JPS5912166A - Ignition device for internal-combustion engine - Google Patents

Ignition device for internal-combustion engine

Info

Publication number
JPS5912166A
JPS5912166A JP12056582A JP12056582A JPS5912166A JP S5912166 A JPS5912166 A JP S5912166A JP 12056582 A JP12056582 A JP 12056582A JP 12056582 A JP12056582 A JP 12056582A JP S5912166 A JPS5912166 A JP S5912166A
Authority
JP
Japan
Prior art keywords
transistor
circuit
current
discharge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12056582A
Other languages
Japanese (ja)
Other versions
JPH0416635B2 (en
Inventor
Takatoshi Hisamoto
久本 貴俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP12056582A priority Critical patent/JPS5912166A/en
Publication of JPS5912166A publication Critical patent/JPS5912166A/en
Publication of JPH0416635B2 publication Critical patent/JPH0416635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the consumption of useless electric power by a method wherein a primary current limiting circuit, in which the limiting amount of the value of the primary current flowed to an ignition coil based on an operating condition signal can be changed, is provided in the compound electric current interrupting capacity and electric discharge type ignition device. CONSTITUTION:In the titled device, an interrupting transistor Tr6 is put ON or OFF by putting ON or OFF a control transistor (driver) which is put ON or OFF by a contact breaker and a high voltage is impressed to an ignition plug through the ignition coil by discharging a capacitor. In this case, the primary current limiting circuit 10 is interposed in a circuit from the driver to the base of said transistor Tr6. The circuit 10 is constituted so that a circuit between the collector and the emitter of a n-p-n Tr11 is provided as the side circuit with respect to the base of the power transistor 6 while the basic of the transistor 11 is provided with a voltage after dividing the voltage from a current detecting resistor 12 by a pair of fixed resistors 13a, 13b and the fixed resistor 14. The transistor Tr15 for selective short-circuit, whose base is connected with a speed detecting sensor 16, is connected to both terminals of the resistor 13b.

Description

【発明の詳細な説明】 本発明は内燃機関用点火装置に係シ、特に、持続放電時
のエネルギを制御して、理想的且つ効率的な放電特性を
持たせるように改良した、電流遮断容量放電複合式点火
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition system for an internal combustion engine, and in particular, to an ignition system for an internal combustion engine, which has an improved current interrupting capacity to control energy during sustained discharge and provide ideal and efficient discharge characteristics. This invention relates to a combined discharge ignition device.

内燃機関の点火装置における火花放電特性として、火花
の飛び始め部分(容量性放電)と飛−コー び続は部分(誘導性放′¥[)とがあり、前者は燃料へ
の着火性能に、後者は着火後の燃焼性能にそれぞれ影響
を与える因子であると言われ、歴史的にはイグニション
コイルの一次電流を遮断した時に生ずる高電圧を利用す
る、電流遮断方式(二次分布容量からの容量放電と一次
インダクタンスからの誘導放電とが連続して起る)や、
コンデンサに充電された電荷をイグニションコイルの一
次側に放出した時に生ずる高電圧を利用する容量放電方
式から、両者の特性を相補した電流遮断容量放電複合方
式へ、と順次発展して来た。
The spark discharge characteristics of the ignition system of an internal combustion engine include the part where the spark starts flying (capacitive discharge) and the part where the spark continues to fly (inductive discharge).The former has an effect on the ignition performance of the fuel, The latter is said to be a factor that affects the combustion performance after ignition, and historically, the current interrupt method (capacitance from secondary distributed capacitance discharge and induced discharge from the primary inductance occur continuously),
The capacitive discharge method, which utilizes the high voltage generated when the charge stored in the capacitor is discharged to the primary side of the ignition coil, has gradually evolved into a current-blocking capacitive discharge composite method, which complements the characteristics of both.

この複合方式では、容量放電方式の早い電圧立上り特性
と、電流遮断方式の長い放電持続時間を持ったほぼ理想
的な放電特性が得られるが、従来はそれぞれの特性が固
定的で、機関の運転状態の変化、例えば高負荷低速運転
と一定高速運転、或いは加速時と減速時などの如く要求
放電特性が変化したとしても、これに追従させて放t%
性を制御することができず、乃至はその−3− 思想がなく、常に要求される最大の放電エネルギとなる
ように設計されていたため、効率が悪く、最大エネルギ
を要しない運転状況下でも最大エネルギを供給するとい
うことが全くのエネルギの無駄となっていた。
This combined method provides almost ideal discharge characteristics, such as the fast voltage rise characteristic of the capacitive discharge method and the long discharge duration of the current cut-off method, but in the past, each characteristic was fixed and the engine operation Even if the required discharge characteristics change, such as between high-load low-speed operation and constant high-speed operation, or during acceleration and deceleration, the discharge t% can be adjusted accordingly.
The discharge energy could not be controlled, or -3- The design was designed to always reach the maximum discharge energy required, so it was inefficient, and even under operating conditions that did not require the maximum energy, the maximum discharge energy could not be controlled. Providing energy was a complete waste of energy.

本発明はこの点に鑑でなされたもので、原理的に優れて
いる上述のM1流遮断容量放電複合方式の点火装置にお
いて、更にエネルギの有効利用を図るため、機関運転状
況に応じて、最大放電エネルギを要し寿い時にまで、最
大エネルギを供給する愚を演じないように、当該放電特
性を点火コイル−次電流の調整により制御せんとするも
のである。
The present invention has been made in consideration of this point, and in order to further utilize energy effectively in the above-mentioned M1 flow interrupting capacity discharge combined type ignition system which is excellent in principle, the present invention has been made in consideration of this point. The discharge characteristics are controlled by adjusting the ignition coil current so that the maximum energy is not supplied until the discharge energy is required.

本発明を実施例に即し説明する前に、先づ、従来のこの
種複合方式の点火装置の一例を代表的に第1図に示し、
その動作に就き説明を施しておく。
Before explaining the present invention based on embodiments, first, an example of a conventional composite type ignition device of this type is shown in FIG.
Let me explain its operation.

機関の回転位置に応じて等測的にオン・オフする点火時
期信号発生器として例えば断続器7が閉じている時、制
御トランジスタtはオフ状態にあり、コレクタ電流が流
れないため、遮断用トランジスタtはオン状態と々つで
点火コイルjの一次巻線jαに電源電池/から点火コイ
ル−次電流iPが流れる。同時に、エネルギ蓄積コンデ
ンサ3は直流高圧電源回路−により図面に示した極性で
充電される。
For example, when the interrupter 7 is closed as an ignition timing signal generator that isometrically turned on and off according to the rotational position of the engine, the control transistor t is in the off state and no collector current flows, so the cutoff transistor t is in the on state, and the ignition coil secondary current iP flows from the power supply battery/to the primary winding jα of the ignition coil j. At the same time, the energy storage capacitor 3 is charged by the DC high voltage power supply circuit with the polarity shown in the drawing.

機関が回転して断続器7が開くと、パルストランスタの
二次巻線2bに電圧が発生すると共に制御トランジスタ
rのベース電位が高くすってオン状態となシ、遮断用ト
ランジスタ6がオフとなって点火コイルタの一次電流は
遮断される。
When the engine rotates and the interrupter 7 opens, a voltage is generated in the secondary winding 2b of the pulse transformer, and the base potential of the control transistor r becomes high, turning it on, and the cutoff transistor 6 turns off. As a result, the primary current of the ignition coil is cut off.

この時パルストランス−次巻線りαに発生するパルスが
サイリスタ弘のゲートに正方向になるよう接続しである
ため、サイリスタ弘はオンし、エネルギ蓄積コンデンサ
3の充電電荷が点火コイル!の一次巻線Zaに流れる。
At this time, the pulse generated in the next winding α of the pulse transformer is connected to the gate of thyristor Hiro in a positive direction, so thyristor Hiro is turned on and the charge in the energy storage capacitor 3 is transferred to the ignition coil! The current flows through the primary winding Za.

コンデンサの放電によって発生する電圧と電流遮断によ
って発生する電圧は図面の括弧内の極性で示すように同
位相に合成されるため、点火コイルタの二次巻線jbに
は相乗された電圧が1− 発生し、点火プラグ1に火花を飛ばし、その後は電流遮
断による持続放電を起させる。
The voltage generated by capacitor discharge and the voltage generated by current interruption are combined in the same phase as shown by the polarities in parentheses in the drawing, so the combined voltage is 1- This generates sparks to the spark plug 1, and thereafter causes a sustained discharge due to current interruption.

尚、点火コイル−次側エネルギの電源への逆流を防ぐた
めに、電源線路中に直列にチョークコイル等のインピー
ダンス素子(図示せず)が介在することもある。
It should be noted that an impedance element (not shown) such as a choke coil may be interposed in series in the power supply line in order to prevent backflow of energy next to the ignition coil to the power supply.

上述のような従来構成に対して、本発明では一次コイル
電流zpを機関運転状況に応じ制御しようとするもので
、第1図示の在来構成に対して本発明の改良を施そうと
すれば、図中、電流遮断トランジスタを周シの部分10
に以下の実施例を適用すれば良い。
In contrast to the conventional configuration as described above, the present invention attempts to control the primary coil current zp according to the engine operating conditions. , in the figure, the part 10 surrounding the current cutoff transistor
The following embodiments may be applied to.

第2図は第一の実施例を示していて、上記第1図中の部
分10のみを取り出して示している。
FIG. 2 shows a first embodiment, in which only the portion 10 in FIG. 1 is shown.

残シの構成は第1図示従来例と同一であって良い。The remaining structure may be the same as the conventional example shown in the first figure.

既述した制御トランジスタr(以下、ドライバと略)か
ら電流遮断用スイッチング素子乙とL テ(D npn
パワートランジスタ6のベースに至る回路中に、当該パ
ワートランジスタ乙のペー6一 スミ流をバイパスする回路として、この実施例の一次電
流制御回路を入れる。従来の基本構成で、ドライバrか
ら流れ込む一定ベース電流をiBとするなら、本回路で
は、パワートランジスタzへのベース電流ibと本回路
へのバイパス電流ibyとの和がこの電流値に相当する
(sB=jb+iby )。
From the control transistor r (hereinafter abbreviated as driver) described above, current interrupting switching elements B and L (D npn
The primary current control circuit of this embodiment is inserted into the circuit leading to the base of the power transistor 6 as a circuit for bypassing the page current of the power transistor B. In the conventional basic configuration, if iB is the constant base current flowing from driver r, then in this circuit, the sum of base current ib to power transistor z and bypass current iby to this circuit corresponds to this current value ( sB=jb+iby).

従って、高放電エネルギを要する時には、バイパス電流
ibyを減らすことにより、パワートランジスタtへ多
くの一次電流iPを流しておき、これを遮断することに
よって二次側に大きな放電電流を流せば良いし、それ程
の放電エネルギを要しない時には、バイパス電流iby
を増し、ベース電流ibを減らして一次電流iPを減ら
せば良い。
Therefore, when high discharge energy is required, by reducing the bypass current iby, a large amount of primary current iP is allowed to flow through the power transistor t, and by blocking this, a large discharge current is allowed to flow through the secondary side. When a large amount of discharge energy is not required, the bypass current iby
The primary current iP can be reduced by increasing the base current ib and decreasing the base current ib.

そのために、先づ、バイパス電流路としてのnpn )
ランジスタ//のコレクターエミッタ間をパワートラン
ジスタtのベースに対して側路的に設け、一方、そのト
ランジスタ/lのベースには、パワートランジスタ主電
流路と直列に設け−7− た電流検出抵抗/、2からの電圧を一対の固定抵抗i3
a、i3bともう一つの固定抵抗/lとで分圧した電圧
が与えられるようにする。
For this purpose, first of all, npn (npn) as a bypass current path
A current detection resistor / is provided between the collector and emitter of the transistor // in a bypass manner with respect to the base of the power transistor t, and on the other hand, a current detection resistor / is provided in series with the main current path of the power transistor /l at the base of the transistor /l. , 2 to a pair of fixed resistors i3
A voltage divided by a, i3b and another fixed resistor /l is applied.

そして、一対の固定抵抗/3α、/3bの一方の両端に
、選択短絡用のスイッチング素子/jとして、npn 
)ランジスタl夕のコレクターエミッタ間を接続し、ベ
ースには、機関運転状況センサの例えば−例として速度
検出センサ/2の変換比例電圧出力V = f (rp
m’)  を、アースレベルと電源電位間で反転した逆
比例電圧v = f Crpm)  として入力する。
Then, an npn is connected to one end of the pair of fixed resistors /3α and /3b as a selective short circuit switching element /j.
) is connected between the collector emitter of the transistor l and the base is connected to the converting proportional voltage output V = f (rp
m') is input as an inversely proportional voltage v = fCrpm) inverted between the ground level and the power supply potential.

すると、相対的な低エネルギ要求時、例えば一般走行時
においては、信号レベルVが高くなっていることにより
、選択短絡用のスイッチングトランジスタ/jがターン
オンしていて、抵抗/3bが短絡されているため、電流
検出抵抗/λで検出される電流変換電圧’DBに対して
バイパス用トランジスタ//のベース電位υbはそれ程
低くはならず、従って、当該トランジスタ/lはオンし
易い電位環境に置かれる。
Then, when relatively low energy is required, for example during normal driving, the signal level V is high, so the switching transistor /j for selective shorting is turned on, and the resistor /3b is shorted. Therefore, the base potential υb of the bypass transistor // is not so low with respect to the current conversion voltage 'DB detected by the current detection resistor /λ, and therefore, the transistor /l is placed in a potential environment where it is easy to turn on. .

そのため、−次電流iPの増大に応じて、早めにバイパ
ストランジスタ/lがオンに々す、バイパス電流ibv
が増してパワートランジスタへのベース電流ibが減シ
、−次電流を制限するのも早目、即ち低電流レベル時で
の制限となる。この制限により一次電流が一時的に低減
するとバイパストランジスタ//がオフし、また−次電
流が増大し始めると上記動作が行なわれるという時間次
元の導入されたエネルギ制限となる。いづれにしても、
低エネルギ要求時において一次電流を無駄に大量に流さ
なくても済む。
Therefore, as the negative current iP increases, the bypass transistor /l turns on earlier, and the bypass current ibv
As the base current ib to the power transistor increases, the base current ib to the power transistor decreases, and the current is limited earlier, that is, at a low current level. This restriction results in an energy restriction introduced in the time dimension in which the bypass transistor // is turned off when the primary current temporarily decreases, and the above operation is performed when the primary current begins to increase. In any case,
There is no need to wastefully flow a large amount of primary current when low energy is required.

対して、事情が加速する等して高エネルギが要求される
と、成る程度以上の信号レベルVの低下に伴い、スイッ
チングトランジスタ/よはターンオフし、抵抗13bが
回路中に挿入されるので、ベース電位υ)は先よシも相
対的に低い値に保たれ、従って一次電流iPの増大、検
出電圧υ6の増大に対してもバイパストランジスタ/l
は相対的にオンしにくい状況に置かれる。卸ち、−次電
流は先よシも大きくならないと、このトラ2− ンジスタ//のオンに伴う制限を受けないことになるか
ら、結局、−次電流伊は高エネルギ要求時にはその制限
が緩められ、所望の大きな二次放電エネルギを得るに十
分な値まで、流れることができるのである。
On the other hand, when the situation accelerates and high energy is required, the switching transistor turns off as the signal level V drops more than enough, and the resistor 13b is inserted into the circuit. The potential υ) is kept at a relatively low value from the beginning, so even if the primary current iP increases and the detection voltage υ6 increases, the bypass transistor /l
is placed in a situation where it is relatively difficult to turn on. Unless the secondary current becomes larger in advance, it will not be subject to the restrictions associated with turning on this transistor, so in the end, the restriction on the secondary current will be relaxed when high energy is required. and can flow to a value sufficient to obtain the desired large secondary discharge energy.

信号電圧を速度信号に比例する電圧V=f(rpm)と
して取扱いたい場合は、第3図示のように、第一実施例
では固定抵抗値であった抵抗/グの方を可変にする、例
えば二本の直列抵抗!≠α、/llbから構成して、そ
の中の一本の両端に選択短絡用のスイッチング素子/夕
′を抱″かせれば良い。低エネルギ要求時には抵抗l≠
bの存在によりトランジスタ//をオンし易い状況に、
高エネルギ要求時にはスイッチングトランジスタ/!′
のターンオン、抵抗/abの短絡によシ、該トランジス
タl夕′をオンしにくい状況にするのであり、原理は先
と同様である。
If you want to handle the signal voltage as a voltage V = f (rpm) proportional to the speed signal, as shown in Figure 3, the resistance /g, which was a fixed resistance value in the first embodiment, should be made variable, for example. Two series resistors! ≠α, /llb, and a selective short circuit switching element /lb can be placed at both ends of one of them.When low energy is required, the resistor l≠
The presence of b makes it easier to turn on the transistor //,
When high energy is required, switching transistors/! ′
When turning on the resistor /ab, the short-circuiting of the resistor /ab creates a situation in which it is difficult to turn on the transistor l', and the principle is the same as before.

勿論、−次電流iPの制限値を可変にすることによシ、
速度や負荷(センサ/6は高負荷センサであることも勿
論ある)に応じて所望のエネル10− ギレベルに規制するというのが本発明であるから、図示
実施例のような電流制限回路によるにしても、電子ボリ
ューム婢の構成(トランジスタのみによるものやフォト
カプラを含むもの等もある)を援用して連続可変や多段
可変(多段閾値回路と複数直列抵抗の組み合せ)にする
ことも所望なら構わない。
Of course, by making the limit value of the -order current iP variable,
Since the present invention is to regulate the energy to a desired level according to the speed and load (sensor/6 is of course a high-load sensor), it is not necessary to use a current limiting circuit such as the illustrated embodiment. However, if desired, it is possible to make it continuously variable or multi-stage variable (combining a multi-stage threshold circuit and multiple series resistors) by using a configuration with an electronic volume (some using only transistors, some including photocouplers, etc.). do not have.

また、制限値可変という概念は、当然、無制限と有意の
値との組み合せも含むものである。
Furthermore, the concept of variable limit value naturally includes a combination of unlimited and significant values.

更に、ドライバrがpnp型トランジスタの場合もある
が、これ自体は本発明に直接の影響を与えない。
Furthermore, although the driver r may be a pnp transistor, this itself does not directly affect the present invention.

ともかくも、本発明によれば、原理的には優れていたが
、出力エネルギが一義的であったために常に最大要求エ
ネルギに合わせた供給電力設計仕様とせねばならなかっ
た電流遮断容量放電複合式点火装置に実際的な改良を施
し、更にその長所を伸ばせるようにな9、無駄な電力浪
費を抑え込むことができる等、極めて大きな効果を生ず
るものである。
In any case, according to the present invention, the current interrupting capacity discharge combined type ignition system was excellent in principle, but because the output energy was unique, the power supply design specifications had to be always adjusted to the maximum required energy. This will bring about extremely great effects, such as making practical improvements to the device, making it possible to further extend its strengths9, and suppressing wasteful power consumption.

−/l−-/l-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複合方式点火装置の概略構成図、第2図
は本発明第一実施例の概略構成図、第3図は本発明第二
実施例の概略構成図、である。 図中、3は容量放電用エネルギ蓄積コンデンサ、≠は容
量放電用第一スイッチング素子、jは点火コイル、乙は
電流遮断用第ニスイツチング素子、りは第ニスイツチン
グ素子制御回路、//はバイパス回路、/:tは電流検
出抵抗、/3./≠は抵抗、/jはスイッチング素子、
/Aは機関連転状態センサ、である。
FIG. 1 is a schematic diagram of a conventional composite type ignition system, FIG. 2 is a schematic diagram of a first embodiment of the present invention, and FIG. 3 is a schematic diagram of a second embodiment of the present invention. In the figure, 3 is the energy storage capacitor for capacitive discharge, ≠ is the first switching element for capacitive discharge, j is the ignition coil, B is the second switching element for current interruption, ri is the second switching element control circuit, // is the bypass circuit, /:t is a current detection resistor, /3. /≠ is a resistance, /j is a switching element,
/A is a machine rotation state sensor.

Claims (1)

【特許請求の範囲】 容量放電に引き続いて電流遮断による誘導放電を生ずる
電流遮断容量放電複合式点火装置であって、 機関運転状態信号に基づき、点火コイルに流す一次電流
値の制限量を可変とする一次電流制限回路を有し、もっ
て上記誘導放電部分のエネルギを制御することを特徴と
する内燃機関用点火装置。
[Scope of Claims] A current interrupting capacitive discharge combined type ignition device that generates an inductive discharge due to current interrupting following a capacitive discharge, wherein the limiting amount of the primary current value flowing through the ignition coil is variable based on an engine operating status signal. An ignition device for an internal combustion engine, characterized in that the ignition device has a primary current limiting circuit that controls the energy of the induced discharge portion.
JP12056582A 1982-07-13 1982-07-13 Ignition device for internal-combustion engine Granted JPS5912166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12056582A JPS5912166A (en) 1982-07-13 1982-07-13 Ignition device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12056582A JPS5912166A (en) 1982-07-13 1982-07-13 Ignition device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5912166A true JPS5912166A (en) 1984-01-21
JPH0416635B2 JPH0416635B2 (en) 1992-03-24

Family

ID=14789447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12056582A Granted JPS5912166A (en) 1982-07-13 1982-07-13 Ignition device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5912166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222562A (en) * 1984-04-20 1985-11-07 Wako Technical Kk Ignition signal wave form composing circuit
JPS6424171A (en) * 1987-07-18 1989-01-26 Fujitsu Ten Ltd Ignition control method for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222562A (en) * 1984-04-20 1985-11-07 Wako Technical Kk Ignition signal wave form composing circuit
JPS6424171A (en) * 1987-07-18 1989-01-26 Fujitsu Ten Ltd Ignition control method for internal combustion engine

Also Published As

Publication number Publication date
JPH0416635B2 (en) 1992-03-24

Similar Documents

Publication Publication Date Title
JPS5912166A (en) Ignition device for internal-combustion engine
EP0009771A1 (en) Ignition timing control system for internal combustion engine
US3459164A (en) Spark ignition systems
US4173961A (en) Inductive solid state magneto ignition system
JP2653240B2 (en) Capacitor discharge type ignition system for internal combustion engine
JPH0429876B2 (en)
JP3101124B2 (en) Magneto ignition device
JPS638864Y2 (en)
JPS6214375Y2 (en)
JPH0119071B2 (en)
JPS6030473A (en) Contactless ignitor for internal-combustion engine
JPS5912167A (en) Ignition device for internal-combustion engine
JPS5912168A (en) Ignition device for internal-combustion engine
JPS6123662Y2 (en)
JPS6140943Y2 (en)
JPS631008Y2 (en)
JPS6146215Y2 (en)
JPH045737Y2 (en)
JPS6056911B2 (en) Ignition system for internal combustion engines
JPS58204971A (en) Ignition device for internal-combustion engine
JPS5949373A (en) Non-contact ignition device for internal-combustion engine
JPS58220961A (en) Contactless ignition system for internal combustion engine
KR840000684B1 (en) Control circuit of ignion timing for internal combustion engine
JPH0437276B2 (en)
JPS5943502Y2 (en) Ignition system for internal combustion engines