JPS5912270A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS5912270A
JPS5912270A JP57121138A JP12113882A JPS5912270A JP S5912270 A JPS5912270 A JP S5912270A JP 57121138 A JP57121138 A JP 57121138A JP 12113882 A JP12113882 A JP 12113882A JP S5912270 A JPS5912270 A JP S5912270A
Authority
JP
Japan
Prior art keywords
way valve
electromagnetic
valve
heat exchanger
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57121138A
Other languages
Japanese (ja)
Inventor
喜久治 高橋
勝一 佐藤
俊雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57121138A priority Critical patent/JPS5912270A/en
Publication of JPS5912270A publication Critical patent/JPS5912270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電磁弁の切換えにより冷媒回路を変えて冷房ま
たは暖房を行ない得る空気調和機に係り、特に上記冷暖
切換用電磁弁部の熱ロスおよび消費電力を少なくぜんと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner that can perform cooling or heating by changing the refrigerant circuit by switching a solenoid valve. It is something to do.

従来の空気調和機の冷媒回路図は第1図の如く、圧縮機
1、電磁四方弁2、室外熱交換器3、室内熱交換器4.
キャピラリ5.6、および逆止弁7.8より構成され、
冷房時には電磁四方弁2の電磁コイル(図示せず)は通
電されず、実線の如く冷媒は1−2−3−5−8−4−
2−1の順に流れ室外熱交換器3で放熱し室内熱交換器
4で吸熱することにより室内を冷房する。次に暖房時に
は電磁四方弁2の電磁コイルに通電することにより、電
磁四方弁2は点線の如く切換わり、冷媒は1−2−4−
6−7−3−2−1の順に流れ、室内熱交換器4で放熱
し、室外熱交換器3で吸熱することにより、室内を暖房
するものである。
The refrigerant circuit diagram of a conventional air conditioner is shown in FIG. 1, and includes a compressor 1, an electromagnetic four-way valve 2, an outdoor heat exchanger 3, an indoor heat exchanger 4.
Consists of a capillary 5.6 and a check valve 7.8,
During cooling, the electromagnetic coil (not shown) of the four-way electromagnetic valve 2 is not energized, and the refrigerant flows in the 1-2-3-5-8-4-
The heat flows in the order of 2-1, radiates heat in the outdoor heat exchanger 3, and absorbs heat in the indoor heat exchanger 4, thereby cooling the room. Next, during heating, by energizing the electromagnetic coil of the electromagnetic four-way valve 2, the electromagnetic four-way valve 2 is switched as shown by the dotted line, and the refrigerant is 1-2-4-
The heat flows in the order of 6-7-3-2-1, heat is radiated by the indoor heat exchanger 4, and heat is absorbed by the outdoor heat exchanger 3, thereby heating the room.

上記の如き従来の空気調和機においては電磁四方弁2の
本体内において圧縮機1の高温吐出ガスと低温吸込ガス
の切換えが行なわれ、且同一本体内を高温ガスと低温ガ
スが常時流れることになるため、本体または弁体を通し
て高温ガスと低温ガスの熱交換が行なわれ、特に暖房時
の高温ガス温度低下により暖房能力が低下するという欠
点があった。また、電磁四方弁のコイルは暖房時に常時
通電されるため、消費電力が大きくなると共にコイルの
温度上昇による寿命劣化や電磁音の発生等の問題を有し
ていた。更に電磁コイルの温度上昇を押さえ且吸引力を
出すためにはコイルの巻線を太くし巻数を多くしなけれ
ばならず、電磁コイルは大形で高価なものが使用されて
いた。
In the conventional air conditioner as described above, switching between high-temperature discharge gas and low-temperature suction gas of the compressor 1 is performed within the main body of the electromagnetic four-way valve 2, and high-temperature gas and low-temperature gas constantly flow within the same main body. Therefore, heat exchange between the high-temperature gas and the low-temperature gas occurs through the main body or the valve body, which has the disadvantage that the heating capacity is reduced due to a drop in the temperature of the high-temperature gas during heating. Furthermore, since the coil of the electromagnetic four-way valve is constantly energized during heating, it consumes a large amount of power and has problems such as a decrease in the life of the coil and the generation of electromagnetic noise due to an increase in the temperature of the coil. Furthermore, in order to suppress the rise in temperature of the electromagnetic coil and to generate suction power, the coil had to be thickened and had a large number of turns, and the electromagnetic coil had to be large and expensive.

なお、従来の電磁四方弁の一例を上げれば、熱ロスは約
100 I’W/h、  電磁コイルの人力は約10W
にも達するものである。
In addition, to take an example of a conventional electromagnetic four-way valve, the heat loss is approximately 100 I'W/h, and the human power of the electromagnetic coil is approximately 10W.
It also reaches.

本発明の目的は前記従来の欠点を改善し、暖房時の熱ロ
スおよび電磁コイルの消費電力を少なくすることにより
暖房効率の良い空気調和機を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air conditioner with good heating efficiency by improving the above-mentioned conventional drawbacks and reducing heat loss during heating and power consumption of the electromagnetic coil.

即ち、従来の空気調和機においては冷房と暖房の切換え
を一個の電磁四方弁で行なうため、熱ロスや電磁コイル
の大形化、消費電力が大きい等の問題を有していた点に
着眼し、圧縮機の吐出冷媒と吸込冷媒の切換えを別個の
切換弁で行なうことにより冷房と暖房の切換えを行なう
と共に電磁切換弁の電磁コイルへの通電を間欠通電とし
、熱ロスおよび消費電力が少なく且、電磁音等の問題も
少ない空気調和機を提供するものである。
In other words, we focused on the fact that conventional air conditioners use a single electromagnetic four-way valve to switch between cooling and heating, resulting in problems such as heat loss, large electromagnetic coils, and high power consumption. By switching between the discharge refrigerant and suction refrigerant of the compressor using separate switching valves, switching between cooling and heating is performed, and the electromagnetic coil of the electromagnetic switching valve is energized intermittently, reducing heat loss and power consumption. The present invention provides an air conditioner with fewer problems such as electromagnetic noise.

以下本発明の一実施例を説明する。第2図において9は
圧縮機、lOは電磁式三方弁、11は室外熱交換器、1
2は室内熱交換器、13.14はキャピラリ、15.1
6は逆止弁、17は差圧式三方弁を示す。先ず冷房状態
時、電磁式三方弁10は第3図および第4図の如く、復
帰ばね19によりプランジャ20を介して弁体21は押
し下げられ弁体21と連動するボール22によりボート
ciocは閉塞され、ボー)BIOBとボートAl0A
が連通ずる。即ち第2図の冷媒回路において実線の如<
 9−10B−10A−11−13−16−12−17
G−17B−9の順に流れ、室外熱交換器11で放熱し
、室内熱交換器12で吸熱することにより室内を冷房す
る。
An embodiment of the present invention will be described below. In Fig. 2, 9 is a compressor, 1O is an electromagnetic three-way valve, 11 is an outdoor heat exchanger, 1
2 is an indoor heat exchanger, 13.14 is a capillary, 15.1
6 is a check valve, and 17 is a differential pressure type three-way valve. First, in the cooling state, as shown in FIGS. 3 and 4, the solenoid three-way valve 10 pushes down the valve body 21 via the plunger 20 by the return spring 19, and the boat CIOC is closed by the ball 22 interlocking with the valve body 21. , BO) BIOB and BOAT Al0A
is connected. In other words, in the refrigerant circuit of Fig. 2, the solid line
9-10B-10A-11-13-16-12-17
The heat flows in the order of G-17B-9, radiates heat in the outdoor heat exchanger 11, and absorbs heat in the indoor heat exchanger 12, thereby cooling the room.

次に暖房時には電磁コイル23にプランジャ20を吸引
するよう永久磁石24と同方向の電磁力を発生する直流
電圧を印加することにより、永久磁石24および電磁コ
イル23の力が復帰ばね19の力に打ち勝ってプランジ
ャ2oを吸引し弁体21およびボール22を回移させ、
ボール22はCボートからAボートへ移動しCボートは
開、Aボートは閉となる。即ち電磁式三方弁はB−C間
開、B−A間開となり、Cボート側に高圧吐出ガスが流
れるため、差圧式三方弁17は第5図においてAポー)
17A側が高圧となるため、可動弁28.29は矢印方
向に押されAポート17Aは閉塞されると共にB−Cボ
ート間17B、17Cが開となる。即ち第2図において
冷媒は9−10B−IOC−12−14−15−11−
17A−17B−9の順に流れ、室内熱交換器12で放
熱し、室外熱交換器11にて吸熱することにより、室内
を暖房するものである。
Next, during heating, by applying a DC voltage that generates an electromagnetic force in the same direction as the permanent magnet 24 so as to attract the plunger 20 to the electromagnetic coil 23, the force of the permanent magnet 24 and the electromagnetic coil 23 becomes the force of the return spring 19. The plunger 2o is suctioned and the valve body 21 and the ball 22 are rotated.
The ball 22 moves from the C boat to the A boat, with the C boat being open and the A boat being closed. In other words, the electromagnetic three-way valve opens between B and C and opens between B and A, and the high-pressure discharge gas flows to the C boat side, so the differential pressure three-way valve 17 opens between A and B in FIG.
Since the pressure on the side 17A is high, the movable valves 28 and 29 are pushed in the direction of the arrow, the A port 17A is closed, and the ports 17B and 17C between the B and C boats are opened. That is, in FIG. 2, the refrigerant is 9-10B-IOC-12-14-15-11-
17A-17B-9, the indoor heat exchanger 12 radiates heat, and the outdoor heat exchanger 11 absorbs heat, thereby heating the room.

なお、電磁コイル23への通電は弁体21が切換わるま
での数秒間のみでよい。即ち弁体21の移動後はBポー
ト10Bからの高圧ガスとAポート10Aの低圧との差
圧によりボール22はAボート10Aに押圧されており
、且プランジャ20が吸引され磁極面25に密着するた
め、永久磁石24によるプランジャ20の吸引力および
上記冷媒の差圧力の和が復帰ばね19の力より強くなる
よう永久磁石24の力を選定しておくものとする、次に
第5図に示す差圧式三方弁について説明する。中空状ボ
デー26の中央に出口ポート17Bを設け、左右中空部
にはバー27で接続され互いに連動する2個のナイロン
製可動弁28.29を収納すると共に左右両端にキャッ
プ30.31を接続して2個の人口ボート17A、17
Cとなし5且キヤツプ30.31の外周に溝部を設けて
θリング32.33を嵌着し、上記θリング32.33
を介してボデー両端部17D、17Eをかしめる。なお
、θリングの材質は通常、耐熱ゴムを用いるが、更に耐
熱性を持たせる場合にはステンレス線とすることもでき
る。
Note that the electromagnetic coil 23 only needs to be energized for several seconds until the valve body 21 is switched. That is, after the valve body 21 moves, the ball 22 is pressed against the A boat 10A due to the pressure difference between the high pressure gas from the B port 10B and the low pressure at the A port 10A, and the plunger 20 is attracted and comes into close contact with the magnetic pole face 25. Therefore, the force of the permanent magnet 24 shall be selected so that the sum of the attraction force of the plunger 20 by the permanent magnet 24 and the differential pressure of the refrigerant is stronger than the force of the return spring 19. Next, as shown in FIG. The differential pressure type three-way valve will be explained. An outlet port 17B is provided in the center of the hollow body 26, and two nylon movable valves 28, 29 connected by a bar 27 and interlocking with each other are housed in the left and right hollow parts, and caps 30, 31 are connected to both left and right ends. Two artificial boats 17A, 17
A groove is provided on the outer periphery of the cap 30.31 and the θ ring 32.33 is fitted therein.
Caulk both ends 17D and 17E of the body through the screws. Note that the material of the θ ring is usually heat-resistant rubber, but stainless steel wire can also be used if it is to be made more heat resistant.

従来、この種の切換弁においては、ボデーとキャップの
接続は全てろう付であったため、本差圧式三方弁の如く
内部にナイロン弁28.29を有する場合はろう付部の
加熱により弁変形の恐れがあり、ろう件部と弁部を離す
ために切換弁を必要以上に長くする必要があった。
Conventionally, in this type of switching valve, all connections between the body and the cap were brazed, so when the nylon valve 28, 29 is inside like this differential pressure type three-way valve, the valve deforms due to heating of the brazed part. Therefore, it was necessary to make the switching valve longer than necessary in order to separate the solder part from the valve part.

しかるに本発明の差圧式三方弁構造においてはボデー両
端部17D、17Eをθリング32.33を介してかし
めることにより密閉性を持たせるので、加熱する必要が
ないため可動弁28.29の材質をシール性の良いナイ
ロン等のプラスチックにすることができると共に差圧式
三方弁の大きさを小さくすることができ、従って高圧冷
媒ポートからの熱ロスも小さくすることができる。なお
、第5図においてCポート側は高圧ポートとなっている
が、第2図に示す如く冷媒は流れないため、室内熱交換
器12へ流れる高温冷媒の温度への影響は殆んどないも
のである。
However, in the differential pressure type three-way valve structure of the present invention, the body ends 17D and 17E are caulked through the θ rings 32 and 33 to provide airtightness, so there is no need to heat the material of the movable valve 28 and 29. The refrigerant can be made of plastic such as nylon, which has good sealing properties, and the size of the differential pressure type three-way valve can be reduced, so that heat loss from the high-pressure refrigerant port can also be reduced. In addition, although the C port side is a high-pressure port in FIG. 5, since the refrigerant does not flow as shown in FIG. 2, there is almost no effect on the temperature of the high-temperature refrigerant flowing to the indoor heat exchanger 12. It is.

以上の如く本発明によれば、圧縮機9の高温高圧吐出ガ
スと低温低圧吸込ガスを夫々別個の切換弁にて切換える
ことにより、冷媒同志の熱交換による暖房能力低下を少
なくすることができると共に差圧式三方弁17は小形で
シール性の良いものとすることができ、従来の四方弁の
熱ロスが約100 K4’hもあるのに対し本発明の電
磁式三方弁10および差圧式三方弁17を合わせた熱ロ
スは従来のIA以下とすることができるっ また、電磁コイルは差圧式三方弁17には不要なため、
電磁式三方弁10にのみ設ければ良く、且冷房と暖房の
切換時、数秒間のみ通電すれば良いため、コイルの消費
電力は殆んど0に等しく、コイルの消費電力が少なくて
すむばかりでなく、コイルの温度上昇や寿命劣化、電磁
音の発生等の問題が生じる恐れがない等多大な効果があ
る。
As described above, according to the present invention, by switching the high-temperature, high-pressure discharge gas and the low-temperature, low-pressure suction gas of the compressor 9 using separate switching valves, it is possible to reduce the reduction in heating capacity due to heat exchange between refrigerants, and The differential pressure type three-way valve 17 can be made small and have good sealing properties, and while the conventional four-way valve has a heat loss of about 100 K4'h, the electromagnetic type three-way valve 10 and the differential pressure type three-way valve of the present invention The combined heat loss of the valve 17 can be lower than that of the conventional IA.Also, since the electromagnetic coil is not required for the differential pressure type three-way valve 17,
Since it only needs to be provided in the electromagnetic three-way valve 10, and it only needs to be energized for a few seconds when switching between cooling and heating, the power consumption of the coil is almost equal to 0, and the power consumption of the coil can be reduced. In addition, it has great effects such as eliminating the risk of problems such as increase in coil temperature, deterioration of coil life, and generation of electromagnetic noise.

本発明は圧縮機9の吐出側を人口ボー)10Bとし室外
熱交換器11と室内熱交換器12とに出口ボー)10A
、lOcを切換える電磁式三方弁10および圧縮機9の
吸込側を出口ポート17Bとし室外熱交換器11と室内
熱交換器12とに入口ボー)17A、17Cを切換える
差圧式三方弁17を有するので、暖房時の熱ロスを大幅
に少なくすることができる。また、差圧式三方弁17の
構造を中空ボデー26の左右に連動する可動弁28.2
9を設け、中央側面に出口ボー)17A。
In the present invention, the discharge side of the compressor 9 is set to the outlet bow) 10B, and the outdoor heat exchanger 11 and the indoor heat exchanger 12 are connected to the outlet bow) 10A.
, lOc, and the suction side of the compressor 9 is the outlet port 17B. , heat loss during heating can be significantly reduced. In addition, the structure of the differential pressure type three-way valve 17 is changed to a movable valve 28.2 that interlocks the left and right sides of the hollow body 26.
9 and an exit bow on the center side) 17A.

17cを設けると共に左右両端部はθリングを介してボ
デー26をかしめたことにより可動弁28.29をナイ
ロンにでき、小形でシール性の良い差圧式三方弁17を
製作し、よって電磁四方弁を電磁式三方弁と差圧式三方
弁とに分離することにより熱ロスの減少や電磁コイルの
間欠通電による消費電力削減等の多大な効果を有する空
気調和機を容易に製作し得るものである。
17c is provided, and the left and right ends are caulked to the body 26 through θ rings, so that the movable valves 28 and 29 can be made of nylon, producing a compact differential pressure type three-way valve 17 with good sealing performance, and thus an electromagnetic four-way valve. By separating the electromagnetic three-way valve and the differential pressure three-way valve, it is possible to easily manufacture an air conditioner that has great effects such as reducing heat loss and reducing power consumption by intermittent energization of the electromagnetic coil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和機の冷媒回路図、第2図は本発
明の一実施例を示す空気調和機の冷媒回路図、第3図、
第4図は電磁式三方弁の断面図、第5図は差圧式三方弁
の断面図である。 9・・・圧縮機、10・・・電磁式三方弁、11・・・
室外熱交換器、12・・・室内熱交換器、13.14・
・・キャピラリ、15.16・・・逆止弁、17・・・
差圧式三方弁、26・・・中空ボデー、28.29・・
・可動弁、32.33・・・θリング。 第3図 IOA 第4図 第5図
FIG. 1 is a refrigerant circuit diagram of a conventional air conditioner, FIG. 2 is a refrigerant circuit diagram of an air conditioner showing an embodiment of the present invention, and FIG.
FIG. 4 is a sectional view of the electromagnetic three-way valve, and FIG. 5 is a sectional view of the differential pressure type three-way valve. 9... Compressor, 10... Solenoid three-way valve, 11...
Outdoor heat exchanger, 12... Indoor heat exchanger, 13.14.
...Capillary, 15.16...Check valve, 17...
Differential pressure type three-way valve, 26...Hollow body, 28.29...
・Movable valve, 32.33...θ ring. Figure 3 IOA Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、圧縮機(9)の吐出側を人口ボートCl0B)とし
室外熱交換器(11)と室内熱交換器(12)とに出口
ポー1− (l OA、  I 0(1)を切換える電
磁式三方弁(10)および圧縮機(9)の吸込側を出口
ポート(17B)とし室外熱交換器(11)と室内熱交
換器(12)とに人口ボー)(17A、17C)を切換
え得る差圧式三方弁(17)を有する空気調和機におい
て。 上記差圧式三方弁17の構造を、中空ボデー(26)の
左右に連動する可動弁(28,29)を設け、中央側面
に出口ボー)(17B)、左右両端に人口ボート(17
A、17c)を設けると共に左右両端部はθリング(3
2,31)を介してボデー(26)をかしめた構造とし
たことを特徴とする空気調和機。
[Claims] 1. The discharge side of the compressor (9) is an artificial boat Cl0B), and an outlet port 1-(l OA, I 0( 1), and the suction side of the compressor (9) is used as the outlet port (17B), and is connected to the outdoor heat exchanger (11) and the indoor heat exchanger (12). 17C) in an air conditioner having a differential pressure type three-way valve (17) that can switch. The structure of the differential pressure type three-way valve 17 is such that movable valves (28, 29) interlocked with the left and right sides of the hollow body (26) are provided, an outlet bow (17B) is provided on the central side, and artificial boats (17B) are provided on both the left and right ends.
A, 17c) is provided, and both left and right ends are provided with θ rings (3
An air conditioner characterized in that the body (26) is caulked through the body (26).
JP57121138A 1982-07-14 1982-07-14 Air conditioner Pending JPS5912270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121138A JPS5912270A (en) 1982-07-14 1982-07-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121138A JPS5912270A (en) 1982-07-14 1982-07-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPS5912270A true JPS5912270A (en) 1984-01-21

Family

ID=14803804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121138A Pending JPS5912270A (en) 1982-07-14 1982-07-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5912270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308019B1 (en) * 1998-09-15 2001-11-15 구자홍 expansion valve for cooling system
JP2006125716A (en) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308019B1 (en) * 1998-09-15 2001-11-15 구자홍 expansion valve for cooling system
JP2006125716A (en) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd Air conditioner

Similar Documents

Publication Publication Date Title
US4805666A (en) Slide valve
JPS58174767A (en) Changeover valve for heat pump
JPS5912270A (en) Air conditioner
JPS5912271A (en) Air conditioner
CN210399345U (en) Double-throttling air conditioner system and air conditioner
JPS63297883A (en) Selector valve
JP3746839B2 (en) Refrigeration cycle
KR101160875B1 (en) Derection control valve for air conditioner
JPH01155163A (en) Four-way valve for refrigeration cycle
JPH09292050A (en) Four-way valve
JP3123901B2 (en) Composite valve for refrigeration cycle
JPS62177376A (en) Selector valve device
JPS6038979U (en) solenoid valve
JPS58152988A (en) Reversible magnet valve
JPS61192974A (en) Four way type valve for refrigerating cycle
JP3256270B2 (en) Reversible valve
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPS61192981A (en) Four way type valve for refrigerating cycle
JPS62158965A (en) Changeover valve gear
JPS6036846A (en) Control mechanism of refrigeration cycle
JP2672573B2 (en) Switching valve
JPH11153252A (en) Solenoid pilot four-way valve
JPS6280468A (en) Expansion valve for refrigeration cycle
JPS58179778A (en) Air conditioner
JPS6024977U (en) Self-holding four-way switching valve