JPH0347435B2 - - Google Patents

Info

Publication number
JPH0347435B2
JPH0347435B2 JP59145324A JP14532484A JPH0347435B2 JP H0347435 B2 JPH0347435 B2 JP H0347435B2 JP 59145324 A JP59145324 A JP 59145324A JP 14532484 A JP14532484 A JP 14532484A JP H0347435 B2 JPH0347435 B2 JP H0347435B2
Authority
JP
Japan
Prior art keywords
voltage
ignition
signal
coil
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59145324A
Other languages
Japanese (ja)
Other versions
JPS6123869A (en
Inventor
Yoshinao Honjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14532484A priority Critical patent/JPS6123869A/en
Publication of JPS6123869A publication Critical patent/JPS6123869A/en
Publication of JPH0347435B2 publication Critical patent/JPH0347435B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁石発電機を電源とするCDI点火装置
の点火時期を電子回路演算で行い、機関の必要と
する点火進角特性を精度良く得るようにしたもの
において、一定回転数を境に演算の条件を変える
ことにより進角特性を変化せしめ、機関の要求に
より良く合致した特性を得るようにした点火時期
制御装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention uses an electronic circuit to calculate the ignition timing of a CDI ignition system using a magnet generator as a power source, so as to accurately obtain the ignition advance characteristics required by the engine. This invention relates to an ignition timing control device that changes the advance angle characteristics by changing the calculation conditions after a certain rotation speed, thereby obtaining characteristics that better match the engine requirements.

〔従来技術〕[Prior art]

機関の点火時期制御装置において、機関のノツ
キングゾーンを回避するために、または機関の中
速域の出力特性を向上させるために、進角特性を
2段折れ、3段折れ特性にすることは一般に行わ
れている。点火時期制御を電子回路の演算で行う
ものについても、例えば特開昭56−64156号公報
に見られるように三角波発振回路を複数個用いて
上記特性を得ることが述べられている。又、通常
電子演算による進角装置は、特開昭56−75964号
公報に見られるように、積分回路のコンデンサを
充放電することにより得られる三角波を機関の回
転と同期させ、結果として得られる定角度発振に
対しコンデンサ電圧を基準電圧と比較することに
より点火信号を得るものであり、コンデンサの充
放電々流を機関の回転速度をパラメータとする電
圧でコントロールすることにより進角特性を得て
いる。しかるに、この装置において、進角特性を
一定回転を境にして変化させようとすれば、特開
昭56−151266号公報に示されるように機関の回転
をパラメータとする電圧特性を変更する必要があ
り、前記した2例のものでは所期の特性を得るた
めに極めて複雑な回路を必要とする。又、特開昭
57−51956号公報には、積分器と2個の比較器を
用い、積分器のコンデンサの充放電を一定電流で
行つて一定の進角特性を得る装置が提案されてお
り、この装置では単純な回路で一定の進角特性が
得られるが、回転数により進角特性そのものを変
化させることはできない。
In an engine's ignition timing control system, in order to avoid the engine's knocking zone or to improve the engine's output characteristics in the mid-speed range, it is not possible to change the advance angle characteristic to a two-step or three-step bending characteristic. This is commonly done. In the case where ignition timing control is performed by calculation of an electronic circuit, for example, as seen in Japanese Patent Application Laid-Open No. 56-64156, it is described that the above-mentioned characteristics can be obtained by using a plurality of triangular wave oscillation circuits. Further, advance angle devices that are usually based on electronic calculations synchronize the triangular wave obtained by charging and discharging the capacitor of the integral circuit with the rotation of the engine, as shown in Japanese Patent Application Laid-Open No. 75964/1983. The ignition signal is obtained by comparing the capacitor voltage with the reference voltage for constant angle oscillation, and the advance angle characteristic is obtained by controlling the charging and discharging current of the capacitor with a voltage that uses the engine rotational speed as a parameter. There is. However, in this device, if the advance angle characteristic is to be changed after a certain rotation, it is necessary to change the voltage characteristic using the engine rotation as a parameter, as shown in Japanese Patent Laid-Open No. 56-151266. However, the two examples described above require extremely complicated circuits to obtain the desired characteristics. Also, Tokukai Akira
No. 57-51956 proposes a device that uses an integrator and two comparators to charge and discharge the integrator's capacitor with a constant current to obtain a constant advance angle characteristic. Although a constant lead angle characteristic can be obtained with a similar circuit, the lead angle characteristic itself cannot be changed depending on the rotation speed.

〔発明の概要〕[Summary of the invention]

本発明は上記したような問題点を考慮して成さ
れたものであり、積分回路と2つの比較器を持つ
進角制御回路に回転数−電圧変換回路を組合わ
せ、該変換回路の出力がある一定値を越えたとき
に該出力により進角制御回路の制御条件を連続的
に変えるようにすることにより、2段折れ進角特
性を簡単な回路で実現できる点火時期制御装置を
提供することを目的とする。
The present invention was made in consideration of the above-mentioned problems, and combines a rotational speed-voltage conversion circuit with an advance angle control circuit having an integrating circuit and two comparators, and the output of the conversion circuit is To provide an ignition timing control device capable of realizing a two-stage bending advance characteristic with a simple circuit by continuously changing control conditions of an advance angle control circuit according to the output when a certain fixed value is exceeded. With the goal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面とともに説明す
る。第1図において、1は磁石発電機の点火電源
コイル、2は電源コイル1の出力を整流するダイ
オード、3か電源コイル1の出力で充電される点
火用コンデンサ、4はサイリスタで、サイリスタ
4はそのゲートに信号を受けてコンデンサ3の電
荷を点火コイル5の1次コイル6に放出し、2次
コイル7に高電圧を誘起せしめて点火プラグ8に
放電させ、機関を点火させるようにしている。9
はダイオード10、抵抗11、定電圧ダイオード
12、コンデンサ13よりなる定電圧電源回路で
あり、その出力は後述の点火時期演算回路20や
周波数−電圧変換回路(以下、F−V回路とい
う。)34に供給される。14は磁石発電機に設
けられ機関の回転と同期して点火信号を発生する
信号コイルで、その出力はダイオード15、抵抗
16を介してサイリスタ4のゲートに加えられる
とともに、ダイオード17を介してF−V回路3
4に加えられる。又、信号コイル14が発生する
負波はダイオード18、抵抗19を介して点火時
期演算回路20に加えられる。点火時期演算回路
20はRSフリツプフロツプ(以下f−fと略
す。)21、オぺアンプ22〜24、トランジス
タ25、ダイオード26、コンデンサ27、抵抗
28〜33より構成される。又、F−V回路34
はトランジスタ35,36、ダイオード37、コ
ンデンサ38,39および抵抗40〜44から構
成される。
Embodiments of the present invention will be described below with reference to the drawings. In Fig. 1, 1 is the ignition power supply coil of the magnet generator, 2 is the diode that rectifies the output of the power supply coil 1, 3 is the ignition capacitor that is charged by the output of the power supply coil 1, and 4 is the thyristor. Upon receiving a signal at the gate, the electric charge of the capacitor 3 is discharged to the primary coil 6 of the ignition coil 5, which induces a high voltage in the secondary coil 7 and discharges it to the ignition plug 8, thereby igniting the engine. . 9
is a constant voltage power supply circuit consisting of a diode 10, a resistor 11, a constant voltage diode 12, and a capacitor 13, and its output is connected to an ignition timing calculation circuit 20 and a frequency-voltage conversion circuit (hereinafter referred to as F-V circuit) 34, which will be described later. is supplied to A signal coil 14 is installed in the magnet generator and generates an ignition signal in synchronization with the rotation of the engine.The output thereof is applied to the gate of the thyristor 4 via a diode 15 and a resistor 16, and is also applied to the gate of the thyristor 4 via a diode 17. -V circuit 3
Added to 4. Further, the negative wave generated by the signal coil 14 is applied to the ignition timing calculation circuit 20 via a diode 18 and a resistor 19. The ignition timing calculation circuit 20 includes an RS flip-flop (hereinafter abbreviated as ff) 21, operational amplifiers 22-24, a transistor 25, a diode 26, a capacitor 27, and resistors 28-33. Also, the F-V circuit 34
is composed of transistors 35, 36, diodes 37, capacitors 38, 39, and resistors 40-44.

次に、上記装置の動作を点火時期演算回路20
およびF−V回路34の相互動作を中心にして第
2図および第3図を用いて説明する。まず、機関
が回転し信号コイル14に電圧が発生すると時間
的に進んだ回転角で発生する負電圧は抵抗19、
ダイオード18を介して流れ、抵抗19の電圧降
下に相当する電圧(負電圧)が点火時期演算回路
20に入力される。又、時間的に遅れた位置にあ
る正電圧はダイオード15、抵抗16を介してサ
イリスタ4のゲートに加わり、サイリスタ4を導
通してコンデンサ3の負荷を点火コイル5の1次
コイル6に放出し、2次コイル7に高電圧を誘起
して点火プラグ8を放電させ、機関を点火すると
ともに、上記正電圧はダイオード17を介してF
−V回路34に入力する。第2図において、t0
負電圧が発生する位置、t1は正電圧が発生する位
置を示す。点火時期演算回路20に負電圧の信号
が入力すると、電源回路9より抵抗28を介して
ベースに正電圧が加わつていてオン状態にあるト
ランジスタ25のベース−エミツタ間に負電圧が
加わり、トランジスタ25はオフ状態となつて電
源回路9から抵抗29を介して供給される電圧が
f−f回路21のセツト端子(S端子)に印加さ
れ、f−f回路21の(+)Q端子はハイレベル
電圧は出力し、この電圧が抵抗30を介して第1
のオぺアンプ22の反転入力端子(以下(−)端
子という。)に印加される。この場合、オぺアン
プ22の(−)端子に非反転入力端子(以下
(+)端子という。)の電圧V1より高い電圧が印
加されればオぺアンプ22の出力端子はハイレベ
ルからローレベルに転位し、コンデンサ27はオ
ぺアンプ22の出力端子と接続側が正となるよう
に充電されていたものが一定の時定数で放電を始
め、その結果オぺアンプ22の出力端子の電圧は
コンデンサ27の放電により第2図の直線a−b
のように暫時低下する。この電圧は抵抗33を介
して第2のオぺアンプ23の(−)端子に加えら
れるが、オぺアンプ23は(−)端子電圧が
(+)端子電圧より高い間は出力端子はローレベ
ルを維持し、第2図のt2に示すように(−)端子
電圧が(+)端子電圧V2より低くなつた時点で
オぺアンプ23の出力端子はハイレベルとなり、
この出力はf−f回路21のリセツト端子(以下
R端子という。)に加えられ、f−f回路21の
+Q端子をローレベルに転位させ、この電圧がオ
ぺアンプ22の(+)端子電圧V1より低い電圧
として(−)端子に加えられ、オぺアンプ22の
出力端子はハイレベルとなり、コンデンサ27は
再び一定の時定数で充電され、オぺアンプ22の
出力電圧は第2図の直線b−cで示すように上昇
する。そして、次に再び信号コイル14の負電圧
信号により同じ動作をくり返す。ここで、第2図
の三角形abcにおいては、一辺acが機関の一回転
で一定、角cabと角acbはコンデンサ27の充放
電時定数により一定であり、t2の位置は角度上常
に一定であり、機関の回転速度の変化により一回
転に要する時間が変つても角度的には一定であ
り、定角度発振と呼ばれるものである。一方、f
−f回路21の(+)Q端子出力は抵抗31を介
して第3のオぺアンプ24の(+)端子に入力さ
れ、またコンデンサ27の電圧つまりオペアンプ
22の出力電圧は抵抗33を介して同じオペアン
プ24の(−)端子に印加される。前者をV3
して第2図に示す値をとらせるとt3点において両
電圧は交鎖し、この時点でオぺアンプ24の
(−)端子電圧がV3より低電圧となるため第3の
オぺアンプ24の出力はハイレベルに転じ、微分
用コンデンサ45を介してサイリスタ4のゲート
に印加される。オぺアンプ22の出力端子の電圧
は前述したように一定の時定数による充放電勾配
を持つため、低速回転域では第2図のa点電圧は
充分に高くなり、V3は変らないため両電圧の交
点はt2に近い点となる。そして、回転の上昇つま
り一回転に要する時間の短縮とともにa点電圧が
低下し、t3点はt0点に近づき、一定回転に達する
とa点電圧はV3電圧と一致し、t3はt0に一致す
る。さらに回転が高まるとf−f回路21の
(+)Q端子がハイレベルになつた時点つまり信
号コイル14に負電圧が発生する時点で(+)Q
端子の出力が抵抗31を介して第3のオぺアンプ
24の(+)端子に加わり、その時点のオぺアン
プ24の(−)端子電圧は第2図のa点電圧で
(+)端子電圧V3より低いため、オぺアンプ24
の出力端子はハイレベルに転ずる。つまり、一定
回転以上では常に第2図のt0時点でサイリスタ4
のゲートに信号が加わることになる。サイリスタ
4のゲートにはt1時点、t2時点で信号が加わる
が、サイリスタ4はいずれか時間的に早い信号で
導通して機関を点火するので、低速回転域ではt1
で点火し回転が上昇してt3がt1より早くなつた時
点でt3で点火し、回転の上昇と共にt3はt0に近づ
き、一定回転に達すればt3はt0と一致してt0で点
火することになる。これを回転数に対するパラメ
ータで図示したのが第3図のd−e−fの特性で
ある。
Next, the operation of the above device is controlled by the ignition timing calculation circuit 20.
The mutual operation of the F-V circuit 34 will be mainly explained with reference to FIGS. 2 and 3. First, when the engine rotates and a voltage is generated in the signal coil 14, the negative voltage generated at a rotation angle that advances in time is transferred to the resistor 19.
A voltage (negative voltage) flowing through the diode 18 and corresponding to the voltage drop across the resistor 19 is input to the ignition timing calculation circuit 20 . Further, the positive voltage at the time-delayed position is applied to the gate of the thyristor 4 via the diode 15 and the resistor 16, making the thyristor 4 conductive and discharging the load on the capacitor 3 to the primary coil 6 of the ignition coil 5. , a high voltage is induced in the secondary coil 7 to discharge the spark plug 8 and ignite the engine, and the positive voltage is passed through the diode 17 to F
−V circuit 34. In FIG. 2, t 0 indicates a position where a negative voltage is generated, and t 1 indicates a position where a positive voltage is generated. When a negative voltage signal is input to the ignition timing calculation circuit 20, a negative voltage is applied between the base and emitter of the transistor 25, which is in an on state and has a positive voltage applied to its base from the power supply circuit 9 via the resistor 28, and the transistor 25 is in the off state, and the voltage supplied from the power supply circuit 9 through the resistor 29 is applied to the set terminal (S terminal) of the f-f circuit 21, and the (+)Q terminal of the f-f circuit 21 is set to high. The level voltage is output, and this voltage is passed through the resistor 30 to the first
is applied to the inverting input terminal (hereinafter referred to as the (-) terminal) of the operational amplifier 22. In this case, if a voltage higher than the voltage V 1 of the non-inverting input terminal (hereinafter referred to as the (+) terminal) is applied to the (-) terminal of the operational amplifier 22, the output terminal of the operational amplifier 22 changes from high level to low level. level, and the capacitor 27, which had been charged so that the side connected to the output terminal of the operational amplifier 22 becomes positive, begins to discharge with a certain time constant, and as a result, the voltage at the output terminal of the operational amplifier 22 becomes Due to the discharge of the capacitor 27, the straight line a-b in FIG.
decreases for a while. This voltage is applied to the (-) terminal of the second operational amplifier 23 via the resistor 33, but the output terminal of the operational amplifier 23 is at a low level while the (-) terminal voltage is higher than the (+) terminal voltage. is maintained, and when the (-) terminal voltage becomes lower than the (+) terminal voltage V 2 as shown at t 2 in Fig. 2, the output terminal of the operational amplifier 23 becomes high level.
This output is applied to the reset terminal (hereinafter referred to as the R terminal) of the f-f circuit 21, transposing the +Q terminal of the f-f circuit 21 to a low level, and this voltage becomes the (+) terminal voltage of the operational amplifier 22. A voltage lower than V 1 is applied to the (-) terminal, the output terminal of the operational amplifier 22 becomes high level, the capacitor 27 is charged again with a constant time constant, and the output voltage of the operational amplifier 22 becomes as shown in FIG. It rises as shown by straight line b-c. Then, the same operation is repeated again using a negative voltage signal from the signal coil 14. Here, in the triangle abc in Fig. 2, one side ac is constant per revolution of the engine, the angles cab and acb are constant due to the charging/discharging time constant of the capacitor 27, and the position of t 2 is always constant in terms of angle. Even if the time required for one revolution changes due to changes in the rotational speed of the engine, the angle remains constant; this is called constant-angle oscillation. On the other hand, f
The (+) Q terminal output of the -f circuit 21 is input to the (+) terminal of the third operational amplifier 24 via a resistor 31, and the voltage of the capacitor 27, that is, the output voltage of the operational amplifier 22, is input via a resistor 33. It is applied to the (-) terminal of the same operational amplifier 24. If the former is assumed to be V 3 and the value shown in Figure 2 is taken, the two voltages intersect at point t 3 , and at this point the (-) terminal voltage of the operational amplifier 24 becomes lower than V 3 . The output of the operational amplifier 24 changes to a high level and is applied to the gate of the thyristor 4 via the differential capacitor 45. As mentioned above, the voltage at the output terminal of the operational amplifier 22 has a charging/discharging gradient due to a constant time constant, so in the low-speed rotation range, the voltage at point a in Figure 2 becomes sufficiently high, and since V 3 does not change, both The intersection of the voltages will be a point close to t 2 . Then, as the rotation increases, that is, the time required for one rotation decreases, the voltage at point a decreases, and the t3 point approaches the t0 point.When a constant rotation is reached, the voltage at point a matches the voltage at V3 , and t3 becomes Matches t 0 . When the rotation further increases, the (+)Q terminal of the f-f circuit 21 becomes high level, that is, the point at which a negative voltage is generated in the signal coil 14, the (+)Q
The output of the terminal is applied to the (+) terminal of the third operational amplifier 24 via the resistor 31, and the (-) terminal voltage of the operational amplifier 24 at that point is the voltage at point a in FIG. Since the voltage V is lower than 3 , the op amp 24
The output terminal of turns to high level. In other words, above a certain rotation, the thyristor 4 is always at time t 0 in Figure 2.
A signal will be applied to the gate of A signal is applied to the gate of thyristor 4 at time t 1 and time t 2 , but thyristor 4 conducts at the earlier signal and ignites the engine, so in the low speed rotation range t 1
When the rotation increases and t 3 becomes earlier than t 1 , the ignition occurs at t 3. As the rotation increases, t 3 approaches t 0 , and when a certain rotation is reached, t 3 matches t 0 . It will ignite at t 0 . The d-e-f characteristics in FIG. 3 illustrate this using parameters with respect to the rotational speed.

第1図において、信号コイル14の正信号がダ
イオード17を介してF−V回路34に加わる
と、まずトランジスタ35がオンし、電源回路9
からの電圧がトランジスタ35、抵抗41、コン
デンサ38および抵抗42の直列回路に加わる。
コンデンサ38と抵抗42は微分回路を構成し、
時定数で決まる一定巾の電圧が抵抗42の両端に
発生し、この電圧がトランジスタ36をオンさせ
る。抵抗42の両端電圧は機関の回転に関係なく
一定巾であるからトランジスタ36のオン時間は
常に一定であり、オン、オフの回数のみ機関の回
転に比例することになる。トランジスタ36がオ
ンすると電源回路9からトランジスタ36および
抵抗44を介して電流がコンデンサ39に流れ、
トランジスタ36のオフ期間中にこのトランジス
タ39の電荷は抵抗44,43を介して放電する
が、トランジスタ36のオン時間が一定でこのオ
ン回数が機関の回転と比例するためコンデンサ3
9への流入電流は機関の回転に比例して増加し、
コンデンサ39の端子電圧従つてF−V回路34
の出力電圧は回転数の上昇に比例して上昇するこ
とになる。第1図に示すようにこのF−V回路3
4の出力電圧が第2のオぺアンプ23の(+)端
子に加えられると、一定回転以上ではオぺアンプ
23の(+)端子電圧V2は一定値が維持できな
くなり、回転の上昇と共にV2が上昇する。第2
図に示すようにV2がV2′に変化すれば第1のオぺ
アンプ22の出力端子の電圧がV2′に達した時点
でオぺアンプ23は反転してf−f回路21をリ
セツトするので、オぺアンプ22の出力端子電圧
は第2図a′−b′−c′に示すようにV2がV2′に変化
した量だけ変化し、この電圧と第3のオぺアンプ
24の(+)端子電圧V3との交鎖点は第2図の
t3′に示すようにt3より遅れることになる。前述し
たように機関回転の上昇と共にt3はt0に近づく
が、回転上昇と共にV2を一定勾配で変化させれ
ばt3のt0への接近速度が遅れることになる。これ
を第3図に示すとF−V回路34の出力がV2
越えた回転数n1より点火時期の進角特性が変り、
d−e−gと2段折れの特性を持つようになる。
In FIG. 1, when a positive signal from the signal coil 14 is applied to the F-V circuit 34 via the diode 17, the transistor 35 is turned on and the power supply circuit 9 is turned on.
is applied to a series circuit of transistor 35, resistor 41, capacitor 38, and resistor 42.
The capacitor 38 and the resistor 42 constitute a differential circuit,
A voltage with a constant width determined by a time constant is generated across resistor 42, and this voltage turns on transistor 36. Since the voltage across the resistor 42 has a constant width regardless of the rotation of the engine, the on-time of the transistor 36 is always constant, and only the number of times it turns on and off is proportional to the rotation of the engine. When the transistor 36 is turned on, current flows from the power supply circuit 9 to the capacitor 39 via the transistor 36 and the resistor 44.
During the off period of the transistor 36, the charge of the transistor 39 is discharged through the resistors 44 and 43, but since the on time of the transistor 36 is constant and the number of on times is proportional to the rotation of the engine, the capacitor 39 is discharged through the resistors 44 and 43.
The current flowing into 9 increases in proportion to the rotation of the engine,
The terminal voltage of the capacitor 39 and therefore the F-V circuit 34
The output voltage will increase in proportion to the increase in rotational speed. As shown in Fig. 1, this F-V circuit 3
4 is applied to the (+) terminal of the second operational amplifier 23, the (+) terminal voltage V2 of the operational amplifier 23 cannot maintain a constant value above a certain rotation, and as the rotation increases, V 2 rises. Second
As shown in the figure, when V 2 changes to V 2 ', the operational amplifier 23 is inverted and the ff circuit 21 is inverted when the voltage at the output terminal of the first operational amplifier 22 reaches V 2 '. Because of the reset, the output terminal voltage of the operational amplifier 22 changes by the amount that V 2 changes to V 2 ' as shown in Figure 2 a'-b'-c', and this voltage and the third operational The intersection point with the (+) terminal voltage V3 of the amplifier 24 is shown in Figure 2.
As shown in t 3 ', it will be delayed from t 3 . As mentioned above, t 3 approaches t 0 as the engine speed increases, but if V 2 is changed at a constant gradient as the engine speed increases, the speed at which t 3 approaches t 0 will be delayed. This is shown in Fig. 3. When the output of the F-V circuit 34 exceeds V2 at the rotational speed n1 , the ignition timing advance characteristic changes.
It has the characteristics of d-e-g and two-step folding.

第5図は他の実施例を示し、F−V回路34の
出力でオぺアンプ24のV3を変えても、また図
示しないがオぺアンプ22のV1を変えてもF−
V回路34の出力にしきい値を持たせ一定値以上
で加わるようにする限り第3図に示すように進角
特性を2段折れにすることができる。尚、26は
ダイオードである。又、第6図の実施例に示すよ
うにF−V回路34の出力を定電圧素子47を介
してトランジスタ46のベースに加え、オぺアン
プ23の(+)端子電圧を分流させることにより
一定回転数以上で回転の上昇と共にV2を低下さ
せれば第4図に示すような逆折れ特性を得ること
もできる。
FIG . 5 shows another embodiment in which F-
As long as the output of the V circuit 34 has a threshold value and is applied above a certain value, the advance angle characteristic can be made into a two-step fold as shown in FIG. Note that 26 is a diode. Further, as shown in the embodiment of FIG. 6, the output of the F-V circuit 34 is applied to the base of the transistor 46 via a constant voltage element 47, and the (+) terminal voltage of the operational amplifier 23 is divided to maintain a constant voltage. If V 2 is decreased as the rotation increases above the rotation speed, a reverse bending characteristic as shown in FIG. 4 can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては、通常の電子進
角回路に周波数−電圧変換回路を付加することに
より進角特性を自在に変化させることができ、小
形安価で機関の要求に進角特性を合致させて機関
の出力向上に寄与することができる。又、周波数
−電圧変換回路の数を増すことにより2段折れだ
けでなく3段折れ以上の特性も得られるが、単純
な回路であるため安価なものであることには変り
はない。さらに、各基準電圧は特定領域を除いて
一定であるので電圧比較を精度良く行うことがで
き、点火時期制御の精度を高めることができる。
As described above, in the present invention, by adding a frequency-voltage conversion circuit to a normal electronic lead angle circuit, the lead angle characteristics can be changed freely, and the lead angle characteristics can be made small and inexpensive and meet the requirements of the engine. This can contribute to improving the engine's output. Furthermore, by increasing the number of frequency-voltage conversion circuits, not only two-stage folding characteristics but also three-stage folding characteristics or more can be obtained, but since the circuit is simple, it is still inexpensive. Further, since each reference voltage is constant except in a specific region, voltage comparison can be performed with high accuracy, and the accuracy of ignition timing control can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は夫々本発明装置の第1の実施
例における回路図、動作説明図および特性図、第
4図は本発明装置の第3の実施例における特性
図、第5図は本発明装置の第2の実施例における
部分回路図、第6図は本発明装置の第3の実施例
における部分回路図である。 1…点火電源コイル、3…点火用コンデンサ、
4…サイリスタ、5…点火コイル、8…点火プラ
グ、9…定電圧電源回路、14…信号コイル、2
0…点火時期演算回路、22〜24…オぺアン
プ、27…コンデンサ、34…周波数−電圧変換
回路。尚、図中同一符号は同一又は相当部分を示
す。
1 to 3 are circuit diagrams, operation explanatory diagrams, and characteristic diagrams of the first embodiment of the device of the present invention, FIG. 4 is a characteristic diagram of the third embodiment of the device of the present invention, and FIG. FIG. 6 is a partial circuit diagram of the second embodiment of the device of the present invention, and FIG. 6 is a partial circuit diagram of the third embodiment of the device of the present invention. 1...Ignition power supply coil, 3...Ignition capacitor,
4... Thyristor, 5... Ignition coil, 8... Spark plug, 9... Constant voltage power supply circuit, 14... Signal coil, 2
0... Ignition timing calculation circuit, 22-24... Operational amplifier, 27... Capacitor, 34... Frequency-voltage conversion circuit. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 磁石発電機に設けられた点火電源コイルによ
り充電される点火用コンデンサ、機関の点火時期
においてゲートに信号を受けて導通し点火用コン
デンサの電荷を点火コイルの1次コイルに放出し
2次コイルに高電圧を誘起し点火プラグを放電さ
せて機関を点火するサイリスタ、磁石発電機に設
けられ機関の回転と同期して信号を発生する信号
コイル、信号コイルから信号を受け一定の傾斜で
放電し第1の基準電圧に達した後一定の傾斜で充
電される動作を繰り返すコンデンサを含む定角度
発振回路とこの定角度発振回路の電圧を第2の基
準電圧と比較し両電圧がほぼ等しくなつた時点で
点火信号を上記サイリスタのゲートに加える比較
回路を有する点火時期演算回路、信号コイルより
信号を受けて単位時間当りの信号回数に比例した
電圧を出力する周波数−電圧変換回路を備え、周
波数−電圧変換回路の出力電圧がある一定値以上
になつた場合に上記第1あるいは第2の基準電圧
のいずれかを機関回転数の変化に応じて変化さ
せ、点火進角特性を機関の一定回転数を境にして
変化させるようにしたことを特徴とする点火時期
制御装置。
1. The ignition capacitor is charged by the ignition power supply coil installed in the magnet generator. When the engine's ignition timing is reached, the ignition capacitor receives a signal from the gate and becomes conductive, discharging the charge in the ignition capacitor to the primary coil of the ignition coil, and discharging the charge from the ignition capacitor to the secondary coil. A thyristor that induces a high voltage to discharge the spark plug and ignite the engine, a signal coil installed in the magnet generator that generates a signal in synchronization with the rotation of the engine, and a signal coil that receives a signal from the signal coil and discharges at a constant slope. A constant angle oscillation circuit including a capacitor that repeats the operation of being charged at a constant slope after reaching the first reference voltage, and the voltage of this constant angle oscillation circuit are compared with a second reference voltage, and both voltages are approximately equal. An ignition timing calculation circuit has a comparison circuit that applies an ignition signal to the gate of the thyristor at a certain point in time, and a frequency-voltage conversion circuit that receives a signal from a signal coil and outputs a voltage proportional to the number of signals per unit time. When the output voltage of the voltage conversion circuit exceeds a certain value, either the first or second reference voltage is changed according to the change in engine speed, and the ignition advance characteristic is changed to a constant engine speed. An ignition timing control device characterized in that the ignition timing is changed at a boundary of .
JP14532484A 1984-07-11 1984-07-11 Ignition-timing controller Granted JPS6123869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14532484A JPS6123869A (en) 1984-07-11 1984-07-11 Ignition-timing controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14532484A JPS6123869A (en) 1984-07-11 1984-07-11 Ignition-timing controller

Publications (2)

Publication Number Publication Date
JPS6123869A JPS6123869A (en) 1986-02-01
JPH0347435B2 true JPH0347435B2 (en) 1991-07-19

Family

ID=15382524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14532484A Granted JPS6123869A (en) 1984-07-11 1984-07-11 Ignition-timing controller

Country Status (1)

Country Link
JP (1) JPS6123869A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750049Y2 (en) * 1986-11-25 1995-11-15 イズミ工業株式会社 Strut for thermal expansion suppression piston
JPH081842B2 (en) * 1993-03-10 1996-01-10 ローム株式会社 METHOD OF MANUFACTURING RESISTOR NETWORK AND MANUFACTURING SUBSTRATE USED FOR THE SAME
JPH07118407B2 (en) * 1993-06-17 1995-12-18 ローム株式会社 Manufacturing method of chip type electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918272A (en) * 1982-07-20 1984-01-30 Shindengen Electric Mfg Co Ltd Capacitor charging and discharging type ignition device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918272A (en) * 1982-07-20 1984-01-30 Shindengen Electric Mfg Co Ltd Capacitor charging and discharging type ignition device

Also Published As

Publication number Publication date
JPS6123869A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
JPH0347435B2 (en)
US4280461A (en) Contactless ignition system for internal combustion engines
JP3281252B2 (en) Ignition control device
JPS609426Y2 (en) engine ignition system
JP3143056B2 (en) Ignition control device
JPS638865Y2 (en)
JPS63629B2 (en)
JPS5824628B2 (en) engine ignition system
JPH0437276B2 (en)
JPS6355365A (en) Ignition device for internal combustion engine
JPS6112115B2 (en)
JPH0118850Y2 (en)
JP3302438B2 (en) Rotation speed detection device, overspeed prevention device and ignition device
JPS6311336Y2 (en)
JPS6316868Y2 (en)
JP3054365B2 (en) Ignition control device
JPS6054508B2 (en) engine ignition system
JPH01267359A (en) Ignition device for engine
JPH0338456Y2 (en)
JPH09195909A (en) Ignition controller
JPH045825B2 (en)
JPH0325635B2 (en)
JPS5938433B2 (en) engine ignition system
JPS6137455B2 (en)
JPS6114481A (en) Ignitor for engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term