JPS5912309A - Method for detecting abnormal part of profile of belt shaped body - Google Patents

Method for detecting abnormal part of profile of belt shaped body

Info

Publication number
JPS5912309A
JPS5912309A JP12081282A JP12081282A JPS5912309A JP S5912309 A JPS5912309 A JP S5912309A JP 12081282 A JP12081282 A JP 12081282A JP 12081282 A JP12081282 A JP 12081282A JP S5912309 A JPS5912309 A JP S5912309A
Authority
JP
Japan
Prior art keywords
profile
point
width direction
strip
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12081282A
Other languages
Japanese (ja)
Inventor
Akira Urano
朗 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12081282A priority Critical patent/JPS5912309A/en
Publication of JPS5912309A publication Critical patent/JPS5912309A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To detect the abnormal part of the profile of a belt shaped body accurately without receiving the effect of temporary noises at the time of measurement, by decomposing the measured value at each point in the width direction into frequency components by Fourier transformation. CONSTITUTION:A physical quantity A(i) (i=1-N) of each point of a belt shaped body 10 in the width direction, e.g., a point (n), is measured at each point (e.g., a point N) in the longitudinal direction. Then, the measured value xj (j=1-n, where n is power of 2 in general) at each point in the width direction is decoposed into frequency components ak and bk by Frourier transformation by using an expression 1. The frequency component B(i) that is obtained in this way indicates the frequency component of 2pik/n of the original curve. The parts, where (k) is small, medium, and large, are low, medium, and high frequency parts, respectively. Then, only the medium frequency region, wherein an abnormal protruded part to be detected is present, in the frequency component B(i) undergoes inverse Fourier transformation. Thus the abnormal protruded part is extracted.

Description

【発明の詳細な説明】 本発明は、帯状物体プロフィールの異常部検出方法に係
り、特に、帯状鋼板の板厚プロフィールにおける異常部
を検出する際に用いるのに好適な、帯状物体の物理量を
幅方向各点で測定することによって得られるプロフィー
ルの異常部を検出するための帯状物体プロフィールの異
常部検出方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting an abnormal part in a strip-shaped object profile, and in particular, a physical quantity of a strip-shaped object suitable for detecting an abnormal part in a thickness profile of a strip-shaped steel plate. The present invention relates to an improvement in a method for detecting an abnormality in a band-shaped object profile for detecting an abnormality in a profile obtained by measuring at each point in a direction.

一般に、帯状物体の物理量の幅方向分布、例えば、帯状
鋼板の板厚や温度の幅方向分布をプロフィールド総称し
ている。このプロフィールの形状は、通常、円弧状にな
るが、時として1〕力方向布のうちの一部で、不連続に
その絶対値が急峻に太き(なったり、小さくなったりす
るような異常部(ハイスポットと称する)を有する帯状
物体が製造されることがある。この場合には、圧延作業
等が円滑に行えなくなるばかりでなく、帯状物体自身の
形状も不良となり、重大な品質欠陥となる。
Generally, the widthwise distribution of physical quantities of a strip-shaped object, for example, the widthwise distribution of the plate thickness and temperature of a strip-shaped steel plate, is collectively called a profile. The shape of this profile is usually an arc, but sometimes there is an abnormality in which the absolute value suddenly becomes thicker (or smaller) discontinuously in a part of the force direction distribution. In some cases, a strip-shaped object is manufactured that has a high spot (referred to as a high spot).In this case, not only does rolling work etc. not work smoothly, but the shape of the strip-shaped object itself becomes defective, resulting in serious quality defects. Become.

従って、帯状物体を製造する際には、ハイスポットが存
在しないようにすることが重要であり、ホットストリッ
プミル等では、ストリップを圧延する際に、周期的に幅
方向板厚、即ち、板厚プロフィールを測定しながら圧延
全行うことが通常行われている。
Therefore, when manufacturing a strip-shaped object, it is important to ensure that there are no high spots.In a hot strip mill, etc., when rolling a strip, the thickness of the strip in the width direction is periodically adjusted. It is common practice to carry out the entire rolling process while measuring the profile.

又、このようなプロフィールの異常部を検出するために
、例えば、特開昭54−155164号に示される如く
、銅帯の厚みを幅方向に測定し、得られる実測値をフー
リエ展開回帰及び多項式展開回帰のいずれかによって曲
線を得、この曲線に許容誤差を付加して上限値と下限値
とを定め、前記実測値がこれら上限値と下限値との間に
含まれるか否かを比較し、含まれない実測値がある場合
にこれをハイスボットと判定することを特徴とする。
In addition, in order to detect such an abnormal part of the profile, for example, as shown in JP-A-54-155164, the thickness of the copper strip is measured in the width direction, and the actual measured value is subjected to Fourier expansion regression and polynomial expression. A curve is obtained by one of the expansion regressions, an upper limit value and a lower limit value are determined by adding a tolerance to this curve, and a comparison is made to see whether the actual measured value is included between these upper limit values and lower limit values. , if there is a measured value that is not included, this is determined to be a HISbot.

ハイスポット検出方法が提案されている。このハイスボ
ット検出方法によれば、帯状鋼板の幅方向厚みを測定し
次結果に基づいてハイスボットを人手を介さずに検出す
ることができるという特徴を有するものであるが、しか
しながら、恒常的な白色雑音を除く機能がなく、又、プ
ロフィールを測定する際に測定条件により発生する可能
性がある。
A high spot detection method has been proposed. According to this HISBOTS detection method, the HISBOTS can be detected without human intervention by measuring the widthwise thickness of a steel strip and based on the results. There is no function to remove this problem, and it may occur depending on the measurement conditions when measuring the profile.

異常部を測定した際と同様の測定値を示す一時的雑音も
、異常部として検出してしまうという欠点を有していた
、即ち、第1図(A)に示す如く、プロフィールの一方
のエツジからBだけ離れた位置に生じたAなる針の異常
部だけでな(、第1図CB)に示すような、例えば他方
のエツジからCだけ陥れた位iに発生した。ノ\イスポ
ットに近似した一時的な雑音もノ・イスポットのような
異常部であると誤検出してしまっていた。
Temporary noise that shows the same measurement value as the abnormal part has the disadvantage that it is detected as an abnormal part. In other words, as shown in Figure 1 (A), one edge of the profile In addition to the abnormal part of the needle A that occurred at a position B away from the other edge, for example, it occurred at a position i that was depressed by C from the other edge, as shown in FIG. 1 CB. Temporary noises similar to noise spots were also incorrectly detected as abnormal parts such as noise spots.

本発明は、前記従来の欠点を解消するべくなされたもの
で、恒常的な白色雑音や測定時の一時的な雑音の影響紮
受けることな(、帯状物体プロフィールの異常部を精度
良く検出することができる帯状物体プロフィールの異猟
部検出方法を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and is capable of accurately detecting an abnormal part of a band-shaped object profile without being affected by constant white noise or temporary noise during measurement. The purpose of the present invention is to provide a method for detecting abnormalities in a band-shaped object profile.

本発明は、帯状物体の物理鷲を幅方向各点で測定するこ
とによって得られるプロフィールの異當部ケ検出するた
めの帯状物体プロフィールの!4當部検出方法において
1幅方回各点における測定値をフーリエ変換により各々
の周波数成分に分解し。
The present invention provides a method for detecting abnormalities in a profile of a strip-shaped object obtained by measuring the physical characteristics of the strip-shaped object at each point in the width direction. In the four-way area detection method, the measured value at each point in one width direction is decomposed into each frequency component by Fourier transformation.

次いで、該周波数成分の中周波域を逆フーリエ変換によ
り逆変換することによって得られる抽出プロフィールを
、帯状物体の長手方向各点に対して求め、次いで、該抽
出プロフィールの幅方向各点の最小値からなる最小抽出
プロフィールを得、該最小抽出プロフィールが許容範囲
に含まれない点全異常部と判定するようにして、前記目
的を達成したものである。
Next, an extraction profile obtained by inversely transforming the middle frequency range of the frequency component using inverse Fourier transform is obtained for each point in the longitudinal direction of the strip object, and then the minimum value of each point in the width direction of the extraction profile is calculated. The above object is achieved by obtaining a minimum extraction profile consisting of the following, and determining that all points outside the minimum extraction profile are abnormal parts.

以下本発明の詳細な説明する。。The present invention will be explained in detail below. .

まず、第2図に示す如く、帯状物体lOの幅方向各点、
例えばn点の物理f&At1)口=l−N)t、長手方
向各点、例えばN点で測定する。
First, as shown in FIG. 2, each point in the width direction of the strip-shaped object lO,
For example, the physical f&At1) opening=l-N)t at n points is measured at each point in the longitudinal direction, for example, N points.

次いで、幅方向各点における測定値xj(j=x−n−
nは一般に2のべき乗数)を、次式を吊込て、フーリエ
変換により各々の周波数成分(及び振幅)ak、 bk
に分解する。
Next, the measured value xj (j=x−n−
n is generally a power of 2), and the following equations are used to calculate each frequency component (and amplitude) ak, bk by Fourier transform.
Decompose into.

このようにして得られる周波数成分B(1)は、k f
+−小であるところが低周波域−k bt中であるとこ
ろが中周波域、kが大であるところが高周波域となって
いる。
The frequency component B(1) obtained in this way is k f
A region where +- is small is a low frequency region, a region where k is medium is a medium frequency region, and a region where k is large is a high frequency region.

次いで、該周波数成分B(i)の検出すべき異常突起部
の存在する中周波域のみを逆フーリエ変換により逆変換
することによって異常突起部が抽出された抽出プロフィ
ールC(i)k得る。
Next, only the medium frequency region of the frequency component B(i) in which the abnormal protrusion to be detected exists is inversely transformed by inverse Fourier transform to obtain an extraction profile C(i)k in which the abnormal protrusion is extracted.

一般に、逆フーリエ変換は1次式で表わされ。Generally, inverse Fourier transform is expressed by a linear equation.

完全に総合された時、元の曲線に戻る。When completely integrated, it returns to the original curve.

+”nt!08πi  C1=0.・−、n−1)−・
・(2)従って、中周波域での逆変換とは、(2)式に
おいて、 4 < s < t < 2を満す3とtに
対して。
+”nt!08πi C1=0.・-, n-1)−・
・(2) Therefore, inverse transformation in the medium frequency range is for 3 and t that satisfy 4 < s < t < 2 in equation (2).

波域とした時、中周波域での逆フーリエ変換は。In the wave region, the inverse Fourier transform in the medium frequency region is.

次式に示す如くとなる。It is as shown in the following equation.

第3図(A)に示されるよう1.c幅方向分布A (1
)を有する物理量を、フーリエ変換により各々の周波数
成分B (i)に分解し、次いで、該周波数成分B (
1)の低周波域を逆7−リエ変換により逆変換すること
によって得られる低周波域の抽出プロフィールCt、(
1)を、第3図(B)に、同じく高周波域の抽出プロフ
ィールCH(1) t 第3 図(c) VC。
As shown in FIG. 3(A), 1. c Width direction distribution A (1
) is decomposed into each frequency component B (i) by Fourier transform, and then the frequency component B (
The extraction profile Ct of the low frequency range obtained by inversely transforming the low frequency range of 1) using the inverse 7-lier transform, (
1) is shown in FIG. 3(B), and the extraction profile in the high frequency range CH(1) t FIG. 3(c) VC.

同じく中周波域の抽出プロフィールC(i)e第3図C
D)に、それぞれ示す。
Similarly, the extraction profile C(i)e in the medium frequency range is shown in Fig. 3C.
D) shows each.

今、前出第3図に示したようなプロフィールA(1)か
ら求められる中周波域の抽出プロフィールC(1)が、
それぞれ第4図(A)、CB)、(C)で示す如(であ
ったとすると、このようにして得られる各抽出プロフィ
ールの幅方向各点の最小値からなる、第4図(D)に示
すような最小抽出プロフィールDを得、該最小抽出プロ
フィールDが許容範囲に含まれない点を異常部と判定す
る。
Now, the extraction profile C(1) in the medium frequency range obtained from the profile A(1) as shown in Figure 3 above is
As shown in Fig. 4 (A), CB), and (C), respectively, Fig. 4 (D) consists of the minimum value of each point in the width direction of each extraction profile obtained in this way. A minimum extraction profile D as shown is obtained, and points where the minimum extraction profile D is not included in the allowable range are determined to be abnormal parts.

これにより、恒常的な白色雑音や測定時の一時的な雑音
の影響を受けることな(、精度の良い異常部検出を行う
ことができる。
This makes it possible to detect abnormalities with high accuracy without being affected by constant white noise or temporary noise during measurement.

本発明における帯状物体プロフィールの異常部検出は、
具体的には、第5図に示すような流れ図に従って実行さ
れる。
Detection of an abnormality in a band-shaped object profile in the present invention is as follows:
Specifically, the process is executed according to the flowchart shown in FIG.

即ち、まずステップ101で、帯状物体の長手方向位置
に対応するカウンタiの計数値を1とする。次いでステ
ップ102に進み、帯状物体の長手方向位置lにおける
幅方向物理量実測値A(1)(プロフィール)を測定す
る。次いで、ステップ103 K進み、実測値A(1)
から、フーリエ変換FTにより周波数成分B(1)′f
r、得る。次いでステップ104に進み、周波数成分B
(i)の中周波域から逆フーリエ変換により抽出プロフ
ィールC(i)を得る。次いでステップ105に進み、
カウンタiの計数値がN以上であるか否か判定する。判
だ結果が否である場合には、ステップ106でカウンタ
1の計数値を1だけカウントアツプして、前出ステップ
102に戻る。
That is, first, in step 101, the count value of the counter i corresponding to the longitudinal position of the strip-shaped object is set to 1. Next, the process proceeds to step 102, where the width direction physical quantity actual value A(1) (profile) at the longitudinal position l of the strip-shaped object is measured. Next, proceed to step 103 K, and the actual measurement value A(1)
From, the frequency component B(1)'f is obtained by Fourier transform FT.
r, get. Next, the process proceeds to step 104, where frequency component B
An extraction profile C(i) is obtained from the medium frequency region of (i) by inverse Fourier transformation. Then proceed to step 105,
It is determined whether the count value of counter i is greater than or equal to N. If the result is negative, the count value of counter 1 is incremented by 1 in step 106, and the process returns to step 102 described above.

例えば、N=1の時の幅方向物理量実測値A (1)が
第6図(A)で示す如くであったとすると、その周波数
成分B(1)は、第6図(B)に示す如(となり、更に
、その抽出プロフィールC(1)ハ、第6図CC’)に
示す如くとなる。又、N=2の時の幅方向物理量実測値
A(2)が第7図(A)で示す如くであったとするζ、
その周波数成分B(2)は、第7図CB)に示す如(と
なり、更に、その抽出プロフィールC(2)は、第7図
(C)に示す如くとなる。
For example, if the actual measured value of the physical quantity A (1) in the width direction when N = 1 is as shown in Fig. 6 (A), the frequency component B (1) is as shown in Fig. 6 (B). (And furthermore, the extraction profile C(1) is as shown in FIG. 6 CC'). Also, suppose that the actual measured value of the physical quantity A(2) in the width direction when N=2 is as shown in FIG. 7(A), ζ,
The frequency component B(2) is as shown in FIG. 7(CB), and the extraction profile C(2) is as shown in FIG. 7(C).

即ち、第6図(A)及び第7図(A)に示す異常部D、
F、及び、一時的雑音Gが、第6図(C)及び第7図(
C)に示す突起F、H,Iのよ5に抽出される。
That is, the abnormal part D shown in FIG. 6(A) and FIG. 7(A),
F and the temporary noise G are shown in Fig. 6(C) and Fig. 7(
The protrusions F, H, and I shown in C) are extracted.

前出ステップ105における判定結果が正である時、即
ち、長手方向各点における測定が終了した時点で、ステ
ップ3.07に進み、N個の抽出プロフィールC(i)
より、幅方向各点の絶対値が最小の値を取り出し、その
値からなる最小抽出プロフィールDi得る。この最小抽
出プロア(−ADは1例えば第8図に示す如くとなる。
When the determination result in step 105 is positive, that is, when the measurement at each point in the longitudinal direction is completed, the process proceeds to step 3.07, and N extraction profiles C(i) are obtained.
Therefore, the value with the minimum absolute value at each point in the width direction is extracted, and the minimum extraction profile Di consisting of that value is obtained. This minimum extraction proa (-AD is 1, for example, as shown in FIG. 8).

次いでステップ108に進み、最小抽出プロフィールD
が、予め設定された上下限値を越える点Jを異常部と判
定する。更にステップ109に進み、該み゛4常部Jの
絶対値を異常の大きさ八として、異常部検出を終了する
Then, proceeding to step 108, the minimum extraction profile D
However, a point J exceeding preset upper and lower limit values is determined to be an abnormal portion. Further, the process proceeds to step 109, where the absolute value of the normal part J is set to the abnormality size of 8, and abnormal part detection is ended.

次に1本発明に係る帯状物体プロフィールの異常部検出
方法が採用された熱間圧延における帯状鋼板の板厚プロ
フィールの異常部検出装置の実施例を詳細に説明する。
Next, an embodiment of an apparatus for detecting an abnormality in the thickness profile of a strip steel plate during hot rolling, in which the method for detecting an abnormality in the profile of a strip according to the present invention is adopted, will be described in detail.

本実施例は、第9図に示す如く1紙面に垂直な方向に移
動し゛〔いる帯状鋼板12の幅方向各点における板厚を
非接触で測定するための、車輪14aにより帯状鋼板1
2の幅方向に移動自在とされたX線板厚計14と、該X
線板厚削14出カの。
In this embodiment, wheels 14a are used to measure the thickness of a steel strip 12 in a non-contact manner at each point in the width direction of the steel strip 12, which is moving in a direction perpendicular to the plane of paper, as shown in FIG.
2, an X-ray plate thickness gauge 14 that is movable in the width direction of the
Thick cut wire plate with 14 outputs.

帯状鋼板120幅方向各点における板厚測定値を高速7
−リエ変換により各々の周波数成分に分解し1次いで、
該周波数成分の中周波域を逆高速フーリエ変換により逆
変換することによって得られる抽出プロフィールを、帯
状鋼板12の長手方向各点に対して求め−次いで、該抽
出プロフィールの幅方向各点の最小値からなる最小抽出
プロフィールを得るための、例えばマイクロコンピュー
タからなるデジタル計算機16と、該デジタル計算機1
6出力の最小抽出プロフィールを表示するための陰極#
l管表示装置18とから構成されている。
The plate thickness measurement value at each point in the width direction of the steel strip 120 is measured at high speed 7.
- decomposed into each frequency component by Rie transform,
An extraction profile obtained by inversely transforming the middle frequency range of the frequency component by inverse fast Fourier transform is determined for each point in the longitudinal direction of the steel strip 12 - Then, the minimum value of the extraction profile at each point in the width direction is determined. a digital computer 16 consisting of, for example, a microcomputer, for obtaining a minimum extraction profile consisting of a
Cathode # for displaying a minimum extraction profile of 6 outputs
1 tube display device 18.

本実施例により1幅方向のデータ間隔に2.5tll。In this embodiment, the data interval in one width direction is 2.5 tll.

データ数?1:512として、長手方向2点の板厚プロ
フィールを測定したところ、そi’Lぞれ第1O図(A
)、CB)に示す如くとなった。この測定値を。
The number of data? 1:512, and measured the plate thickness profile at two points in the longitudinal direction.
) and CB). This measurement value.

高速フーリエ変換を用いて1周波数成分に分解し。Decompose into one frequency component using fast Fourier transform.

その中周波数域8〜100 Hz (a=8、t=10
0)を逆高速フーリエ笈換により逆変換したところ、第
1O図(C)、(1))に示フようγL抽出プロフィー
ルが得られた。なお、この萬速フーリエ震換eこおいて
は、 1280 (2,5X512)關を1波長として
いる。第1O図(C)及び(D)に示すよう1よ抽出プ
ロフィールから、第1O図(E)K示すような最小抽出
プロフィールを得ることができ、上下限を±3μmとし
て、J!!常部J(検出位置2.5關xj番目データ)
を4束量することができた。
The middle frequency range is 8 to 100 Hz (a=8, t=10
0) was inversely transformed by inverse fast Fourier transformation, a γL extraction profile was obtained as shown in Figure 1O (C) and (1)). In addition, in this multi-speed Fourier conversion e, 1280 (2,5×512) is considered as one wavelength. From the extraction profiles shown in Figures 1O (C) and (D), the minimum extraction profiles shown in Figures 1O (E) and K can be obtained, and by setting the upper and lower limits to ±3 μm, J! ! Regular part J (detection position 2.5 xjth data)
I was able to measure 4 bundles of.

本実施例においては、フーリエ変換及び逆フーIJ 工
変換全高速フーリエ変換及び逆高速7−リエ変換により
行うように【7ているため、フーリエ変換の操作を迅速
番て行うことができる。1.rお、フーリエ変換及び逆
フーリエ変換を行う方法はこれに駆足されない。
In this embodiment, since the Fourier transform and the inverse Fourier transform are performed using the full fast Fourier transform and the inverse fast 7-lier transform, the Fourier transform operation can be performed quickly. 1. However, methods of performing Fourier transform and inverse Fourier transform are not supported by this.

なお前記契施例は、本発明を熱間圧延における帯状鋼板
の板厚プロフィールの異常熱検出に適用したものである
が1本発明の適用卸、囲はこれに限定色′itず、熱間
薄板圧延Vこおりる温度プロフィールの異常部検出等、
他の帯状物体のプロフィールの異常熱検出V(も同様に
適用できることは明らかである。
In the above-mentioned example, the present invention is applied to abnormal heat detection of the thickness profile of a strip steel plate during hot rolling. Detection of abnormalities in the temperature profile of thin plate rolling V, etc.
It is clear that abnormal heat detection V (of profiles of other strip objects) is equally applicable.

以上説明した通り1本発明によれば、恒常的な白色雑音
や測定時の一時的な雑音の影#を受けること7.c <
、帯状物体プロフィールの異常品全精度良く検出するこ
とb’−できるという優れた効果を有する。
As explained above, 1. According to the present invention, it is not affected by constant white noise or temporary noise during measurement; 7. c<
This method has the excellent effect of being able to detect abnormalities in the band-shaped object profile with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は、ハイスポットが生じたプロフィールの
一例を示す線図、第1図CB)は、ハイスポット及び一
時的雑音が発生したプロフィールの一例を示す線図、第
2図は2本発明の詳細な説明するだめの、帯状物体の幅
方向及び長手方向の測定位負を示す平面図、第3図は1
回じ〈、測定プロフィール及び低周波域、高周波域、中
周波域の抽出プロフィールを比較して示す線図、第4図
は、同じく、長手方向各点における抽出プロフィール及
び最小抽出プロフィールを比較して示す線図。 第5図は9本発明に係る帯状物体の異常部検出方法倉笑
施するための流れを示す流れ図、第6図は、帯状物体の
長手方向第1点における、測定プロフィール、周波数成
分及び抽出プロフィールを比較して示す線図、第7し1
は、同じく、帯状物体の長手方回第2点における測定プ
ロフィール、周波数成分及び抽出プロフィールを比較し
て示す線図。 fgB図は、同じ(、最小抽出プロフィールケ示す線図
、第9図は、本発明に係る帯状物体プロフィールの異常
部検出方法が採用された、熱間圧延における帯状鋼板の
板厚プロフィールの異常部検出装置の実施例の構成を示
す、一部所面図を含むブロック線図、第10図は、Al
ll実記例における長手方向第1点及び第2点の測定プ
ロフィール、抽出プロフィール及び最小抽出プロフィー
ル全比較して示す線図である。 lO・・・帯状物体、12・・・帯状鋼板、14・・・
X線板厚計、1G・・・デジタル1」算機、18・・・
陰極線管表示装置。 代」j!人   高  矢      論(ほか1名) (D) D 第2図      第5図 第8図 第9図 Q 第10図
Figure 1 (A) is a diagram showing an example of a profile where a high spot has occurred, Figure 1 (CB) is a diagram showing an example of a profile where a high spot and temporary noise have occurred, and Figure 2 is a diagram showing an example of a profile where a high spot and temporary noise have occurred. FIG. 3 is a plan view showing measurement positions in the width direction and longitudinal direction of a strip-shaped object, for the purpose of explaining the present invention in detail.
Fig. 4 is a diagram showing a comparison of the measurement profile and the extraction profiles in the low, high, and medium frequency ranges. Diagram shown. FIG. 5 is a flowchart showing the flow of the method for detecting abnormalities in a strip-shaped object according to the present invention, and FIG. 6 is a measurement profile, frequency components, and extraction profile at the first point in the longitudinal direction of the strip-shaped object. Diagram comparing and showing the 7th and 1st
2 is a diagram showing a comparison of a measurement profile, a frequency component, and an extraction profile at a second point in the longitudinal direction of a band-shaped object. The fgB diagram is a diagram showing the same minimum extraction profile, and FIG. 9 is a diagram showing an abnormal part in the thickness profile of a strip steel plate during hot rolling, in which the method for detecting an abnormal part in a strip profile according to the present invention is adopted. FIG. 10 is a block diagram including a partial view showing the configuration of an embodiment of the detection device.
11 is a diagram showing a comparison of the measurement profile, extraction profile, and minimum extraction profile at the first point and second point in the longitudinal direction in a practical example; FIG. lO...Strip-shaped object, 12...Strip-shaped steel plate, 14...
X-ray plate thickness gauge, 1G...Digital 1" calculator, 18...
Cathode ray tube display. “Yo”j! Hito Takaya Ron (1 other person) (D) D Figure 2 Figure 5 Figure 8 Figure 9 Q Figure 10

Claims (1)

【特許請求の範囲】[Claims] (1)帯状物体の物理量を幅方向各点で測定することに
よって得られるプロフィールの異常部を検出すΣための
帯状物体プロフィールの異常部検出方法において1幅方
向各点における測定値をフーリエ変換により各々の周波
数成分に分解し、次いで、該周波数成分の中周波域を逆
フーリエ変換により逆変換することによって得られる抽
出プロフィールを、帯状物体の長手方向各点に対して求
め。 次いで、該抽出プロフィールの幅方向各点の最小値から
なる最小抽出プロフィールを得、該最小抽出プロフィー
ルが許容範囲に含まれない点を異常部と判定するように
したことを特徴とする帯状物体プロフィールの異常部検
出方法。
(1) In a method for detecting abnormalities in a profile of a strip-shaped object to detect abnormalities in a profile obtained by measuring physical quantities of a strip-shaped object at each point in the width direction, the measured values at each point in the width direction are subjected to Fourier transformation. An extraction profile obtained by decomposing each frequency component and then inversely transforming the middle frequency range of the frequency component by inverse Fourier transform is obtained for each point in the longitudinal direction of the belt-shaped object. Next, a minimum extraction profile consisting of the minimum value of each point in the width direction of the extraction profile is obtained, and a point where the minimum extraction profile is not included in an allowable range is determined to be an abnormal part. An abnormal part detection method.
JP12081282A 1982-07-12 1982-07-12 Method for detecting abnormal part of profile of belt shaped body Pending JPS5912309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12081282A JPS5912309A (en) 1982-07-12 1982-07-12 Method for detecting abnormal part of profile of belt shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12081282A JPS5912309A (en) 1982-07-12 1982-07-12 Method for detecting abnormal part of profile of belt shaped body

Publications (1)

Publication Number Publication Date
JPS5912309A true JPS5912309A (en) 1984-01-23

Family

ID=14795581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12081282A Pending JPS5912309A (en) 1982-07-12 1982-07-12 Method for detecting abnormal part of profile of belt shaped body

Country Status (1)

Country Link
JP (1) JPS5912309A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480808A (en) * 1987-09-24 1989-03-27 Kawasaki Steel Co Method and device for measuring cross buckle of plate material
JPH03251701A (en) * 1990-02-28 1991-11-11 Japan Aviation Electron Ind Ltd Method and apparatus for evaluating surface roughness
JP2008164558A (en) * 2007-01-04 2008-07-17 Olympus Corp Surface shape measuring device
EP2036700A3 (en) * 2007-09-10 2009-06-10 Ricoh Company, Ltd. Heat-resistant resin belt, manufacturing method thereof and image forming apparatus
JP2018013445A (en) * 2016-07-22 2018-01-25 株式会社ミツバ Shape evaluation method of vertebra

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480808A (en) * 1987-09-24 1989-03-27 Kawasaki Steel Co Method and device for measuring cross buckle of plate material
JPH03251701A (en) * 1990-02-28 1991-11-11 Japan Aviation Electron Ind Ltd Method and apparatus for evaluating surface roughness
JP2008164558A (en) * 2007-01-04 2008-07-17 Olympus Corp Surface shape measuring device
EP2036700A3 (en) * 2007-09-10 2009-06-10 Ricoh Company, Ltd. Heat-resistant resin belt, manufacturing method thereof and image forming apparatus
US8047940B2 (en) 2007-09-10 2011-11-01 Ricoh Company, Ltd. Heat-resistant resin belt, manufacturing method thereof and image forming apparatus
JP2018013445A (en) * 2016-07-22 2018-01-25 株式会社ミツバ Shape evaluation method of vertebra

Similar Documents

Publication Publication Date Title
CA2390873A1 (en) Method and device for quality control of the joint on sheets or strips butt-welded by means of a laser
CN111080054B (en) Automatic evaluation method and system for width quality of hot rolled strip steel
JPS5912309A (en) Method for detecting abnormal part of profile of belt shaped body
US4928257A (en) Method and apparatus for monitoring the thickness profile of a strip
JP3262884B2 (en) Shape evaluation method
US3782192A (en) Means for determining a magnitude corresponding to the thickness profile of a paper web
KR20010036626A (en) Method for setting control gain for the shape of strip in hot rolling mill
JPS5969813A (en) Method and apparatus for diagnosing control system
JPH0220042B2 (en)
JPH0570083B2 (en)
JP3182269B2 (en) Roll roll profile learning calculation method
JP2843273B2 (en) Hot rolled steel sheet shape prediction method
JPS6199846A (en) Method of detecting defect of strip side end part
JP7323051B2 (en) Learning controller for rolling process
Wang A wrinkling index for press forming
JPS58127114A (en) Measuring method for flatness in cold mill
JPS59159208A (en) Method for controlling flatness of strip
JPH102730A (en) Method for measuring plate thickness distribution of strip and apparatus therefor
JPH0557525B2 (en)
JP2706330B2 (en) Correction method of radiation thickness gauge in cold rolling
JPH0957315A (en) Method and device for estimating width of hot rolled steel strip
JPH09145637A (en) Method for judging grade of roughness defect
CN116251838A (en) Strip steel plate shape integral feature recognition method and device based on DBSCAN algorithm
JPH0131564B2 (en)
JPS6089705A (en) Method for detecting high spot of hot rolled steel plate