JPS5912169A - Ignition device for internal-combustion engine - Google Patents

Ignition device for internal-combustion engine

Info

Publication number
JPS5912169A
JPS5912169A JP12056882A JP12056882A JPS5912169A JP S5912169 A JPS5912169 A JP S5912169A JP 12056882 A JP12056882 A JP 12056882A JP 12056882 A JP12056882 A JP 12056882A JP S5912169 A JPS5912169 A JP S5912169A
Authority
JP
Japan
Prior art keywords
circuit
ignition
current
discharge
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12056882A
Other languages
Japanese (ja)
Other versions
JPS6056911B2 (en
Inventor
Takatoshi Hisamoto
久本 貴俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP12056882A priority Critical patent/JPS6056911B2/en
Publication of JPS5912169A publication Critical patent/JPS5912169A/en
Publication of JPS6056911B2 publication Critical patent/JPS6056911B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the consumption of useless electric power by a method wherein an electric discharge energy control circuit is controlled by a control signal generated in accordance with the transitional change of the pulse train interval of pulse signals synchronized with the interval of electric discharge, in the compound electric current interrupting capacity and electric discharge type ignition device. CONSTITUTION:An ignition coil 12 is provided with a primary current by putting a thyristor 2 ON by an ignition signal from an ignition signal generating circuit 13 to discharge a capacitor 3 while the primary current of the ignition coil 12 is interrupted by putting a power transistor Tr7 OFF by the ignition signal. The ignition device of such type is provided with the electric discharge energy control signal generating circuit 20. The circuit 20 is constituted by a one shot circuit 8, converting a signal taken out of the primary terminal of the ignition coil 12 into a rectangular wave pulse synchronizing with the timing of electric discharge, two sets of integrating circuits 9, 10, integrating the output of one shot circuit 8 and having respective different time constants, and a comparating circuit 11, comparing the outputs of the circuits 9, 10 and controlling a current control circuit 6 in accordance with the result of the comparation.

Description

【発明の詳細な説明】 本発明は内燃機関用点火装置に係り、特に、持続放電4
時のエネルギを制御して、理想的且つ一λ− 効率的な放電特性を持たせるように改良した、電流遮断
容量放電複合式点火装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition device for an internal combustion engine, and more particularly, to
The present invention relates to a current-interrupting capacity-discharge composite ignition device that has been improved to have ideal and λ-efficient discharge characteristics by controlling the energy of the current.

内燃機関の点火装置における火花放電特性として、火花
の飛び始め部分(容量性放電)と飛び続は部分(誘導性
放電)とがあり、前者は燃料への着火性能に、後者は着
火後の燃焼性能にそれぞれ影響を与える因子であると言
われ、歴jlllKはイグニションコイルの一次電流を
遮断した時に生ずる高電圧を利用する、電流遮断方式(
二次分布容量からの容量放電と一次インダクタンスから
の誘導放電とが連続して起る)や、コンデンサに充電さ
れた電荷をイグニションコイルの一次側に放出した時に
生ずる高電圧を利用する容量放電方式から、両者の特性
を相補した電流遮断容量数!複合方式へ、と順次発展し
て来た。
The characteristics of spark discharge in the ignition system of an internal combustion engine include the part where the spark starts flying (capacitive discharge) and the part where the spark continues flying (inductive discharge).The former affects the ignition performance of the fuel, and the latter affects the combustion after ignition. It is said that these factors each affect the performance, and the history is a current cutoff method (which utilizes the high voltage generated when the primary current of the ignition coil is cut off).
A capacitive discharge method that utilizes the high voltage generated when the charge charged in the capacitor is released to the primary side of the ignition coil (capacitive discharge from the secondary distributed capacitance and inductive discharge from the primary inductance occur continuously) From, the current breaking capacity number that complements the characteristics of both! It has gradually evolved into a composite method.

この複合方式では、容量放電方式の早い電圧立上υ特性
と、電流遮断方式の長い放電持続時間を持ったほぼ理想
的な放電特性が得られるが、従来はそれぞれの特性が固
定的で、機関の運転−3− 状態の変化、例えば高負荷低速運転と一定高速運転、或
いは加速時と減速時などの如く要求放電特性が変化した
としても、これに追従させて放電特性を制御することが
できず、乃至はその思想が寿ぐ、常に要求される最大の
放電エネルギとなるように設計されていたため、効率が
悪く、最大エネルギを要しない運転状況下でも最大エネ
ルギを供給するということが全くのエネルギの無駄とな
っていた。
This combined method provides nearly ideal discharge characteristics, such as the fast voltage rise υ characteristic of the capacitive discharge method and the long discharge duration of the current cutoff method, but in the past, each characteristic was fixed and the engine Operation-3- Even if the required discharge characteristics change, such as between high-load low-speed operation and constant high-speed operation, or between acceleration and deceleration, the discharge characteristics can be controlled to follow these changes. However, since the idea was designed to always provide the maximum discharge energy required, it was inefficient and it was impossible to provide the maximum energy even under operating conditions that did not require the maximum energy. It had become a waste of money.

本発明はこの点に鑑てなされたもので、原理的に優れて
いる上述の電流遮断容量放電複合方式の点火装置におい
て、更にエネルギの有効利用を図るため、機関運転状況
に応じて、最大放電エネルギを要しない時にまで、最大
エネルギを供給する愚を避けるべく、当該放電特性を制
御せんとするものである。
The present invention has been made in view of this point, and in order to further utilize energy effectively in the above-mentioned current interrupting capacity discharge combined type ignition device which is excellent in principle, the maximum discharge The purpose is to control the discharge characteristics in order to avoid the mistake of supplying maximum energy even when no energy is required.

第1図は本発明実施例の概略構成を示しているが、先づ
、点火コイルノコに対する公知乃至従来の容量放電方式
回路部分と電流遮断方式回路部分とに就き説明しておく
と、点火信号発生回路/3から点火信号が出ていない時
は、ドエル制御回路≠、増幅回路夕を介して、電流遮断
用の第一スイッチング素子として一般的なパワートラン
ジスタ7はオンの状態にあり、点火コイルノコの一次巻
線には電源電池/グからの一次電流が流れている。
FIG. 1 shows a schematic configuration of an embodiment of the present invention. First, a known or conventional capacitive discharge type circuit portion and a current cutoff type circuit portion for an ignition coil saw will be explained. When the ignition signal is not output from circuit 3, the power transistor 7, which is commonly used as the first switching element for current interruption, is in the on state through the dwell control circuit and the amplifier circuit, and the ignition coil saw is turned on. A primary current from the power supply battery flows through the primary winding.

また、同時に、DC−DCコンバータ等の直流高圧電源
/により、エネルギ蓄積コンデンサ3が所期極性(図中
の+、−)に充電されておシ、容量放電用第ニスイツチ
ング素子として一般的なサイリスタコはオフとなってい
る。
At the same time, the energy storage capacitor 3 is charged to the desired polarity (+, - in the figure) by a DC high-voltage power supply such as a DC-DC converter, and a general thyristor is used as the second switching element for capacitance discharge. is turned off.

対して、機関が回転し、点火信号発生回路13からの点
火信号が発生すると、パワートランジスタ7はオフとな
シ、点火コイル/、2の一次電流は遮断される。また点
火信号にょシサイリスタコはオンし、エネルギ蓄積コン
デンサ3の充電電荷が点火コイルlユの一次巻線に流れ
る。
On the other hand, when the engine rotates and an ignition signal is generated from the ignition signal generation circuit 13, the power transistor 7 is turned off and the primary current of the ignition coil 2 is cut off. In addition, the ignition signal controller turns on, and the charge in the energy storage capacitor 3 flows to the primary winding of the ignition coil.

このような動作において、電流遮断によって発生する電
圧と、コンデンサの放電によって発生する電圧は同位相
に合成されるため、点火コ1− イル/2の二次巻線には相乗された電圧が発生し、点火
栓tに火花が飛ぶ。
In this type of operation, the voltage generated by current interruption and the voltage generated by capacitor discharge are combined into the same phase, so a synergistic voltage is generated in the secondary winding of ignition coil 1-2. Then, a spark flies to the spark plug t.

このような在来構成に対して追加された本発明構成に就
き、以下第2〜5図に即して説明するが、第2図は、放
電エネルギ制御回路20のこの実施例における一具体例
を示している。
The configuration of the present invention added to such a conventional configuration will be explained below with reference to FIGS. 2 to 5. FIG. 2 shows a specific example of this embodiment of the discharge energy control circuit 20. It shows.

点火コイルノコの一次端子、この場合負端子から入力を
取り出したワンショットマルチバイブレータ乃至ワンシ
ョット回路どの出力は、第5図示のように放電時期に同
調した矩形波パルスとなる。尚、ワンショット回路入力
には公知適宜な波形整形部/jを入れて良い。
The output of the one-shot multivibrator or one-shot circuit which takes the input from the primary terminal of the ignition coil saw, in this case the negative terminal, becomes a rectangular wave pulse synchronized with the discharge timing as shown in FIG. Note that a known appropriate waveform shaping section /j may be inserted into the one-shot circuit input.

而して、第4図示左手から右方にかけて示すように、機
関回転数が加速の状態になると、こうした過渡期におい
ては、放電間隔が徐々につまっていくことから、ワンシ
ョット出力波形の間隔もこれに比例してつまっていく。
As shown from the left hand side to the right hand side of the fourth figure, when the engine speed accelerates, the discharge interval gradually narrows during this transition period, and the one-shot output waveform interval also decreases. It gets clogged in proportion to this.

このようなパルス列をアナログレベルの概念で把えて、
互いに異なる時定数の二つの第一、第二積分回路り、1
0で積分すると、時定数の小6− さな方、例えば第一積分回路2の方の出力電圧変化率の
方が大きく、そのため、この過渡状態においての各時刻
では、この第一積分回路りの方の出力電圧が第二積分回
路/θの出力電圧よシ大きいという状況が生ずる。
Understanding such a pulse train from an analog level concept,
Two first and second integrating circuits with different time constants, 1
When integrating at 0, the output voltage change rate of the one with a smaller time constant, for example, the first integrating circuit 2, is larger, so at each time in this transient state, the output voltage change rate of the first integrating circuit 2 is larger. A situation arises in which the output voltage of the second integrating circuit/θ is larger than the output voltage of the second integrating circuit/θ.

この状態を模式的に第5図に示しである。例えば110
00rpから’H3O0r’l)mの過渡期においては
、いづれの時刻tiにおいても、第一積分回路出力電圧
が高いのでおる。
This state is schematically shown in FIG. For example 110
In the transition period from 00rp to 'H3O0r'l)m, the output voltage of the first integrating circuit is high at any time ti.

従って、コンパレータ/lの非反転乃至正相入力に第一
積分回路出力を、反転乃至逆相入力に第二積分回路出力
を入力すれば、機関の回転数上昇過渡期にのみ高レベル
信号(H)をコンパレータl/の出力に得るということ
ができる。
Therefore, if the first integrating circuit output is input to the non-inverting or positive phase input of the comparator/l, and the second integrating circuit output is input to the inverting or negative phase input, a high level signal (H ) can be obtained at the output of the comparator l/.

もつとも、厳密には、定常状態において十分長い時間が
経っていれば、両回路y、/θの出力は時定数の如伺に
係らず電位的には同じとなるので、加速時にのみ、とい
う上記の豊作を確実に満たすためには、こうした定常状
態においてのコンパレータ出力の低レベルを得るべく、
正−7− 相側にレベルシフトダイオード病を挿入し、このダイオ
ード病の順方向電圧分だけは必ず正相側電位が低くなっ
ているようにするのが良い。
However, strictly speaking, if a sufficiently long time has passed in a steady state, the outputs of both circuits y and /θ will be the same potential regardless of the time constant, so In order to ensure a good harvest, in order to obtain a low level of comparator output in such a steady state,
It is better to insert a level shift diode on the positive phase side and make sure that the positive phase side potential is lower by the forward voltage of this diode.

このようにしても、先の過渡期においては第一積分回路
7の出力電位の方が高いという条件は作ることができる
Even in this case, it is possible to create a condition that the output potential of the first integrating circuit 7 is higher in the previous transition period.

以上のようにして、例えば加速時にその旨の検出信号と
してのH信号を得た々らば、これにより、放電エネルギ
制御回路としての適宜々−次電流制限回路乙を制御して
、その制限を緩めさせ、点火コイル二次側に大きな放電
エネルギを得ることができる。この回路乙の一例は、例
えば第6図示のようなものが挙げられる。
As described above, if an H signal is obtained as a detection signal to that effect during acceleration, for example, the current limiting circuit B as the discharge energy control circuit is controlled as appropriate to limit the current. By loosening the ignition coil, large discharge energy can be obtained on the secondary side of the ignition coil. An example of this circuit B is as shown in FIG. 6, for example.

パワートランジスタ7の主電流線路に電流検出抵抗2/
を挿入し、その変換電圧出力を分圧抵抗詳、2ja、コ
rbの卸、 2ja間から取シ出して、バイパストラン
ジスタムのベースに入力する。
A current detection resistor 2/ is connected to the main current line of the power transistor 7.
is inserted, and the converted voltage output is taken out from between the voltage dividing resistor 2ja and the corb wholesaler 2ja, and input to the base of the bypass transistor.

バイパストランジスタ2乙の主電流線路乃至コレクター
エミッタ間は、パワートランジスタ7のベース電流線路
に並列に入っている。
The main current line to the collector-emitter of the bypass transistor 2B is connected in parallel to the base current line of the power transistor 7.

従って、このパワートランジスタへのベース電流ibは
、バイパストランジスタの々い通常の構成において点火
時期毎に与えられるベース電流をjBとすれば、この電
流zBからバイパストランジスタによるバイパス分ib
yを差し引いたものとなる( ib = jB −ib
V )。
Therefore, if the base current given to each ignition timing in a normal configuration of bypass transistors is jB, then the base current ib to this power transistor is calculated from this current zB by the bypass portion ib caused by the bypass transistor.
y is subtracted (ib = jB −ib
V).

一方、抵抗2jbに対して、この場合はnpnのスイッ
チングトランジスタ=7のコレクターエミッタ間を並列
に抱かせ、このベースに先の信号発生回路コOのコンパ
レータ出力を与えるようにすると、加速時のHレベル、
電流流入によりスイッチングトランジスタ27がオンと
なることによp1抵抗、tsbの短絡でバイパストラン
ジスタベース電位は相対的に低下し、従って一次電流i
Pがかなり大きくならないと、バイパストランジスタが
オンしない条件を作ることができる。
On the other hand, if the collector-emitter of an npn switching transistor (7) is connected in parallel to the resistor 2jb, and the comparator output of the signal generation circuit KO is given to the base, the H level,
When the switching transistor 27 is turned on due to current inflow, the p1 resistance and tsb are short-circuited, and the bypass transistor base potential is relatively lowered, so that the primary current i
Unless P becomes considerably large, a condition can be created in which the bypass transistor does not turn on.

即ち、バイパス電流ibvを十分小さく抑える、或いは
零とすることができるため、−次電流iPを大きくする
ことができ、結局、制限が緩和乃至解除され、大きな二
次側放電エネルギが当該2− 加速時に代表される高エネルギ要求時に得られることに
なる。
That is, since the bypass current ibv can be suppressed sufficiently small or made zero, the negative current iP can be increased, and eventually the restriction is relaxed or lifted, and a large secondary side discharge energy is generated in the second acceleration. This can be achieved when high energy demands are typically required.

逆に、既に明らかであろうが、コンパレータ出力が低レ
ベル(L)となれば、スイッチングトランジスター7の
ターンオフにより、抵抗2!bが回路中に挿入され、従
って、比較的小さ々−次電流iPでもトランジスタコロ
はオンし易くなシ、バイパス電流1b11によシ、結局
は一次電流zPが制限されることになる。
Conversely, as is already clear, when the comparator output becomes a low level (L), the switching transistor 7 is turned off, causing the resistance 2! b is inserted into the circuit, so even a relatively small primary current iP does not easily turn on the transistor roller, and the primary current zP is ultimately limited by the bypass current 1b11.

加速時にコンパレータがLレベルを出力するように変え
ても単に論理レベル処理の常套手段上の問題で済み、例
えば抵抗、2ja、 訂すを一つの固定抵抗おとし、抵
抗、2≠を二つの抵抗として、その中の一本に並列にス
イッチングトランジスタのコレクターエミッタ間を挿入
すれば、オン。
Even if the comparator is changed to output L level during acceleration, it is simply a matter of conventional logic level processing; for example, if the resistor 2ja, is replaced with one fixed resistor, and the resistor 2≠ is replaced with two resistors. If you insert the collector-emitter of a switching transistor in parallel with one of them, it will turn on.

オフが先の例と異なるだけで、原理釣力電流制限動作及
び制限値切替メカニズムは同様である。
The only difference from the previous example is OFF, but the principle fishing force current limiting operation and limit value switching mechanism are the same.

尚、エネルギ制御回路tとしては、その他、点火コイル
二次側インピーダンス乃至インダクタンスを変える回路
も公知技術で組むことがで10− き、同様に本信号発生回路−〇でドライブできる。
In addition, as the energy control circuit t, a circuit for changing the impedance or inductance on the secondary side of the ignition coil can also be assembled using known techniques, and can be similarly driven by the present signal generation circuit -0.

ともかくも、本発明によれば、原理的には優れていたが
、出力エネルギが一義的であったために常に最大要求エ
ネルギに合わせた供給電力設計仕様とせねばならなかっ
た電流遮断容量放電複合式点火装置に実際的な改良を施
し、更にその長所を伸ばせるようになシ、無駄々電力浪
費を抑え込むことができる等、極めて大きな効果を生ず
るものである。
In any case, according to the present invention, the current interrupting capacity discharge combined type ignition system was excellent in principle, but because the output energy was unique, the power supply design specifications had to be always adjusted to the maximum required energy. This will bring about extremely great effects, such as making practical improvements to the device, allowing it to further extend its strengths, and reducing wasteful power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明点火装置の基本的実施例の概略構成図、
第2図は第一実施例要部の一例の概略構成図、第5図、
第4図、第5図は、それぞれ、第一実施例の動作の説明
図、第6図は電流制限回路の一例の構成図、である。 図中、コは容量放電用スイッチング素子、3は容量放電
用エネルギ蓄積コンデンサ、7は電流遮断用スイッチン
グ素子、乙はエネルギ制御回路例としての電流制限回路
、/コは点火コイル、−〇は放電エネルギ制御信号発生
回路、である。 第3図 笛4図 弔力淑影 1i5図 形6鏝
FIG. 1 is a schematic configuration diagram of a basic embodiment of the ignition device of the present invention;
Fig. 2 is a schematic configuration diagram of an example of the main part of the first embodiment; Fig. 5;
4 and 5 are explanatory diagrams of the operation of the first embodiment, and FIG. 6 is a configuration diagram of an example of the current limiting circuit. In the figure, C is a switching element for capacitive discharge, 3 is an energy storage capacitor for capacitive discharge, 7 is a switching element for current interruption, B is a current limiting circuit as an example of an energy control circuit, / is an ignition coil, and -〇 is a discharge This is an energy control signal generation circuit. Fig. 3 Flute 4 Fig. 1i5 figure 6 Trowel

Claims (1)

【特許請求の範囲】 容量数−4に引き続いて電流遮断による誘導放電を生ず
る電流遮断容量放電、複合式点火装置であって、 点火コイル−次側負端子に発生する放電間隔に同期した
パルス信号を受け、該パルス列の間隔の過渡的変化に応
じて機関回転状態に応じたエネルギ制御信号を発するエ
ネルギ制御信号発生回路を設け、 機関回転数上昇過渡期における上記エネルギ制御信号に
より、放電エネルギ制御回路を高エネルギ供給に適した
制御状態とすることを%徴とする内燃機関用点火装[。
[Claims] A current-interrupting capacitive discharge and composite ignition device that generates an inductive discharge due to current interrupting following the capacitance number -4, comprising: a pulse signal synchronized with the discharge interval generated at the ignition coil-next negative terminal; An energy control signal generation circuit is provided which generates an energy control signal according to the engine rotational state in response to a transient change in the interval of the pulse train, and the discharge energy control circuit is activated by the energy control signal during the transitional period when the engine rotational speed increases. An ignition system for an internal combustion engine whose main feature is to bring the ignition system into a control state suitable for supplying high energy.
JP12056882A 1982-07-13 1982-07-13 Ignition system for internal combustion engines Expired JPS6056911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12056882A JPS6056911B2 (en) 1982-07-13 1982-07-13 Ignition system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12056882A JPS6056911B2 (en) 1982-07-13 1982-07-13 Ignition system for internal combustion engines

Publications (2)

Publication Number Publication Date
JPS5912169A true JPS5912169A (en) 1984-01-21
JPS6056911B2 JPS6056911B2 (en) 1985-12-12

Family

ID=14789520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12056882A Expired JPS6056911B2 (en) 1982-07-13 1982-07-13 Ignition system for internal combustion engines

Country Status (1)

Country Link
JP (1) JPS6056911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048065A (en) * 2014-08-27 2016-04-07 株式会社デンソー Internal combustion engine ignition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048065A (en) * 2014-08-27 2016-04-07 株式会社デンソー Internal combustion engine ignition system

Also Published As

Publication number Publication date
JPS6056911B2 (en) 1985-12-12

Similar Documents

Publication Publication Date Title
US5215066A (en) Ignition apparatus for an internal combustion engine
US3892219A (en) Internal combustion engine ignition system
US4149508A (en) Electronic ignition system exhibiting efficient energy usage
US4438751A (en) High voltage generating circuit for an automotive ignition system
JPS5912169A (en) Ignition device for internal-combustion engine
US3459164A (en) Spark ignition systems
JPS6148970U (en)
US4414954A (en) Internal combustion engine ignition system with improvement
JPH0367066A (en) Ignition device of internal combustion engine
JPH045737Y2 (en)
JP7150039B2 (en) Ignition device for internal combustion engine
JPS63150466A (en) Noncontact ignition device
EP0269117A1 (en) Continuous spark electronic igniter
JPS5912166A (en) Ignition device for internal-combustion engine
JPS61241466A (en) Ignitor for internal-combustion engine
JPS6214375Y2 (en)
RU2029883C1 (en) Electronic corrector for ignition system
JPS58204971A (en) Ignition device for internal-combustion engine
JP2569844B2 (en) Capacitor discharge type ignition system for internal combustion engine
JP2596130B2 (en) Ignition device for internal combustion engine
JPH0347435B2 (en)
JPS6311335Y2 (en)
JPH0437276B2 (en)
JPH0431665A (en) Capacity discharge type ignition device for internal combustion engine
JPS6367027B2 (en)