JPS62177376A - Selector valve device - Google Patents

Selector valve device

Info

Publication number
JPS62177376A
JPS62177376A JP61018370A JP1837086A JPS62177376A JP S62177376 A JPS62177376 A JP S62177376A JP 61018370 A JP61018370 A JP 61018370A JP 1837086 A JP1837086 A JP 1837086A JP S62177376 A JPS62177376 A JP S62177376A
Authority
JP
Japan
Prior art keywords
connecting pipe
magnetic pole
valve
bypass
rotary valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61018370A
Other languages
Japanese (ja)
Other versions
JPH0372870B2 (en
Inventor
Katsuji Miyamoto
勝次 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61018370A priority Critical patent/JPS62177376A/en
Publication of JPS62177376A publication Critical patent/JPS62177376A/en
Publication of JPH0372870B2 publication Critical patent/JPH0372870B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To control flow of a bypass passage without any influence on flow of a main passage by disposing a plurality of magnetic pole generating portions, the polarity of which can be converted, in the periphery of a rotary valve element with a permanent magnet. CONSTITUTION:The first magnetic pole generating portion 22 and the second magnetic pole generating portion 23, the polarity of which can be converted are disposed in the periphery of a disc rotary valve element 18 provided with a permanent magnet 19, so that the rotary valve element 18 can take an arbitrary position. Two communicating holes 25, 27 for communicating two connecting pipes among the first to fourth connecting pipes C, D, E, S, and a bypass through hole 29 for communicating a bypass connecting pipe 28 with the first connecting pipe D are formed on the rotary valve element 18. In this arrangement, a main passage and bypass passage can be switched parallel by setting the position relationship between the communicating holes 25, 27 and the bypass through hole 29.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、〃スおよび流体等の流路切換えに使用される
空気調和機等の四方切替弁等の切替弁装置に関し、特に
除霜および能力可変のヒートポンプ式空気調和機に適し
た切替弁装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a switching valve device such as a four-way switching valve of an air conditioner, etc. used for switching the flow path of gas and fluid, and in particular to a switching valve device such as a four-way switching valve of an air conditioner, etc. The present invention relates to a switching valve device suitable for a heat pump type air conditioner.

〈従来技術〉 従来、電磁石の励磁力により弁部材を上下動して開閉動
作を行う電磁弁や圧力差を利用した摺動弁形電磁弁につ
いては周知である。従来、空気調和機に使用される四方
切替弁z1は、熱媒サイクルにおける冷媒の流れを基本
的には第10図の如く切替えて流す。すなわち暖房サイ
クルにおいては、室内側熱交換器Aから室外側熱交換器
Bへ′、冷房サイクルにおいては、室外側熱交換器Bか
ら室内側熱交換器Aへ流すよう切替え、室内を暖房また
は冷房する。
<Prior Art> Solenoid valves that open and close by moving a valve member up and down by the excitation force of an electromagnet, and sliding valve type solenoid valves that utilize a pressure difference are well known. Conventionally, a four-way switching valve z1 used in an air conditioner basically switches the flow of refrigerant in a heat medium cycle as shown in FIG. 10. In other words, in the heating cycle, the flow is switched from the indoor heat exchanger A to the outdoor heat exchanger B', and in the cooling cycle, the flow is switched from the outdoor heat exchanger B to the indoor heat exchanger A, heating or cooling the room. do.

一般的な構造は第10図に示す如く、密閉された円筒状
弁本体1の周面の一端に圧、fi磯Fの吐出管に接続す
る高圧が入用接続管りを接続し、池端に圧縮機Fの吸入
管に接続する低圧冷媒用接続管Sを中央にしてその両側
に室内側熱交換器Aに接続する接続管Eと、室外側熱交
換器Bに接続する接続管Cとを並設する。前記接続管り
、S、E、Cはそれぞれ円筒形弁本体1内に開口してお
り、並設した接続管S、E、Cの三接続管の開口端は弁
本体長軸方向に面一にシート3で弁本体1に固定されて
いる。
As shown in Fig. 10, the general structure is as shown in Fig. 10. A high pressure connection pipe is connected to one end of the circumferential surface of a sealed cylindrical valve body 1, and a high pressure connection pipe is connected to the discharge pipe of the fiiso F. A connecting pipe E connecting to the indoor heat exchanger A and a connecting pipe C connecting to the outdoor heat exchanger B are arranged on both sides of the low-pressure refrigerant connecting pipe S connected to the suction pipe of the compressor F in the center. Install in parallel. The connecting pipes S, E, and C each open into the cylindrical valve body 1, and the open ends of the three connecting pipes S, E, and C arranged in parallel are flush with each other in the longitudinal direction of the valve body. It is fixed to the valve body 1 with a seat 3.

弁本体1の内部には前記弁シート3の開口面上を長軸方
向に摺動し接続管SとEl、およびSとCを択一的に連
通せしめるU字型状の摺動弁4が内装される。摺動弁4
は、その両側に配されたピストン体5,6に連結板7で
連結され、弁本体1の端面を密閉する部材8とピストン
体5との空間R1、および部材9とピストン体6との開
の空間R2にはそれぞれ高圧ガス、または低圧ガスを択
一的に切替えて導入する毛細管10.11が連結される
。また接続管Sには低圧が入用毛細管12が連結されて
おり、この三七細管10.11.12は小さな電磁弁装
置Gのニードルパルプ用空間R3゜R4およびその中間
に連通されている。
Inside the valve body 1, there is a U-shaped sliding valve 4 that slides in the longitudinal direction on the opening surface of the valve seat 3 and selectively connects the connecting pipes S and El, and S and C. It will be decorated. Sliding valve 4
is connected to the piston bodies 5 and 6 disposed on both sides by a connecting plate 7, and forms a space R1 between the member 8 and the piston body 5 that seals the end face of the valve body 1, and an opening between the member 9 and the piston body 6. A capillary tube 10.11 is connected to each of the spaces R2 to selectively introduce high-pressure gas or low-pressure gas. A capillary tube 12 for supplying low pressure is connected to the connecting tube S, and this three-seven capillary tube 10, 11, 12 communicates with the needle pulp space R3, R4 of the small electromagnetic valve device G and the intermediate space therebetween.

粂、圧縮機Fから吐出された高圧がスは接続管りを通り
、ピストン体5および6に設けられた小さな穴を通り空
間R1,R2に流れる。電磁弁装置Gのフィル13が無
通電の時はニードルバルブ14がスプリングにより小空
間R4を密閉し、互いにピン15Aを介して相対する反
対側のニードルバルブ15が開き、小空間R3は解放さ
れる。
The high-pressure gas discharged from the compressor F passes through the connecting pipe, passes through small holes provided in the piston bodies 5 and 6, and flows into the spaces R1 and R2. When the fill 13 of the electromagnetic valve device G is de-energized, the needle valve 14 seals the small space R4 with a spring, and the needle valves 15 on the opposite side facing each other via the pin 15A open, and the small space R3 is released. .

したがって空間R1と小空間R4の圧力は高圧となり、
空間R2は低圧となる。この圧力差によってピストン体
5,6は空間R2の方に移動する。
Therefore, the pressure in space R1 and small space R4 becomes high pressure,
Space R2 has a low pressure. This pressure difference causes the piston bodies 5, 6 to move toward the space R2.

このと5摺動弁4も連結板7により同一方向に移動して
接続管E、Sの流路が連通する。この状態で回路は冷房
状態となってい、る。
At this time, the sliding valve 4 is also moved in the same direction by the connecting plate 7, and the flow paths of the connecting pipes E and S are communicated with each other. In this state, the circuit is in a cooling state.

フィル13に通電した時は励磁力でニードルバルブ14
.15を上記と逆に移動させることになり、ピストン体
5,6は空間R1方向へ移動して摺動弁4により接続管
C1Sの流路が連通して回路は暖房状態となる。但しこ
のときは運転中は連続通電である。
When the fill 13 is energized, the needle valve 14 is activated by the excitation force.
.. 15 is moved in the opposite direction to the above, the piston bodies 5 and 6 are moved in the direction of the space R1, and the flow path of the connecting pipe C1S is communicated with the slide valve 4, so that the circuit enters a heating state. However, in this case, electricity is continuously applied during operation.

以上が従来例の四方切替電磁弁の動作原理であるが、第
10図に示す如く、非常に複雑精巧な構造となっており
、部品点数ら約60〜70点にもおよび高価な電磁弁と
なっている。
The above is the operating principle of the conventional four-way switching solenoid valve, but as shown in Figure 10, it has a very complex and elaborate structure, and has about 60 to 70 parts, making it an expensive solenoid valve. It has become.

また一般に外気を熱源とするヒートポンプ式空気調和機
では、暖房時に外気温度が低下すると室外熱交換器Bの
表面に着霜現象が生じ、付着した霜の断熱作用と通風抵
抗の増大により通風量が減少し七外気からの吸熱が阻害
され、暖房能力が急激に低下する欠点がある。
Additionally, in general, in heat pump air conditioners that use outside air as a heat source, when the outside air temperature drops during heating, frost formation occurs on the surface of outdoor heat exchanger B, and the amount of ventilation decreases due to the insulating effect of the frost and increased ventilation resistance. This has the disadvantage that heat absorption from the outside air is inhibited and the heating capacity rapidly decreases.

そこで室外側熱交換器に着霜現象が生じたとぎ、この霜
を溶かすだめ、一時的に暖房サイクルを冷房サイクルに
切り換えて室外側熱交換器Bに圧縮機Fからの高温高圧
冷媒を送り、霜を溶かした後、再び暖房サイクルに切り
換えるのが一般的である。
Therefore, when frost formation occurs on the outdoor heat exchanger, in order to melt the frost, the heating cycle is temporarily switched to the cooling cycle and high-temperature, high-pressure refrigerant from the compressor F is sent to the outdoor heat exchanger B. After the frost has melted, it is common to switch back to the heating cycle.

しかし、室内温度の低下をまねくので、その改善として
、圧縮機吐出ム・らの高圧高温冷媒を着霜状態にある室
外側熱交換器Bの入口に上記とは別の電磁弁を用いたバ
イパス回路によって冷媒を流し、暖房運転を停止するこ
となく除霜できる方式もある。しかしこの方式では高価
な電磁弁等を使用しなければならない欠点がある。
However, this leads to a drop in indoor temperature, so as an improvement, a separate solenoid valve is used to bypass the high-pressure, high-temperature refrigerant discharged from the compressor at the inlet of the outdoor heat exchanger B, which is in a frosted state. There is also a method that uses a circuit to flow refrigerant and defrost without stopping heating operation. However, this method has the disadvantage of requiring the use of expensive solenoid valves.

〈  目  的  〉 本発明は、上記の点に鑑み、電動機の原理によって得ら
れるトルクを利用して回転弁体を回動させることにより
流動体の流路の切換えおよび流路に影響を与えることな
く、−個もしくは、複数のバイパス回路を順次もしくは
同時に主流路と並列に回路を開閉することが可能で、ヒ
ートポンプ式空気調和機に適用し得る切替弁装置を提供
しようとするものである。
<Purpose> In view of the above-mentioned points, the present invention rotates a rotary valve body using the torque obtained by the principle of an electric motor, thereby switching the flow path of a fluid and without affecting the flow path. It is an object of the present invention to provide a switching valve device that is capable of opening and closing one or more bypass circuits sequentially or simultaneously in parallel with a main flow path, and can be applied to a heat pump air conditioner.

〈実施例〉 以下、本発明の一実施例をロータリ一式四方切替弁装置
を例にして説明する。第1図は本発明によるロータリー
四方切替弁装置の正面図、第2図は同平面図、第3図は
同断面図であり、第4図は切替弁装置を空気調和機に用
いた場合のヒートポンプサイクル図、第5図は動作原理
図、第6図は本発明実施例における除霜時の切替弁装置
の状態を示す図である。
<Embodiment> Hereinafter, an embodiment of the present invention will be described using a rotary set four-way switching valve device as an example. Fig. 1 is a front view of a rotary four-way switching valve device according to the present invention, Fig. 2 is a plan view thereof, Fig. 3 is a sectional view thereof, and Fig. 4 is a diagram showing a case where the switching valve device is used in an air conditioner. FIG. 5 is a diagram of the heat pump cycle, FIG. 5 is a diagram of the operating principle, and FIG. 6 is a diagram showing the state of the switching valve device during defrosting in the embodiment of the present invention.

この切替弁装置Z1に、内部を密閉された円筒状の非磁
性弁箱16の一端に圧縮IFの吐出管に接続する第一接
続管りが接続され、他端に圧縮機Fの吸入管に接続する
第四接続管S、室内側熱交換器Aに接続する第三接続管
Eおよび室内側熱交換器Bに接続する第二接続管Cが並
設されている。
In this switching valve device Z1, a first connecting pipe connected to the discharge pipe of the compression IF is connected to one end of a cylindrical non-magnetic valve box 16 whose interior is sealed, and a first connecting pipe connected to the suction pipe of the compressor F is connected to the other end. A fourth connecting pipe S to be connected, a third connecting pipe E to be connected to the indoor heat exchanger A, and a second connecting pipe C to be connected to the indoor heat exchanger B are arranged in parallel.

弁箱16は内部形状が突起17を有する円筒形(または
単なる円筒形)とされている。接続管り、S。
The valve box 16 has a cylindrical internal shape (or simply a cylindrical shape) having a protrusion 17 . Connecting pipe, S.

E、Cは全て弁箱16の中に開口しており、並設した第
二ないし第四接続管S、E、Cの開口端は弁箱16の円
形断面に直角となる同一面上に開口しており、これに相
対する面に接続管りが開口している。
E and C all open into the valve box 16, and the open ends of the second to fourth connecting pipes S, E, and C arranged in parallel are opened on the same plane that is perpendicular to the circular cross section of the valve box 16. The connecting pipe is opened on the opposite side.

弁箱16内には接続管S、E、Cの開口端と平滑に面を
接し、かつ円筒形空間R5に内接して円周方向に回動す
る回転弁子18か配設されている。
A rotary valve element 18 is disposed within the valve box 16 so as to be in smooth contact with the open ends of the connecting pipes S, E, and C, inscribed in the cylindrical space R5, and rotating in the circumferential direction.

この回転弁子181こは1個以上の永久磁石19が装7
1されている。
This rotary valve 181 is equipped with one or more permanent magnets 19.
1 has been done.

弁箱16外には極性変換可能な第一磁極発生部22およ
び第二磁極発生部23を有する電磁石24が配されてい
る。第一磁極発生部22および第二磁極発生部23の位
置は前記永久磁石19の回動する角度より鈍角で永久磁
石19に対する効果を失なわない位置に配設されている
。すなわち回転弁子18を任意の角度a回転させる時、
磁極発生部22.23はαくβとなる如く配設されると
ともに磁極発生部23は永久磁石19と吸引状態となる
磁極とし、前記αくβの位置に永久磁石19が保持され
る様にストッパー17をして回転弁子18が反発−吸引
で発生したトルクにより回転した後の接続管との位置を
正しく保持可能となしている。
An electromagnet 24 having a first magnetic pole generating section 22 and a second magnetic pole generating section 23 whose polarity can be changed is disposed outside the valve box 16. The first magnetic pole generating section 22 and the second magnetic pole generating section 23 are arranged at an angle obtuse to the rotating angle of the permanent magnet 19 and at a position where the effect on the permanent magnet 19 is not lost. That is, when rotating the rotary valve 18 by an arbitrary angle a,
The magnetic pole generators 22 and 23 are arranged so that α and β are arranged, and the magnetic pole generator 23 is a magnetic pole that is attracted to the permanent magnet 19, so that the permanent magnet 19 is held at the α and β positions. The stopper 17 allows the rotary valve element 18 to maintain its correct position with respect to the connecting pipe after being rotated by the torque generated by repulsion and attraction.

第一接続管り、第二接続管C1第三接続管Eおよび第四
接続管Sは第5図の如く、平面視で、回転弁子18の中
心から等角度(90℃)でかつ、第一接続管りと第四接
続管Sとが、第二接続管Cと第三接続管Eとが回転弁子
18の中心に対して夫々対称位置に配される。
As shown in FIG. 5, the first connecting pipe, the second connecting pipe C1, the third connecting pipe E, and the fourth connecting pipe S are at equal angles (90 degrees Celsius) from the center of the rotary valve element 18 and at the same angles as shown in FIG. The first connecting pipe and the fourth connecting pipe S, and the second connecting pipe C and the third connecting pipe E are arranged at symmetrical positions with respect to the center of the rotary valve element 18, respectively.

そして前記回転弁子18には、前記永久磁石19の第一
磁極発生部22との第一吸着位置(冷房姿勢X)で第四
接続管Sと第三接続管Eを連通しかつ永久磁石19の第
二磁極発生部23との第二吸着位置(暖房姿勢Y)で第
四接続管Sと第二接続管Cとを連通する弧状でかつ凹状
の第一連通孔25と、第一吸着位置(冷房姿勢X)で第
二接続管Cと第一接続管りとを連通しかつ第二吸着位置
(@房姿勢Y)で第一接続管りと第三接続管Eとを連通
する主貫通孔26付の弧状でかつ凹状の第二連通孔27
とが形成される。
The rotary valve element 18 has the permanent magnet 19 connected to the fourth connecting pipe S and the third connecting pipe E at the first attraction position (cooling posture X) with the first magnetic pole generating section 22 of the permanent magnet 19. An arcuate and concave first communication hole 25 that communicates the fourth connecting pipe S and the second connecting pipe C at the second suction position (heating position Y) with the second magnetic pole generating part 23, and the first suction A main connecting the second connecting pipe C and the first connecting pipe E at the position (cooling attitude An arcuate and concave second communication hole 27 with a through hole 26
is formed.

前記第一磁極発生部22は、第三接続管Eと第四接続管
Sとの中央部と回転弁子18の中心とを結ぶ直線の延長
線上に配され、前記第二磁極発生部23は第一接続管り
と第三接続管Eの中央部と回転弁子18の中心とを結ぶ
直線の延長線上に配される。
The first magnetic pole generating section 22 is arranged on an extension of a straight line connecting the center of the third connecting pipe E and the fourth connecting pipe S and the center of the rotary valve element 18, and the second magnetic pole generating section 23 is It is arranged on an extension of a straight line connecting the center of the first connecting pipe and the third connecting pipe E and the center of the rotary valve element 18.

そして永久磁石19は、前記第二連通孔27の第三接続
管E側の回転弁子18外周部に配され、外側がN極に設
定されている。
The permanent magnet 19 is disposed on the outer periphery of the rotary valve element 18 on the third connecting pipe E side of the second communication hole 27, and the outer side thereof is set to the north pole.

更に前記弁箱16の他側には、前記室外熱交換器Bの膨
張弁Bl側に連通するバイパス接続管28が連通接続さ
れる。このバイパス接続管28は第二接続管C1第三接
続管Eおよび第四接続管Sよりも弁箱16の中心側に配
されている。
Further, a bypass connecting pipe 28 communicating with the expansion valve B1 side of the outdoor heat exchanger B is connected to the other side of the valve box 16. This bypass connecting pipe 28 is arranged closer to the center of the valve box 16 than the second connecting pipe C1, the third connecting pipe E, and the fourth connecting pipe S.

また回転弁子18には、第二連通孔27よりも回転弁子
18の中央側でバイパス貫通孔29が形成される。この
バイパス貫通孔29およびバイパス接続管28は、永久
磁石19の第一磁極発生部22と第二磁極発生部23の
中間位置で連通するよう設定されている。
Further, a bypass through hole 29 is formed in the rotary valve element 18 at a position closer to the center of the rotary valve element 18 than the second communication hole 27 is. The bypass through hole 29 and the bypass connecting pipe 28 are set to communicate with each other at an intermediate position between the first magnetic pole generating section 22 and the second magnetic pole generating section 23 of the permanent magnet 19.

また、永久磁石19の第一磁極発生部22との第一吸着
位置、第二磁極発生部23との第二吸着位置、お上り第
一磁極発生部22と第二磁極発生部23の中間位置で、
回転弁子18を停止させるための回転停止手段30が設
けられる。この回転停止手段30は第一磁極発生部22
および第二磁極発生部23を通電制御する制御装置31
がら構成される。回転弁子18の冷房姿勢Xと暖房姿勢
Yの中間位置では、第6図の如く、暖房サイクルを依然
として維持するよう前記第一、第二連通孔25.27の
形状が設定される。
Also, the first adhesion position of the permanent magnet 19 with the first magnetic pole generation part 22 , the second adhesion position with the second magnetic pole generation part 23 , and the intermediate position between the first magnetic pole generation part 22 and the second magnetic pole generation part 23 . in,
Rotation stopping means 30 for stopping the rotary valve element 18 is provided. This rotation stopping means 30 is the first magnetic pole generating section 22
and a control device 31 that controls energization of the second magnetic pole generation section 23
It is composed of At an intermediate position between the cooling position X and the heating position Y of the rotary valve 18, the shapes of the first and second communication holes 25, 27 are set so as to maintain the heating cycle as shown in FIG.

上記構成において、圧縮機Fがら吐出された高圧が又は
第一接続管りを通り、弁箱16の円筒形空間R5に流れ
、回転弁子18の主貫通孔26を経て室外側熱変換器B
(凝縮器)、毛細管B1、室内側熱交換器A(蒸発器)
、第三接続管Eから弁箱16内へ通り、第一連通孔25
を経て第四接続管Sから圧縮(幾Fに吸入される。この
とぎ、回転弁子18は第一接続管りよりの高圧ガスによ
り、並設する接続管S、E、Cの開口端と面を接して押
圧されている。この状態が冷房サイクルであり、弁箱1
6内の配置は第4図(a)の状態となる。
In the above configuration, the high pressure discharged from the compressor F passes through the first connecting pipe, flows into the cylindrical space R5 of the valve box 16, and passes through the main through hole 26 of the rotary valve 18 to the outdoor heat converter B.
(condenser), capillary tube B1, indoor heat exchanger A (evaporator)
, passes from the third connecting pipe E into the valve box 16, and passes through the first communication hole 25.
The high pressure gas from the first connecting pipe causes the rotary valve 18 to connect to the open ends of the parallel connecting pipes S, E, and C. The surfaces are pressed against each other. This state is the cooling cycle, and the valve box 1
The arrangement within 6 is as shown in FIG. 4(a).

なお、電磁石24の磁極発生部22.23は無通電状態
で単に磁性体と吸引状態にあるだけである。また、微少
電流等を通電しても良いことはもちろんである。
Note that the magnetic pole generating portions 22 and 23 of the electromagnet 24 are simply attracted to the magnetic body in a non-energized state. Furthermore, it goes without saying that a minute current or the like may be applied.

次に暖房サイクルへの切替は、同図(、)に示す無通電
の電磁石24に瞬時(0,5秒程度)通電するとともに
、磁極の変換を行ない、永久磁石19に相対する第二磁
極発生部23は永久磁石19の同極となして反発させる
。そうすると、回転弁子18は反時計回りに回転する。
Next, to switch to the heating cycle, the non-energized electromagnet 24 shown in FIG. The portion 23 serves as the same polarity as the permanent magnet 19 to repel it. Then, the rotary valve element 18 rotates counterclockwise.

また第一磁極発生部22も永久磁石19と異極とすれば
、永久磁石19は第一磁極発生部22側へ吸引されて回
転し、なお、第5図中(、)(b)に記載の記号S、E
、Cは接続管の開口端を示している。
Further, if the first magnetic pole generating section 22 is also of a different polarity from the permanent magnet 19, the permanent magnet 19 is attracted to the first magnetic pole generating section 22 side and rotates, as shown in (,) (b) in Fig. 5. symbol S, E
, C indicates the open end of the connecting pipe.

この暖房状態で、圧縮機Fから吐出された高圧ガスが第
一接続管りより空間R5、主貫通孔26→第三接続管E
→室内側熱交換器A(i疑縮器)→毛細管→室外側熱変
換器B(蒸発器)→接続管Cを経て弁箱16内の第一連
通孔25を通り、第四接続管Sへと流れ、圧縮機Fに吸
入される。
In this heating state, the high pressure gas discharged from the compressor F flows from the first connecting pipe to the space R5, from the main through hole 26 to the third connecting pipe E.
→ Indoor heat exchanger A (i-condenser) → Capillary → Outdoor heat converter B (evaporator) → Connecting pipe C, passing through the first communication hole 25 in the valve box 16, and passing through the fourth connecting pipe It flows into S and is sucked into compressor F.

但し、前記した冷房、暖房いずれの状態に於いても接続
管S、E、Cと同一面に開口端を持つバイパス接続管2
8と、回転弁子18に副次的に設けられているバイパス
貫通孔29は合致せずに開口している。
However, in both the cooling and heating conditions described above, the bypass connecting pipe 2, which has an open end on the same plane as the connecting pipes S, E, and C,
8 and the bypass through hole 29 which is provided secondarily in the rotary valve element 18 do not coincide with each other and are open.

以上述べた基本動作とは別に第6図に示すように回転弁
子18に装着された永久磁石19(もしくは永久磁石か
ら成る弁体)に相対する第一磁極発生部22、第二磁極
発生部23(即ち角度β位置)の磁極の極性を永久磁石
19の極性と反発する極性とすることにより回転弁子1
8は回転角αの中間位置に保持される。この時に回転弁
子18に副次的に設けられているバイパス貫通孔29と
バイパス接続管28の開口端が合致し連通する。
Apart from the basic operations described above, as shown in FIG. 6, there is a first magnetic pole generating section 22 and a second magnetic pole generating section facing the permanent magnet 19 (or the valve body made of a permanent magnet) attached to the rotary valve 18. By setting the polarity of the magnetic pole at position 23 (that is, the angle β position) to a polarity that repels the polarity of the permanent magnet 19, the rotary valve 1
8 is held at an intermediate position of the rotation angle α. At this time, the bypass through hole 29 provided secondarily in the rotary valve element 18 and the open end of the bypass connecting pipe 28 match and communicate with each other.

なお、この状態でも回転弁子18の第一連通孔25およ
び主貫通孔26付第二連通孔27が回転角αの中間位置
でも流路を正常に保持する形状となっているため、暖・
冷房運転に何ら支障はなく一部の高圧・高温の吐出ガス
がバイパス接続管28より熱交換器へ流入する構造とな
る。
In addition, even in this state, the first communication hole 25 and the second communication hole 27 with the main through hole 26 of the rotary valve element 18 have a shape that maintains the flow path normally even at the intermediate position of the rotation angle α, so that the heating is maintained.・
The structure is such that a portion of the high-pressure, high-temperature discharged gas flows into the heat exchanger through the bypass connection pipe 28 without any problem in cooling operation.

例えば、暖房運転中に外気温度の低下により室外熱交換
器Bに着霜現象を生じた時に、第7図に示す冷凍サイク
ル図(暖房サイクル)によれば、暖房運転を継続しつつ
、バイパス接続管28より高温・高圧のガスを着霜して
いる室外側熱交換器B(蒸発器)入口より流入させる。
For example, when frost formation occurs on outdoor heat exchanger B due to a drop in outside air temperature during heating operation, according to the refrigeration cycle diagram (heating cycle) shown in Figure 7, bypass connection is established while heating operation is continued. High-temperature, high-pressure gas is introduced from the pipe 28 through the inlet of the frosted outdoor heat exchanger B (evaporator).

そうすればその熱・圧力により除霜し、着霜以前の暖房
能力まで機器を回復させるとともに、室内温度の変化を
最小限に抑え、快適性増大する。また、本発明によれば
池の高価な電磁弁等を不用となすため安価に提供できる
。なお、本発明は着霜寸前に採用すれば着霜の遅延とも
なる。
This will defrost the heat and pressure, restore the equipment to its pre-frost heating capacity, minimize changes in indoor temperature, and increase comfort. Further, according to the present invention, an expensive electromagnetic valve or the like for the pond is unnecessary, so that it can be provided at a low cost. Note that if the present invention is adopted just before frost formation, the frost formation will be delayed.

第8図は本発明の池の実施例を示す熱媒サイクルを示す
。これは、圧縮11Fの変化によらずに吐出されたがス
を吸入側にバイパスすることにより、その熱媒は熱交換
しないため、能力は低下する。
FIG. 8 shows a heat transfer cycle showing an embodiment of the pond of the present invention. This is because the discharged gas is bypassed to the suction side without changing the compression 11F, and the heat medium does not exchange heat, resulting in a decrease in performance.

したがって、能力可変機能を持つことになる。Therefore, it has a capacity variable function.

本発明を更に進展させれば、第9図に示す如く、第一、
第二磁極発生部22.23の中間位置で第三磁極発生部
33を、β〉δ、δ= 1 / nβとして任意の位置
に設けることにより、その弁子18の回転角もα〉γ、
γ=1/nαとリニアにすることにより、図示する如く
、バイパス接続管28の開口面績を変化させることがで
き、リニアな流量制御が可能となる。
If the present invention is further developed, as shown in FIG.
By providing the third magnetic pole generating section 33 at an arbitrary position between the second magnetic pole generating sections 22 and 23 with β>δ, δ=1/nβ, the rotation angle of the valve 18 also becomes α>γ,
By setting γ=1/nα linearly, as shown in the figure, the opening area of the bypass connecting pipe 28 can be changed, and linear flow rate control becomes possible.

このことは能力のリニアな変化および、着霜の状態によ
りバイパスさせる冷媒の流量の正確で適当な制御を可能
とするものである。なお、バイパス用開口部(孔)は複
数個設けてもよいことは勿論である。
This allows a linear change in capacity and accurate and appropriate control of the flow rate of refrigerant to be bypassed depending on frost conditions. Note that, of course, a plurality of bypass openings (holes) may be provided.

〈効果〉 以上の説明から明らかな通り、本発明は、第一接続管、
第二接続管、第三接続管および第四接続管が夫々連通接
続された弁箱と、該弁箱に回転自在に内装された永久磁
石付の回転弁子と、前記弁箱の外部に配された極性変換
可能な第一磁極発生部および第二磁極発生部を有する電
磁石とを具え、前記弁箱にバイパス接続管が形成され、
前記回転弁子を、前記永久磁石の第一磁極発生部との第
一吸着位置、第二磁極発生部との第二吸着位置、および
第一磁極発生部と第二磁極発生部の中間位置で回転停止
させるための回転停止手段が設けられ、前記回転弁子に
は、前記第一吸着位置で第四接続管と第三接続管を連通
しがっ第二吸着位置て・第四接続管と第二接続管とを連
通する第一連通孔と、第−吸着位置で第二接続管と第一
接続管とを連通しかつ第二吸着位置で第一接続管と第三
接続管とを連通する第二連通孔とが形成さね1、前記回
転弁子に前記第一吸着位置または第二吸着位置、および
中間位置で前記第一接続管とバイパス接続管とを連通さ
せるためのバイパス用孔が形成されたことを特徴とする
切替弁装置に関するものである。
<Effects> As is clear from the above explanation, the present invention provides a first connecting pipe,
A valve box to which a second connecting pipe, a third connecting pipe, and a fourth connecting pipe are connected in communication with each other, a rotary valve with a permanent magnet installed rotatably inside the valve box, and a rotary valve equipped with a permanent magnet disposed outside the valve box. a bypass connecting pipe is formed in the valve box,
The rotary valve is placed at a first attraction position with the first magnetic pole generation part of the permanent magnet, a second attraction position with the second magnetic pole generation part, and an intermediate position between the first magnetic pole generation part and the second magnetic pole generation part. A rotation stop means is provided for stopping the rotation, and the rotary valve element communicates the fourth connecting pipe and the third connecting pipe at the first suction position, and connects the fourth connecting pipe to the second suction position. A first communication hole that communicates with the second connecting pipe, communicates the second connecting pipe with the first connecting pipe at the first suction position, and connects the first connecting pipe with the third connecting pipe at the second suction position. A groove 1 is formed with a second communication hole that communicates with the rotary valve element at the first adsorption position or the second adsorption position, and a bypass for communicating the first connection pipe and the bypass connection pipe at an intermediate position. The present invention relates to a switching valve device characterized in that a hole is formed.

したがって、本発明によると、電動機の原理によって得
られるトルクを利用して回転弁体を回動させることによ
り流動体の流路の切換えおよび流路に影響を与えること
なく、−個もしくは、複数のバイパス回路を順次もしく
は同時に主流路と並列に回路を開閉することが可能で空
気調和機に利用すれば、熱媒の吐出量を可変とでき、ま
た除霜等にも使用できるといった優れた効果がある。
Therefore, according to the present invention, by rotating the rotary valve body using the torque obtained by the principle of an electric motor, the flow path of the fluid can be switched and the flow path can be switched without affecting the flow path. It is possible to open and close the bypass circuit sequentially or simultaneously in parallel with the main flow path, and when used in an air conditioner, it has excellent effects such as variable heat medium discharge volume and can also be used for defrosting etc. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す切替弁装置の正面図、
第2図は同平面図、第3図は同断面図、第4図は同熱媒
圧縮サイクルの基本構成図、第5図(、)は冷房時の弁
内部状態を示す平面図、第5図(b)は暖房時の弁内部
状態を示す平面図、第6図は除霜時の弁内部状態を示す
平面図、第7図は同然媒圧縮サイクル構成図、第8図は
本発明の池の実施例を示す熱媒圧縮サイクルを構成図、
第9図は本発明の他の実施例を示す弁内部状態平面図、
第10図は従来の熱媒圧縮サイクルの構成図である。 16:弁箱、18:円盤状回転弁子、19:永久磁石、
22:第一磁極発生部、23:第二磁極発生部、24:
電磁石、26:主貫通孔、28:バイパス接続管、29
:バイパス貫通孔、30:回転停止手段、C:第二接続
管、D:第一接続管、E:第三接続管、S:第四接続管
FIG. 1 is a front view of a switching valve device showing an embodiment of the present invention;
Fig. 2 is a plan view of the same, Fig. 3 is a sectional view of the same, Fig. 4 is a basic configuration diagram of the heat medium compression cycle, Fig. 5 (,) is a plan view showing the internal state of the valve during cooling; Figure (b) is a plan view showing the internal state of the valve during heating, Fig. 6 is a plan view showing the internal state of the valve during defrosting, Fig. 7 is a diagram of the same fluid compression cycle configuration, and Fig. 8 is a plan view showing the internal state of the valve during heating. A configuration diagram of a heat medium compression cycle showing an example of a pond,
FIG. 9 is a plan view of the internal state of the valve showing another embodiment of the present invention;
FIG. 10 is a block diagram of a conventional heat medium compression cycle. 16: Valve box, 18: Disc-shaped rotary valve, 19: Permanent magnet,
22: First magnetic pole generating section, 23: Second magnetic pole generating section, 24:
Electromagnet, 26: Main through hole, 28: Bypass connecting pipe, 29
: bypass through hole, 30: rotation stop means, C: second connecting pipe, D: first connecting pipe, E: third connecting pipe, S: fourth connecting pipe.

Claims (1)

【特許請求の範囲】[Claims] 第一接続管、第二接続管、第三接続管および第四接続管
が夫々連通接続された弁箱と、該弁箱に回転自在に内装
された永久磁石付の回転弁子と、前記弁箱の外部に配さ
れた極性変換可能な第一磁極発生部および第二磁極発生
部を有する電磁石とを具え、前記弁箱にバイパス接続管
が形成され、前記回転弁子を、前記永久磁石の第一磁極
発生部との第一吸着位置、第二磁極発生部との第二吸着
位置、および第一磁極発生部と第二磁極発生部の中間位
置で回転停止させるための回転停止手段が設けられ、前
記回転弁子には、前記第一吸着位置で第四接続管と第三
接続管を連通しかつ第二吸着位置で第四接続管と第二接
続管とを連通する第一連通孔と、第一吸着位置で第二接
続管と第一接続管とを連通しかつ第二吸着位置で第一接
続管と第三接続管とを連通する第二連通孔とが形成され
、前記回転弁子に前記第一吸着位置または第二吸着位置
、および中間位置で前記第一接続管とバイパス接続管と
を連通させるためのバイパス用孔が形成されたことを特
徴とする切替弁装置。
A valve box in which a first connecting pipe, a second connecting pipe, a third connecting pipe and a fourth connecting pipe are connected to each other, a rotary valve with a permanent magnet rotatably installed in the valve box, and the valve an electromagnet having a polarity convertible first magnetic pole generating section and a second magnetic pole generating section disposed outside the box, a bypass connecting pipe is formed in the valve box, and the rotary valve is connected to the permanent magnet. A rotation stop means is provided for stopping the rotation at a first attraction position with the first magnetic pole generation part, a second attraction position with the second magnetic pole generation part, and an intermediate position between the first magnetic pole generation part and the second magnetic pole generation part. and the rotary valve element has a first communication passage connecting the fourth connecting pipe and the third connecting pipe at the first suction position and communicating the fourth connecting pipe and the second connecting pipe at the second suction position. and a second communication hole communicating the second connecting pipe and the first connecting pipe at the first suction position and communicating the first connecting pipe and the third connecting pipe at the second suction position, A switching valve device characterized in that a bypass hole is formed in the rotary valve element at the first suction position or the second suction position and at an intermediate position for communicating the first connecting pipe and the bypass connecting pipe.
JP61018370A 1986-01-29 1986-01-29 Selector valve device Granted JPS62177376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61018370A JPS62177376A (en) 1986-01-29 1986-01-29 Selector valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61018370A JPS62177376A (en) 1986-01-29 1986-01-29 Selector valve device

Publications (2)

Publication Number Publication Date
JPS62177376A true JPS62177376A (en) 1987-08-04
JPH0372870B2 JPH0372870B2 (en) 1991-11-20

Family

ID=11969821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018370A Granted JPS62177376A (en) 1986-01-29 1986-01-29 Selector valve device

Country Status (1)

Country Link
JP (1) JPS62177376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152167U (en) * 1988-04-12 1989-10-20
JPH02190686A (en) * 1989-01-20 1990-07-26 Saginomiya Seisakusho Inc Solenoid valve
JPH04254085A (en) * 1991-02-01 1992-09-09 Sharp Corp Rotary solenoid valve
JP2011075016A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Composite valve and refrigerating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152167U (en) * 1988-04-12 1989-10-20
JPH02190686A (en) * 1989-01-20 1990-07-26 Saginomiya Seisakusho Inc Solenoid valve
JPH04254085A (en) * 1991-02-01 1992-09-09 Sharp Corp Rotary solenoid valve
JP2011075016A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Composite valve and refrigerating device

Also Published As

Publication number Publication date
JPH0372870B2 (en) 1991-11-20

Similar Documents

Publication Publication Date Title
US4311020A (en) Combination reversing valve and expansion device for a reversible refrigeration circuit
WO1998005907A1 (en) Transfer valve, method of controlling transfer valve, freezing cycle and method of controlling freezing cycle
JPH0341750B2 (en)
JPS62177376A (en) Selector valve device
JP2001343076A (en) Control valve
JPH1151504A (en) Air conditioning device with sub condenser
JPH01155163A (en) Four-way valve for refrigeration cycle
JP3123901B2 (en) Composite valve for refrigeration cycle
JP2001343077A (en) Control valve
JP2001004052A (en) Solenoid controlled pilot type four-way valve
JP2004125254A (en) Heat storage type air conditioner
JPH0541911B2 (en)
JPH0330749B2 (en)
JPH0799296B2 (en) Air conditioning switching device
JPH0550633B2 (en)
JPH01150081A (en) Solenoid valve
JPS62141469A (en) Heat pump type air conditioner
JPH04254085A (en) Rotary solenoid valve
JPS6236042Y2 (en)
JPS6315056A (en) Four-way changeover valve for refrigerator
JP2002243244A (en) Air conditioner
JPH0562275B2 (en)
JPS58179778A (en) Air conditioner
JPS61192981A (en) Four way type valve for refrigerating cycle
KR20010080835A (en) Open type 3 way valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees