser oscillation device 6 was increased for about 5 minutes. so that it reaches 39 torr.

一方では、電磁弁7を通じてレーザガス排気装置8によ
りレーザ発振装置6中の混合ガスを排気処理する。電磁
弁7の開閉動作は制御装置10ににり制御され、レーザ
発振装置6中のガス圧を3−g+o+・1・に一定に制
御する。さらに、その時点以後もレーザ発振装置6中に
は継続的に1−1e:3.05℃/分、N2  : 1
. 5oJ2/分、CO2:0゜45ρ7′分の混合比
で混合ガスを導入し続け、電磁弁7の動作と相まってレ
ーザ発振装置6中のガス圧を一定に保つのである。
On the other hand, the mixed gas in the laser oscillation device 6 is exhausted by the laser gas exhaust device 8 through the electromagnetic valve 7 . The opening and closing operations of the electromagnetic valve 7 are controlled by a control device 10, and the gas pressure in the laser oscillation device 6 is controlled to be constant at 3-g+o+.1. Furthermore, even after that point, the laser oscillation device 6 was continuously heated with 1-1e: 3.05°C/min, N2: 1
.. The mixed gas is continuously introduced at a mixing ratio of 5oJ2/min and CO2:0°45ρ7', and in combination with the operation of the electromagnetic valve 7, the gas pressure in the laser oscillation device 6 is kept constant.

このようにしてレーザ発振装置6の内部では、炭酸ガス
レーザ装置の運転開始当初はガス圧力35torr、 
ン昆合比 H2:N2   :C02=32:15:3
の混合)ガスが存在し、運転開始後5分後にはガス圧力
391o+ゴ、混合比的32:15:3となり、さらに
長時間ガスを導入しながら運転しつづ(プればガス圧力
39 tOrr、混合比1−1e : N2 : C0
2=30.5:15:4.5となる。
In this way, inside the laser oscillation device 6, the gas pressure is 35 torr at the beginning of operation of the carbon dioxide laser device.
H2:N2 :C02=32:15:3
5 minutes after the start of operation, the gas pressure was 391 o + g, the mixing ratio was 32:15:3, and the operation continued for a long time while introducing gas (if the gas pressure was 39 tOrr, Mixing ratio 1-1e: N2: C0
2=30.5:15:4.5.

以上のように構成された炭酸ガスレーザ装置の実験結果
および測定データを第9図および第10図に示した。
Experimental results and measurement data for the carbon dioxide laser device configured as described above are shown in FIGS. 9 and 10.

第9図は上述の炭酸ガスレーリ゛装置の運転時のレーリ
゛出力の運転時間に対する変化である。これににれば、
はとんど初期の急激な出力変化は打ら消され、ざらにそ
れ以後の変化もほとんどなく出力は□安定されている。
FIG. 9 shows the change in the relay output with respect to the operating time during operation of the above-mentioned carbon dioxide gas relay device. If you follow this,
The initial rapid change in output is almost canceled out, and there is almost no change after that, and the output remains stable.

第10図は本発明の炭酸ガスレーザ装置のレーザ発振装
置6内の全ガス圧と炭酸ガスの分圧の時間特性を示した
。はぼ単位体偵当りの炭酸ガス分子のモル数の一定化が
実現されているのが分る。
FIG. 10 shows the time characteristics of the total gas pressure and the partial pressure of carbon dioxide in the laser oscillation device 6 of the carbon dioxide laser device of the present invention. It can be seen that the number of moles of carbon dioxide gas molecules per unit body has been made constant.

[発明の効果] 以上)ホべたように本発明によれば、光フィードバック
、゛市カフr−ドパツク等複肩1な手段によることなく
、電磁弁によりカス圧力をコン1へ[1−ルし、流量h
1にJ:リガス流由を設定Jるという非常に簡便な方法
において、出力の極めて安定した炭酸ガスレーザ装置を
作り出すことができ、その」ニ業的価値は極めて人なる
ものがある。
[Effects of the Invention] As mentioned above, according to the present invention, the scum pressure can be transferred to the controller 1 by the solenoid valve without using multiple means such as optical feedback or city cuff r-dopack. , flow rate h
A carbon dioxide laser device with extremely stable output can be created using a very simple method of setting the gas flow path in step 1, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の炭酸ガスレーザ装置の系統図、第2図は
従来の炭酸ガスレーザ装置でのレーザ出力の時間特性を
示すグラフ、第3図はガスの充填、封じ切り状態でのガ
ス圧力の時間特性を示すグラフ、第4図はガス導入、排
出動作状態での全ガス圧力とその中での炭酸ガス分圧の
時間特性を示すグラフ、第5図は第4図で示した炭酸ガ
ス分圧のモル数への換算値を示すグラフ、第6図はガス
圧力とレーザ出力の関係を示すグラフ、第7図は炭酸ガ
スモル数とレーザ出力の関係を示すグラフ、第8図は本
発明の一実施例の炭酸ガスレーザ装置の系統図、第9図
は第8図の実施例のレーザ出力の時間特性を示ずグラフ
、第10図は第8図の実施例の全ガス圧、炭酸ガス分圧
の経時変化を示ずグラフて゛ある。 1・・・・・・・・・・・・ヘリウムガスボンベ2・・
・・・・・・・・・・窒素ガスボンベ3・・・・・・・
・・・・・炭酸ガスボンベ4・・・・・・・・・・・・
レーザガス供給装置5・・・・・・・・・・・・弁 6・・・・・・・・・・・・レーザ発振装置7・・・・
・・・・・・・・電磁弁 8・・・・・・・・・・・・レーザカス排気装置9・・
・・・・・・・・・・電 源 10・・・・・・・・・・・・制御装置代理人弁理士 
  須 山 佐 − 45 第X図 第2図 (+91) 1廂鎌、経過醋   (3時も一鉛分)第
3図 第4図
Fig. 1 is a system diagram of a conventional carbon dioxide laser device, Fig. 2 is a graph showing the time characteristics of laser output in a conventional carbon dioxide laser device, and Fig. 3 is a graph showing gas pressure over time in gas filling and sealing states. Graph showing the characteristics. Figure 4 is a graph showing the time characteristics of the total gas pressure and carbon dioxide partial pressure during gas introduction and exhaust operation states. Figure 5 is the carbon dioxide partial pressure shown in Figure 4. FIG. 6 is a graph showing the relationship between gas pressure and laser output, FIG. 7 is a graph showing the relationship between carbon dioxide moles and laser output, and FIG. 8 is a graph showing the relationship between carbon dioxide gas moles and laser output. A system diagram of the carbon dioxide laser device of the embodiment, Fig. 9 is a graph showing the time characteristics of the laser output of the embodiment of Fig. 8, and Fig. 10 shows the total gas pressure and carbon dioxide partial pressure of the embodiment of Fig. 8. There is a graph that does not show the change over time. 1... Helium gas cylinder 2...
・・・・・・・・・Nitrogen gas cylinder 3・・・・・・・・・
・・・・・・Carbon dioxide cylinder 4・・・・・・・・・・・・
Laser gas supply device 5...Valve 6...Laser oscillation device 7...
...... Solenoid valve 8 ...... Laser scum exhaust device 9 ...
・・・・・・・・・Power supply 10・・・・・・・・・Patent attorney representing control device
Suyama Sa - 45 Figure

Claims (1)

【特許請求の範囲】[Claims] (1〉ヘリウムガス、窒素カス、炭酸ガスの少なくとも
三種類の混合ガス中でグロー放電を行なわμレージ“光
を発生させるレーリパ発振装置と、前記混合ガスの混合
比を変えながら混合ガスを前記レーザ発振装置へ供給す
るレーザガス供給装置ど、前記レーザ発振装置中の混合
ガスを排気するレーザガス排気装置と、この排気装置の
排気Mを制御し0イ1記レ一ザ発振装置の内部圧力を連
続的に変化Vしめる制御1111 装置と、前記レーザ
発振装置へ電力を供給する電源とからなることを特徴ど
する炭酸ガスレーリ゛発振装置。
(1) A glow discharge is performed in a mixed gas of at least three types of helium gas, nitrogen scum, and carbon dioxide gas. A laser gas supply device for supplying to the oscillation device, a laser gas exhaust device for exhausting the mixed gas in the laser oscillation device, and an exhaust M of this exhaust device are controlled to continuously maintain the internal pressure of the laser oscillation device. 11. A carbon dioxide gas ray oscillation device comprising: a control device for controlling a change in V; and a power source for supplying power to the laser oscillation device.
JP23201882A 1982-12-28 1982-12-28 Carbon acid gas laser device Pending JPS59123286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23201882A JPS59123286A (en) 1982-12-28 1982-12-28 Carbon acid gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23201882A JPS59123286A (en) 1982-12-28 1982-12-28 Carbon acid gas laser device

Publications (1)

Publication Number Publication Date
JPS59123286A true JPS59123286A (en) 1984-07-17

Family

ID=16932665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23201882A Pending JPS59123286A (en) 1982-12-28 1982-12-28 Carbon acid gas laser device

Country Status (1)

Country Link
JP (1) JPS59123286A (en)

Similar Documents

Publication Publication Date Title
JPH09100702A (en) Carbon dioxide power generating system by high pressure exhaust
JPS59123286A (en) Carbon acid gas laser device
JPH0297077A (en) Excimer laser device
US4344174A (en) Gas lasers
JP2001139310A (en) High concentration ozone gas-generating device and ozone gas generating quantity control method therefor
JP2004063180A (en) Power inversion control method of fuel cell power generation apparatus
JPH1143309A (en) Apparatus for producing ozone
JP2003163025A (en) Hydrogen production and storage system
JP2004087403A (en) Fuel cell system
US4236123A (en) High-power CO laser
US3982209A (en) Combustion-electric laser
JPS63204683A (en) Gas laser device
JPH06103995A (en) Fuel cell power generator plant
JP2782893B2 (en) Excimer laser device
JPS60115280A (en) Gas laser oscillator
JP2003095609A (en) System for producing reforming gas
JPS5614404A (en) Ozonizer
JPS62282478A (en) Gas laser oscillator
JPS58155210A (en) Electricity generation equipment with storage of energy
JPH07147163A (en) Fuel cell cogeneration system
JPS60189694A (en) Power feeding method in ship
JPS5459697A (en) Electric discharge machining method
JP2002198592A (en) Laser generating system
US3716342A (en) Generation of carbon dioxide having a population inversion
JPH1082330A (en) Control system for integrated coal gasification combined cycle power plant