JPS6123869A - Ignition-timing controller - Google Patents

Ignition-timing controller

Info

Publication number
JPS6123869A
JPS6123869A JP14532484A JP14532484A JPS6123869A JP S6123869 A JPS6123869 A JP S6123869A JP 14532484 A JP14532484 A JP 14532484A JP 14532484 A JP14532484 A JP 14532484A JP S6123869 A JPS6123869 A JP S6123869A
Authority
JP
Japan
Prior art keywords
voltage
output
signal
ignition
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14532484A
Other languages
Japanese (ja)
Other versions
JPH0347435B2 (en
Inventor
Yoshinao Honjo
本庄 由尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14532484A priority Critical patent/JPS6123869A/en
Publication of JPS6123869A publication Critical patent/JPS6123869A/en
Publication of JPH0347435B2 publication Critical patent/JPH0347435B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To improve the output of an engine by installing a frequency-voltage conversion circuit into an ignition-timing calculating circuit equipped with an integration circuit and a comparator and freely varying the advance-angle characteristic. CONSTITUTION:A spark condenser 3 is charged by the output of an ignition power-source coil 1, and this electric charge is discharged into an ignition coil 5 to generate the electric discharge in a spark plug 8, and an engine is ignited. A frequency-voltage conversion circuit 34 is instlled into an ignition-timing calculating circuit 20. When the output of the conversion circuit 34 exceeds a certain value, the control conditions of the ignition-timing calculating circuit 20 are varied continuously by the output. Therefore, the advance-angle characteristic can be varied freely, and the output of the engine can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁石発電機を電源とするCDI点火装置の点火
時期を電子回路演算で行い、機関の必要とする点火進角
特性を精度良く得るようにしたものにおいて、一定回転
数を境に演算の条件を変えることKより進角特性を変化
せしめ、機関の要求により良く合致した特性を得るよう
にした点火時期制御装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention uses electronic circuit calculation to control the ignition timing of a CDI ignition system using a magnet generator as a power source, so as to obtain the ignition advance characteristics required by the engine with high accuracy. This invention relates to an ignition timing control device that changes the advance angle characteristics by changing the calculation conditions after a certain rotation speed, thereby obtaining characteristics that better match the requirements of the engine.

〔従来技術〕[Prior art]

機関の点火時期制御装置において、機関のノッキングゾ
ーンを回避するために、または機関の中速域の出力特性
を向上させるために、進角特性を2段折れ、3段折れ特
性にすることは一般に行われている。点火時期制御を電
子回路の演算で行うものについても、例えば特開昭56
−64156号公報に見られるように三角波発振回路を
複数個用いて上記特性を得ることが述べらnている。又
、通常電子演算による進角装置は、特開昭56−759
64号公報に見られるように、積分回路のコンデンサを
充放電することにより得られる三角波を機関の回転と同
期させ、結果として得られる定角波発振に対しコンデン
サ電圧を基準電圧と比較することにより点火信号を得る
ものであシ、コンデンサの充放電々流°を機関の回転速
度をノ42メータとする電圧でコントロールすることに
より進角特性を得ている。9しかるに、この装置におい
て進角特性を一定回転を境にして変化させようとすれば
、特開昭56−151266号公報に示されるように機
関の回転をパラメータとする電圧特性を変更する必要が
あり、前記した2例のものでは所期の特性を得るために
極めて複雑な回路を必要とする。又、4v開昭57−5
1956号公報には、積分器と2個の比較器を用い、積
分器のコンデンサの充放電を一定電流で行って一定の進
角特性を得る装置が提案されており、この装置上は単純
な回路で一定の進角特性が得られるが、回転数により進
角特性そのものを変化させることはできない。
In engine ignition timing control systems, it is common to set the advance angle to a two-step or three-step advance characteristic in order to avoid the engine's knocking zone or to improve the engine's output characteristics in the mid-speed range. It is being done. Regarding ignition timing control using electronic circuit calculations, for example,
As seen in Japanese Patent No. 64156, it is described that the above characteristics can be obtained using a plurality of triangular wave oscillation circuits. Further, an advance angle device using normal electronic calculation is disclosed in Japanese Patent Application Laid-Open No. 56-759.
As seen in Publication No. 64, by synchronizing the triangular wave obtained by charging and discharging the capacitor of the integrating circuit with the rotation of the engine, and comparing the capacitor voltage with the reference voltage against the resulting constant angle wave oscillation. The ignition signal is obtained by controlling the charging and discharging current of the capacitor with a voltage that corresponds to the rotational speed of the engine at 42 meters, thereby obtaining advance angle characteristics. 9 However, in order to change the advance angle characteristic after a certain rotation in this device, it is necessary to change the voltage characteristic using the engine rotation as a parameter, as shown in Japanese Patent Application Laid-open No. 56-151266. However, the two examples described above require extremely complicated circuits to obtain the desired characteristics. Also, 4v Kaisho 57-5
No. 1956 proposes a device that uses an integrator and two comparators to charge and discharge the integrator's capacitor with a constant current to obtain a constant advance angle characteristic. Although a certain advance angle characteristic can be obtained with the circuit, the advance angle characteristic itself cannot be changed depending on the rotation speed.

〔発明の概要〕[Summary of the invention]

本発明は上記したような問題点を考慮して成さnたもの
であシ、積分回路と2つの比較器を持つ進角制御回路に
回転数−電圧変換回路を組合わせ、該変換回路の出力が
ある一定値を越えたときに該出力により進角制御回路の
制御条件を連続的に変えるようにすることにより、2段
折れ進角特性を簡単な回路で実現できる点火時期制御装
置を提供することを目的とする。
The present invention was made in consideration of the above-mentioned problems, and consists of combining a rotational speed-voltage conversion circuit with an advance angle control circuit having an integrating circuit and two comparators, and Provided is an ignition timing control device that can realize a two-step lead angle characteristic with a simple circuit by continuously changing the control conditions of the advance angle control circuit according to the output when the output exceeds a certain value. The purpose is to

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面とともに説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は磁石発電機の点火電源コイル、2
は電源コイル1の出力を整流するダイオード、3は電源
コイル1の出力で充電される点火用コンデンサ、4はサ
イリスタで、サイリスタ4はそのゲートに信号を受けて
コンデンサ3の電荷を点火コイル5の1次コイル6に放
出し、2次コイル7に高電圧を誘起せしめて点火プラグ
8に放電させ、機関を点火するようにしている。9はダ
イオード10、抵抗11、定電圧ダイオード12、コン
デンサ13よシなる定電圧電源回路であり、その出力は
後述の点火時期演算回路20や周波数−電圧変換回路(
以下、F −V回路という。)34に供給される。14
は磁石発電機に設けられ機関の回転と同期して点火信号
を発生する信号コイルで、その出力はダイオード15、
抵抗16を介してサイリスタ4のゲートに加えらnると
ともに、ダイオード17を介してF−V回路34に加え
られる。又、信号コイル14が発生する負波はダイオー
ド18、抵抗19を介して点火時期演算回路20に加え
られる。点火時期演算回路2(1:RSフリップフロッ
プ(以下f−fと略す。)21、オペアンプ22〜24
、トランジスタ25、ダイオード26、コンデンサ27
、抵抗28〜33よ多構成される。又、F−V回路34
はトランジスタ35.36、ダイオード37、コンデン
サ38゜39および抵抗40〜44から構成される。
In Fig. 1, 1 is the ignition power coil of the magnet generator, 2
is a diode that rectifies the output of power supply coil 1, 3 is an ignition capacitor that is charged by the output of power supply coil 1, and 4 is a thyristor. Thyristor 4 receives a signal at its gate and transfers the charge of capacitor 3 to ignition coil 5. The high voltage is discharged to the primary coil 6, induces a high voltage in the secondary coil 7, and discharges it to the spark plug 8, thereby igniting the engine. 9 is a constant voltage power supply circuit consisting of a diode 10, a resistor 11, a constant voltage diode 12, and a capacitor 13, and its output is supplied to an ignition timing calculation circuit 20 and a frequency-voltage conversion circuit (
Hereinafter, this will be referred to as the F-V circuit. ) 34. 14
is a signal coil that is installed in the magnet generator and generates an ignition signal in synchronization with the rotation of the engine, and its output is connected to the diode 15,
It is applied to the gate of the thyristor 4 via the resistor 16 and to the F-V circuit 34 via the diode 17. Further, the negative wave generated by the signal coil 14 is applied to the ignition timing calculation circuit 20 via a diode 18 and a resistor 19. Ignition timing calculation circuit 2 (1: RS flip-flop (hereinafter abbreviated as ff) 21, operational amplifiers 22 to 24
, transistor 25, diode 26, capacitor 27
, resistors 28 to 33 are constructed. Also, the F-V circuit 34
is composed of transistors 35, 36, diodes 37, capacitors 38, 39 and resistors 40-44.

次に、上記装置の動作を点火時期演算回路20およびF
−V回路34の相互動作を中心にして第2図および第3
図を用いて説明する。まず、機関が回転し信号コイル1
4に電圧が発生すると時間的に進んだ回転角で発生する
負電圧は抵抗19、ダイオード18を介して流れ、抵抗
19の電圧降下に相当する電圧(負電圧)が点火時期演
算回路20に入力される。又、時間的に遅れた位置にあ
る正電圧はダイオード15、抵抗16を介してサイリス
タ4のゲートに加わり、サイリスタ4を導通してコンデ
ンサ3の負荷を点火コイル501次コイル6に放出し、
2次コイル7に高電圧を誘起して点火プラグ8を放電さ
せ、機関を点火するとともに、上記正電圧はダイオード
17を介してF−■回路34に入力する。第2図におい
て、toは負電圧が発生する位置、1.は正電圧が発生
する位置を示す。点火時期演算回路20に負電圧の信号
が入力すると、電源回路9よシ抵抗28を介してベース
に正電圧が加わっていてオン状態にあるトランジスタ2
5のペース−エミッタ間に負電圧が加わシ、トランジス
タ25はオフ状態となって電源回路9から抵抗29を介
して供給される電圧がf−f回路21のセット端子(S
端子)に印加さn、f−f回路21の(+)Q端子はハ
イレベル電圧を出力し、この電圧が抵抗30を介して第
1のオペアンプ22の反転入力端子(以下(−)端子と
いう。ンに印加される。この場合、オペアンプ22の(
−)端子に非反転入力端子(以下(+)端子という。)
の電圧■、よシ高い電圧が印加されnばオペアンプ22
の出力端子はハイレベルからローレベルに転位し、コン
デンサ27は第1図に示すように充電さ扛ていたものが
一定の時定数で放電を始め、その結果fペアンプ22の
出方端子の電圧はコンデンサ27の放電により第2図の
直線a−bのように暫時低下する。この電圧は抵抗33
を介して第2のオペアンプ23の(−)端子に加えられ
るが、オペアンプ23は(−)端子電圧が(+)端子電
圧よシ高い間は出方端子はローレベルを維持し、第2図
のt、に示すようK(−)端子電圧が(+)端子電圧V
2よシ低くなった時点でオペアンプ23の出方端子はハ
イレベルとなり、この出力はf−f回路21のリセット
端−子(以下R端子という。)に加えられ、f−f回路
21の+Q端子をローレベルに転位させ、この電圧がオ
ペアンプ22の(+)端子電圧v1よシ低い電圧として
(−)端子に加えられ、オペアンプ22の出刃端子はハ
イレベルとなシ、コンデンサ271jMび一定の時定数
で光電さn1オペアンプ22の出力電圧は第2図の直線
b−cで示すように上昇する。
Next, the operation of the above device is controlled by the ignition timing calculation circuit 20 and F.
- FIGS. 2 and 3 centering on the mutual operation of the V circuit 34.
This will be explained using figures. First, the engine rotates and signal coil 1
When a voltage is generated at 4, the negative voltage generated at a rotation angle that advances in time flows through a resistor 19 and a diode 18, and a voltage (negative voltage) corresponding to the voltage drop across the resistor 19 is input to the ignition timing calculation circuit 20. be done. Further, the positive voltage at the time-delayed position is applied to the gate of the thyristor 4 via the diode 15 and the resistor 16, conducts the thyristor 4, and discharges the load of the capacitor 3 to the ignition coil 50 and the primary coil 6.
A high voltage is induced in the secondary coil 7 to discharge the spark plug 8 and ignite the engine, and the positive voltage is input to the F--circuit 34 via the diode 17. In FIG. 2, to is the position where a negative voltage is generated, 1. indicates the position where positive voltage is generated. When a negative voltage signal is input to the ignition timing calculation circuit 20, a positive voltage is applied to the base of the power supply circuit 9 via the resistor 28, and the transistor 2 is turned on.
A negative voltage is applied between the pace and the emitter of No. 5, the transistor 25 is turned off, and the voltage supplied from the power supply circuit 9 through the resistor 29 is applied to the set terminal (S) of the f-f circuit 21.
The (+)Q terminal of the f-f circuit 21 outputs a high-level voltage, and this voltage is applied to the inverting input terminal (hereinafter referred to as the (-) terminal) of the first operational amplifier 22 via the resistor 30. In this case, the operational amplifier 22 (
–) terminal is a non-inverting input terminal (hereinafter referred to as the (+) terminal).
If a higher voltage is applied, the operational amplifier 22
The output terminal of is shifted from high level to low level, and the capacitor 27, which had been charged, begins to discharge at a constant time constant as shown in FIG. 1, and as a result, the voltage at the output terminal of the f amplifier 22 increases due to the discharge of the capacitor 27, decreases for a while as shown by straight line a-b in FIG. This voltage is resistor 33
However, as long as the (-) terminal voltage is higher than the (+) terminal voltage, the output terminal of the operational amplifier 23 maintains a low level, and as shown in FIG. As shown in t, the K (-) terminal voltage is the (+) terminal voltage V
When the voltage becomes lower than 2, the output terminal of the operational amplifier 23 becomes high level, and this output is added to the reset terminal (hereinafter referred to as R terminal) of the f-f circuit 21, and the +Q of the f-f circuit 21. The terminal is shifted to a low level, and this voltage is applied to the (-) terminal as a voltage lower than the (+) terminal voltage v1 of the operational amplifier 22, and the output terminal of the operational amplifier 22 is at a high level. With a time constant, the output voltage of the photovoltaic n1 operational amplifier 22 increases as shown by straight line b-c in FIG.

そして、次に再び信号コイル14の負電圧信号により同
じ動作をく9返す。ここで、第2図の三角     (
1形abcにおいては、−辺aCが機関の一転で一定、
角cabと角acbはコンデンサ・27の充放電時定数
により一定で、あシ、t、の位置は角度上筒に一定であ
シ、機関の回転速度の変化にょシー回転に要する時間が
変っても角度的には一定であシ定角度発振と呼ば扛るも
のである。一方、f−f回路21の(+)Q端子出力は
抵抗31を介して第3のオペアンプ2′4の(+)端子
に人力され、またコンデンサ27の電圧つまりオペアン
プ22の出方電圧は抵抗33を介して同じオペアンプ2
4の(−)端子に印加される。前者をv3として第2図
に示す値をとらせるとt3点において両電圧は交鎖し、
この時点でオペアンプ24の(−)端子電圧がvsよシ
低電圧となるため第3のオペアンプ24の出力はハイレ
ベルに転じ、微分用コンデンサ45を介してサイリスタ
4のゲートに印加される。第4アンプ22の出力端子の
電圧は前述したように一定の時定数による充放電勾配を
持つため、低速回転域では第2図のa点電圧は充分に高
くなシ、■、は変らないため両電圧の交点はt2に近い
点となる。そして、回転の上昇つまシー回転に委する時
間の短縮とともにa点電圧が低下し、t3点はt0点に
近づき、一定回転に達する・とa点電圧はV3電圧と一
致し、t。
Then, the same operation is repeated again with the negative voltage signal of the signal coil 14. Here, the triangle in Figure 2 (
In the first form abc, the -side aC is constant with one rotation of the engine,
The angle cab and the angle acb are constant due to the charging and discharging time constant of the capacitor 27, and the position of the reed, t, is constant in the upper cylinder, and the time required for rotation changes with changes in the engine rotational speed. Since the angle is also constant, it is called constant angle oscillation. On the other hand, the (+) Q terminal output of the f-f circuit 21 is inputted to the (+) terminal of the third operational amplifier 2'4 via the resistor 31, and the voltage of the capacitor 27, that is, the output voltage of the operational amplifier 22, is connected to the resistor 31. Same opamp 2 through 33
It is applied to the (-) terminal of 4. If the former is set to v3 and takes the value shown in Figure 2, the two voltages intersect at point t3,
At this point, the (-) terminal voltage of the operational amplifier 24 becomes a lower voltage than vs, so the output of the third operational amplifier 24 changes to a high level and is applied to the gate of the thyristor 4 via the differential capacitor 45. As mentioned above, the voltage at the output terminal of the fourth amplifier 22 has a charging/discharging gradient due to a constant time constant, so in the low speed rotation range, the voltage at point a in Fig. 2 is sufficiently high and does not change. The intersection of both voltages is a point close to t2. Then, as the rotation increases and the time for sea rotation decreases, the voltage at point A decreases, and point t3 approaches point t0, reaching a constant rotation.The voltage at point A matches the voltage at V3, and reaches t.

はtoに一致する。さらに回転が高まるとf−f回路2
1の(+)Q端子がハイレベルになった時点っまシ信号
コイル14に負電圧が発生する時点で(+)Q端子の中
力が抵抗31を介して第3のオペアンプ24の(+)端
子に加わシ、その時点のオペアンプ24の(−)端子電
圧は第2図のa点電圧で(+)端子電圧v3よシ低いた
め、第4アンプ24の出刃端子はハイレベルに転する。
matches to. When the rotation increases further, f-f circuit 2
When the (+) Q terminal of 1 becomes high level, the neutral voltage of the (+) Q terminal is transmitted through the resistor 31 to the (+) of the third operational amplifier 24. ) terminal, the (-) terminal voltage of the operational amplifier 24 at that point is the voltage at point a in FIG. 2, which is lower than the (+) terminal voltage v3, so the output terminal of the fourth amplifier 24 changes to a high level. .

つまシ、一定回転以上では膚に第2図のt0時点でサイ
リスタ4のゲートに信号が加わることになる。サイリス
タ4のゲートには1゜時点、t8時点で信号が加わるが
、サイリスタ4はいずれか時間的に早い信号で導通して
機関を点火するので、低速回転域ではtlで点火し回転
が上昇してt3がtlより早くなった時点でt、で点火
し、回転の上昇と共にt、はtoに近づき、一定回転に
達すればt、はtoと一致してtoで点火することにな
る。
When the rotation speed exceeds a certain level, a signal is applied to the gate of the thyristor 4 at time t0 in FIG. 2. A signal is applied to the gate of thyristor 4 at 1° and at t8, but thyristor 4 conducts at the earlier signal and ignites the engine, so in the low speed rotation range, it ignites at tl and the rotation increases. When t3 becomes earlier than tl, ignition occurs at t, and as the rotation increases, t approaches to, and when a certain rotation is reached, t coincides with to and ignition occurs at to.

これを回転数に対するパラメータで図示したのが第3図
のd−e−fの特性である。
The d-e-f characteristics in FIG. 3 illustrate this using parameters relative to the rotational speed.

第1図において、信号コイル14の正信号がダイオード
17を介してF−V回路34に加わると、まずトランジ
スタ35がオンし、電源回路9力為らの電圧がトランジ
スタ35、抵抗41、コンデンサ38および抵抗42の
直列回路に加わる。コンデンサ38と抵抗42は微分回
路を構成し、時定数で決まる一定巾の電圧が抵抗42の
両端に発生し、この電圧がトランジスタ36をオンさせ
る。
In FIG. 1, when a positive signal from the signal coil 14 is applied to the F-V circuit 34 via the diode 17, the transistor 35 is first turned on, and the voltage from the power supply circuit 9 is applied to the transistor 35, the resistor 41, and the capacitor 38. and is added to the series circuit of resistor 42. The capacitor 38 and the resistor 42 constitute a differentiating circuit, and a voltage with a constant width determined by a time constant is generated across the resistor 42, and this voltage turns on the transistor 36.

抵抗42の両端電圧は機関の回転に関係なく一定巾で4
るからトランジスタ36のオン時間は常に一定であり、
オン、オフの回数のみ機関の回転に比例することになる
。トランジスタ36〃玉オンすると電源回路9からトラ
ンジスタ36および抵抗44を介して電流がコンデンサ
39に流れ、トランジスタ36のオフ期間中にこのトラ
ンジスタ39の電荷は抵抗44.43を介して放電する
力;、トランジスタ36のオン時間が一定でこのオン回
数が機関の回転と比例するためコンデンサ39への流入
電流は機関の回転に比例して増〃口し、コンデンサ39
の端子電圧従ってF−V回路34の出力電圧は回転数の
上昇に比例して上昇することになる。第1図に示すよう
にこのF−V回路34の出力電圧が第2のオペアンプ2
3の(+)端子に加えられると、一定回転以上ではオペ
アンプ23の(+)端子電圧V、は一定値が維持できな
くなり、回転の上昇と共にV、が上昇する。第2図に示
すように■、がv、′ に変化すれ#′i第1のオペア
ンプ22の出力端子の電圧が■2′  に達した時点で
オペアンプ23は反転してf−f回路21をリセットす
るので、オペアンプ22の出力端子電圧は第2図a’−
b’−e’に示すようにv2がv、′に変化した量だけ
変化し、この電圧と第3のオペアンプ24の(+)端子
電圧V。
The voltage across the resistor 42 is constant at 4 regardless of engine rotation.
Therefore, the on-time of the transistor 36 is always constant,
Only the number of on and off cycles is proportional to the engine rotation. When the transistor 36 is turned on, current flows from the power supply circuit 9 through the transistor 36 and the resistor 44 to the capacitor 39, and during the period when the transistor 36 is off, the charge in the transistor 39 is discharged through the resistors 44 and 43; Since the ON time of the transistor 36 is constant and the number of ON times is proportional to the rotation of the engine, the current flowing into the capacitor 39 increases in proportion to the rotation of the engine.
Therefore, the output voltage of the F-V circuit 34 increases in proportion to the increase in rotational speed. As shown in FIG. 1, the output voltage of this F-V circuit 34 is
3, the (+) terminal voltage V of the operational amplifier 23 cannot be maintained at a constant value above a certain rotation, and V increases as the rotation increases. As shown in FIG. 2, when ■, changes to v,' and the voltage at the output terminal of the first operational amplifier 22 reaches ■2', the operational amplifier 23 is inverted and the f-f circuit 21 is inverted. Since it is reset, the output terminal voltage of the operational amplifier 22 is a'- in Figure 2.
As shown in b'-e', v2 changes to v,', and this voltage and the (+) terminal voltage V of the third operational amplifier 24 change.

との交鎖点は第2図のt、′  に示すようにt、より
遅れることになる。前述したように機関回転の上昇と共
にt、はt。に近づくが、回転上昇と共にV、を一定勾
配で変化させればt、のt。への接近速度が遅れること
になる。これを第3図に示すとF−V回路34の出力が
V、を越えた回転数n1よシ点火時期の進角特性が変シ
、d−e−gと2段折れの特性を持つようになる。
The intersection point with t is later than t, as shown at t,' in Figure 2. As mentioned above, as the engine speed increases, t becomes t. However, if V is changed at a constant gradient as the rotation increases, t of t. The approach speed will be delayed. This is shown in Fig. 3. When the output of the F-V circuit 34 exceeds V, the advance characteristic of the ignition timing changes as the rotational speed n1 exceeds V, and the ignition timing has a two-stage bending characteristic. become.

第5図は他の実施例を示し、F−V回路34の出力で第
4アンプ24の■、を変えても、また図示しないがオペ
アンプ22のV、を変えてもF−V回路34の出力にし
きい値を持たせ一定値以上で加わるようにする限シ第3
図に示すように進角特性を2段折れにすることができる
。尚、26はダイオードである。又、第6図の実施例に
示すようにF−V回路34の出力を定電圧素子47を介
してトランジスタ46のペースに加え、オペアンプ23
の(+)端子電圧を分流させることにより一定回転数以
上で回転の上昇と共にv2を低下させれば第4図に示す
ような逆折n特性を得ることもできる。
FIG. 5 shows another embodiment, in which even if the output of the F-V circuit 34 changes the voltage of the fourth amplifier 24 or the V of the operational amplifier 22 (not shown), the The third limit is to set a threshold value for the output and apply it above a certain value.
As shown in the figure, the advance angle characteristic can be bent in two stages. Note that 26 is a diode. Further, as shown in the embodiment of FIG.
By dividing the voltage at the (+) terminal of the motor, the reverse n-characteristic as shown in FIG. 4 can be obtained by decreasing v2 as the revolution increases above a certain number of revolutions.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては、通常の電子進角回路に
周波数−電圧変換回路を付加することにより進角特性を
自在に変化させることができ、小形安価で機関の要求に
進角特性を合致させて機関の出力向上に寄与することが
できる。冬、周波数−電圧変換回路の数を増すことによ
り2段折nだけでなく3段折れ以上の特性も得ら扛るが
、単純な回路であるため安価なものであることには変υ
はない。
As described above, in the present invention, by adding a frequency-voltage conversion circuit to a normal electronic lead angle circuit, the lead angle characteristics can be changed freely, and the lead angle characteristics can be made small and inexpensive and meet the requirements of the engine. This can contribute to improving the engine's output. In winter, by increasing the number of frequency-voltage conversion circuits, it is possible to obtain characteristics of not only two-stage folding but also three-stage folding or more, but since it is a simple circuit, it is not cheap.
There isn't.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は夫々本発明装置の第1の実施例におけ
る回路図、動作説明図および特性図、第4図は本発明装
置の第3の実施例における特性図、第5図は本発明装置
の第2の実施例における部分回路図、第6図線本発明装
置の第3の実施例における部分回路図である。 1・・・点火電源コイル、3・・・点火用コンデンサ、
4・・・サイリスタ、5・・・点火コイル、8・・・点
火プラグ、9・・・定電圧電源回路、14・・・信号コ
イル、加・・・点火時期演算回路、22〜24・・・オ
ペアンプ、27・・コンデンサ、34・・・周波数−電
圧変換回路。 尚、図中同一符号は同−又は相当部分を示す。
1 to 3 are circuit diagrams, operation explanatory diagrams, and characteristic diagrams of the first embodiment of the device of the present invention, FIG. 4 is a characteristic diagram of the third embodiment of the device of the present invention, and FIG. FIG. 6 is a partial circuit diagram of a second embodiment of the device of the present invention; FIG. 6 is a partial circuit diagram of a third embodiment of the device of the present invention; 1...Ignition power supply coil, 3...Ignition capacitor,
4... Thyristor, 5... Ignition coil, 8... Spark plug, 9... Constant voltage power supply circuit, 14... Signal coil, Addition... Ignition timing calculation circuit, 22-24... - Operational amplifier, 27... Capacitor, 34... Frequency-voltage conversion circuit. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)磁石発電機に設けられた点火電源コイルにより充
電される点火用コンデンサ、機関の点火時期においてゲ
ートに信号を受けて導通し点火用コンデンサの電荷を点
火コイルの1次コイルに放出し2次コイルに高電圧を誘
起し点火プラグを放電させて機関を点火するサイリスタ
、磁石発電機に設けられ機関の回転と同期して信号を発
生する信号コイル、信号コイルから信号を受け定角波発
振を行つて発振電圧と第1の基準電圧との比較をし比較
条件を信号として出力して前記サイリスタのゲートに与
える点火時期演算回路、信号コイルより信号を受け単位
時間当りの信号回数に比例した電圧を出力するとともに
この出力を点火時期演算回路に加える周波数−電圧変換
回路を備え、周波数−電圧変換回路の出力電圧が一定値
を越えた時に点火時期演算回路の出力を変化させること
により、点火進角特性を機関の一定回転数を境にして変
化させるようにしたことを特徴とする点火時期制御装置
(1) The ignition capacitor is charged by the ignition power supply coil installed in the magnet generator, and when it receives a signal from the gate at the ignition timing of the engine, it becomes conductive and discharges the charge in the ignition capacitor to the primary coil of the ignition coil. A thyristor that induces high voltage in the coil and discharges the spark plug to ignite the engine; a signal coil installed in the magnet generator that generates a signal in synchronization with the rotation of the engine; and a fixed-angle wave oscillation that receives a signal from the signal coil. The oscillation voltage is compared with the first reference voltage, and the comparison condition is outputted as a signal to be applied to the gate of the thyristor.An ignition timing calculation circuit receives the signal from the signal coil and calculates the signal in proportion to the number of signals per unit time. It is equipped with a frequency-voltage conversion circuit that outputs voltage and applies this output to the ignition timing calculation circuit, and when the output voltage of the frequency-voltage conversion circuit exceeds a certain value, the ignition timing calculation circuit changes the output. An ignition timing control device characterized in that the advance angle characteristic is changed at a constant engine speed.
(2)点火時期演算回路の定角波発振をコンデンサの充
放電により行い、充電開始は信号コイルの信号により行
うとともに充電から放電への移行はコンデンサ電圧と第
2の基準電圧との比較により行いかつ充放電量を第3の
基準電圧により設定し、周波数−電圧変換回路の出力を
いずれかの基準電圧に加え、周波数−電圧変換回路の出
力が一定値を越えた時にこの出力を加えられた基準電圧
が線形に変化するようにしたことを特徴とする特許請求
の範囲第1項記載の点火時期制御装置。
(2) Constant angle wave oscillation of the ignition timing calculation circuit is performed by charging and discharging the capacitor, charging is started by a signal from the signal coil, and transition from charging to discharging is performed by comparing the capacitor voltage with the second reference voltage. And the amount of charge and discharge is set by a third reference voltage, the output of the frequency-voltage conversion circuit is added to one of the reference voltages, and this output is added when the output of the frequency-voltage conversion circuit exceeds a certain value. 2. The ignition timing control device according to claim 1, wherein the reference voltage varies linearly.
JP14532484A 1984-07-11 1984-07-11 Ignition-timing controller Granted JPS6123869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14532484A JPS6123869A (en) 1984-07-11 1984-07-11 Ignition-timing controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14532484A JPS6123869A (en) 1984-07-11 1984-07-11 Ignition-timing controller

Publications (2)

Publication Number Publication Date
JPS6123869A true JPS6123869A (en) 1986-02-01
JPH0347435B2 JPH0347435B2 (en) 1991-07-19

Family

ID=15382524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14532484A Granted JPS6123869A (en) 1984-07-11 1984-07-11 Ignition-timing controller

Country Status (1)

Country Link
JP (1) JPS6123869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385362U (en) * 1986-11-25 1988-06-03
JPH0620808A (en) * 1993-03-10 1994-01-28 Rohm Co Ltd Manufacture of resistance network, and substrate used therein
JPH0677020A (en) * 1993-06-17 1994-03-18 Rohm Co Ltd Manufacture of chip type electronic component and of aggregate substrate for the manufacture electronic part

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918272A (en) * 1982-07-20 1984-01-30 Shindengen Electric Mfg Co Ltd Capacitor charging and discharging type ignition device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918272A (en) * 1982-07-20 1984-01-30 Shindengen Electric Mfg Co Ltd Capacitor charging and discharging type ignition device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385362U (en) * 1986-11-25 1988-06-03
JPH0620808A (en) * 1993-03-10 1994-01-28 Rohm Co Ltd Manufacture of resistance network, and substrate used therein
JPH0677020A (en) * 1993-06-17 1994-03-18 Rohm Co Ltd Manufacture of chip type electronic component and of aggregate substrate for the manufacture electronic part

Also Published As

Publication number Publication date
JPH0347435B2 (en) 1991-07-19

Similar Documents

Publication Publication Date Title
JPS6123869A (en) Ignition-timing controller
JPS638865Y2 (en)
JPS6132151Y2 (en)
JPS6124697Y2 (en)
JPS6237227B2 (en)
JPH0236790B2 (en) KONDENSAJUHODENSHI KITENKASOCHI
JPS6149503B2 (en)
JPS6311336Y2 (en)
JPS6056269B2 (en) magneto igniter
JPS63629B2 (en)
JP3143056B2 (en) Ignition control device
JPS6132149Y2 (en)
JPH045825B2 (en)
JPS6316868Y2 (en)
JPS631007Y2 (en)
JPS6112115B2 (en)
JPS6242156B2 (en)
JP3302438B2 (en) Rotation speed detection device, overspeed prevention device and ignition device
JPH0355816Y2 (en)
JPH0118850Y2 (en)
JPS6133992B2 (en)
JPS6327547B2 (en)
JPS6114481A (en) Ignitor for engine
JPH051651A (en) Condenser charge and discharge type ignition device
JPS6323384B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term