JPS5912146B2 - distance detection device - Google Patents

distance detection device

Info

Publication number
JPS5912146B2
JPS5912146B2 JP52019875A JP1987577A JPS5912146B2 JP S5912146 B2 JPS5912146 B2 JP S5912146B2 JP 52019875 A JP52019875 A JP 52019875A JP 1987577 A JP1987577 A JP 1987577A JP S5912146 B2 JPS5912146 B2 JP S5912146B2
Authority
JP
Japan
Prior art keywords
signal light
light
amount
reflected
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52019875A
Other languages
Japanese (ja)
Other versions
JPS53105263A (en
Inventor
久美雄 笠原
宗彦 長能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52019875A priority Critical patent/JPS5912146B2/en
Publication of JPS53105263A publication Critical patent/JPS53105263A/en
Publication of JPS5912146B2 publication Critical patent/JPS5912146B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target

Description

【発明の詳細な説明】 この発明は、正弦波変調光を移動体へ向は放射し、その
反射信号光と送信信号光の一部を取り出した参照信号光
との合成信号光を受光し、その受信振幅の変化から移動
体までの距離を測定する距離検知装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention emits sinusoidally modulated light toward a moving body, receives a combined signal light of the reflected signal light and a reference signal light obtained from a part of the transmitted signal light, The present invention relates to a distance detection device that measures the distance to a moving object from changes in the received amplitude.

従来、正弦波変調光を用いて距離を測定する装置では、
反射物体へ向は変調光を送信するとともにこの反射物体
から反射されて戻ってくる変調光の一部を受光し、その
送信、受信信号間の位相差を検出し反射物体までの距離
を求めていたが位相差を求める際に信号位相の基準とな
る参照信号と上記受信信号とを別々の電子回路で処理し
位相を比較していたため、各々の電子回路部分で発生す
る位相ドリフトなどの位相変動の影響があり、測定精度
が悪かった。
Conventionally, devices that measure distance using sinusoidal modulated light,
It transmits modulated light toward a reflective object, receives a portion of the modulated light that is reflected from the reflective object, and detects the phase difference between the transmitted and received signals to determine the distance to the reflective object. However, when calculating the phase difference, the reference signal that serves as the reference signal phase and the above received signal were processed in separate electronic circuits and the phases were compared, so phase fluctuations such as phase drift that occur in each electronic circuit part This caused poor measurement accuracy.

このような欠点は、反射物体が静止状態または移動状態
のいかんにかかわらず測定原理によるものである。
These drawbacks are due to the measurement principle whether the reflecting object is stationary or moving.

これらの欠点を除去した方式として、参照信号光と反射
物体からの反射信号光との合成信号光を受信する方式の
距離検知装置がある。
As a system that eliminates these drawbacks, there is a distance detection device that receives a composite signal light of a reference signal light and a reflected signal light from a reflecting object.

第1図は、この方式による移動体の距離を測定する従来
装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a conventional device for measuring the distance of a moving object using this method.

第1図において、ビームスプリッタ1をはさんで、発光
素子2、受光素子8、移動体4、および反射鏡5を互い
に90°の角度をなす位置に設置しである。
In FIG. 1, a light emitting element 2, a light receiving element 8, a moving body 4, and a reflecting mirror 5 are installed at positions forming an angle of 90 degrees to each other with a beam splitter 1 in between.

このように光学系を構成すると、正弦波発振器6からの
信号により駆動回路7を用いて強度変調した発光素子2
からの放射光の一部は、受光素子3に対向して設けた反
射鏡5によって反射され、信号位相の基準となる参照信
号光として、受光素子3へ入射するようになる。
When the optical system is configured in this way, the light emitting element 2 is intensity-modulated using the drive circuit 7 based on the signal from the sine wave oscillator 6.
A part of the emitted light is reflected by a reflecting mirror 5 provided opposite to the light receiving element 3, and enters the light receiving element 3 as a reference signal light serving as a reference for the signal phase.

また、上記の光学系では受光素子3は、上記参照信号光
と移動体4からの反射信号光との合成信号光を受光する
ようになっており、受光された合成信号は、増幅器8で
増幅された後検波器9で検波され、レベル計10でその
信号レベルを読みとる。
Further, in the above optical system, the light receiving element 3 receives a composite signal light of the reference signal light and the reflected signal light from the moving object 4, and the received composite signal is amplified by the amplifier 8. After that, the signal is detected by a wave detector 9, and the level meter 10 reads the signal level.

この場合、上記合成受信信号光R8は、参照信号光fi
と移動体4からの反射信号光量とのベクトル和となり、
その合成受信信号光の振幅R8は第2a図に示すように
、移動体までの距離変化に応じて図の円周α上を動く。
In this case, the combined received signal light R8 is the reference signal light fi
is the vector sum of and the amount of reflected signal light from the moving object 4,
As shown in FIG. 2a, the amplitude R8 of the combined received signal light moves on the circumference α in the figure in response to changes in the distance to the moving object.

また受信回路部分で発生する位相変動はRiとRrの両
方に等しく寄与するため、R8は図の円周β上を動くだ
けで振幅の変動は生じない。
Further, since the phase fluctuation occurring in the receiving circuit portion contributes equally to both Ri and Rr, R8 only moves on the circumference β in the figure and no amplitude fluctuation occurs.

すなわち、電子回路部分で発生する位相変動の影響を自
動的に除去できることを示しており、このとき、移動体
4までの距離lと合成受信信号光の振幅R8との関係は
、第2b図に示すようになり、較正した基準振幅からの
変化量△R8を測定することにより距離の変化量△lを
求めることができる。
In other words, this shows that the influence of phase fluctuations occurring in the electronic circuit section can be automatically removed, and in this case, the relationship between the distance l to the moving object 4 and the amplitude R8 of the combined received signal light is shown in Fig. 2b. The amount of change Δl in distance can be determined by measuring the amount of change ΔR8 from the calibrated reference amplitude as shown in FIG.

しかし、上記の距離検知装置では、参照信号光の光量を
一定としているため特に、移動体の場合には反射信号光
の光量が変動することはさけられず、合成信号光の受信
振幅が真値からずれ従って原理的に測定精度を高くでき
ないという欠点があった。
However, in the distance detection device described above, since the light intensity of the reference signal light is kept constant, it is inevitable that the light intensity of the reflected signal light will fluctuate, especially in the case of a moving object, and the received amplitude of the composite signal light will be the true value. Therefore, there was a drawback that the measurement accuracy could not be increased in principle.

すなわち、第2c図に示すように、距離の変化に伴って
反射信号光Rrは円周α上を点Pから点Qへ移動するが
このとき受光素子で受光される反射信号光の光量が変化
すると、反射信号光はRiか1pRr“に変化する。
That is, as shown in FIG. 2c, the reflected signal light Rr moves on the circumference α from point P to point Q as the distance changes, but at this time, the amount of reflected signal light received by the light receiving element changes. Then, the reflected signal light changes to Ri or 1pRr''.

そのため、合成信号光の受信振幅R8//は真値R8/
からずれる。
Therefore, the received amplitude R8// of the composite signal light is the true value R8//
deviate from

このような反射信号光の光量の変化は、移動体の反射率
の変化や信号光を伝搬させる空間の状態、例えば霧、雨
とか大気のゆらぎなどによる光の透過率の変化によって
常に発生するものであり、この方式による従来装置では
測定精度が悪かった。
Such changes in the amount of reflected signal light always occur due to changes in the reflectance of the moving object and changes in light transmittance due to the conditions of the space in which the signal light propagates, such as fog, rain, and atmospheric fluctuations. Therefore, conventional devices using this method had poor measurement accuracy.

この発明は、これらの欠点を除去するため移動体からの
反射信号光の光量を検出し、その検出信号に基づき、ビ
ームスプリッタ(beamspl i t ter)を
介し受光素子に対向させて設置しているリング状の反射
鏡の位置を変化させ、受光素子へ入射する参照信号光の
光量を制御したものであり、以下図面に従って詳細に説
明する。
In order to eliminate these drawbacks, the present invention detects the amount of reflected signal light from a moving body, and based on the detected signal, a beam splitter is installed to face the light receiving element. The amount of reference signal light incident on the light receiving element is controlled by changing the position of a ring-shaped reflecting mirror, and will be described in detail below with reference to the drawings.

第3図は、この発明の測定原理を示すベクトル図である
FIG. 3 is a vector diagram showing the measurement principle of this invention.

第3図において、円周α上の点Pを距離の基準とし、そ
の位置から移動体が移動して点Qへ移り、反射信号光が
RrからRiに変化するとする。
In FIG. 3, it is assumed that a point P on the circumference α is used as a distance reference, and that the moving object moves from that position to a point Q, and the reflected signal light changes from Rr to Ri.

このとき、反射信号光の光量の変化に伴って、反射信号
光がRiからRr“に変化するものとする。
At this time, it is assumed that the reflected signal light changes from Ri to Rr'' as the amount of reflected signal light changes.

この場合、参照信号光の光量を、反射信号光のRr“ 光量の変化分(肝、)だけ変化させRi’からRi〃に
すると、そのときの合成信号光R8〃の位相は、反射信
号光の光量変化が無いときの合成信号光RSlの位相と
一致するため、反射信号光の光量変動の影響を除去でき
る。
In this case, when the light intensity of the reference signal light is changed from Ri' to Ri by the amount of change in the light intensity of the reflected signal light Rr', the phase of the combined signal light R8 at that time is Since the phase matches the phase of the composite signal light RSl when there is no change in the light amount, the influence of the light amount fluctuation of the reflected signal light can be removed.

このとき、合成信号光のRr’ 受信振幅R8//の(Ri、)倍するとR8′となりそ
の受信振幅R8/を直読することと等価になる。
At this time, multiplying the Rr' reception amplitude R8// of the combined signal light by (Ri,) yields R8', which is equivalent to directly reading the reception amplitude R8/.

距離の変化量は、距離の基準にとった合成信号光の振幅
R8との差から求めることができる。
The amount of change in distance can be determined from the difference between the amplitude R8 of the composite signal light and the distance reference.

第4図は、この発明における反射信号光量の検出原理を
説明するための概念図である。
FIG. 4 is a conceptual diagram for explaining the principle of detecting the amount of reflected signal light in this invention.

第4図においては説明を簡単にするため、距離を一定と
し、反射信号光の振幅Rrが第4a図のように変化する
ものとする。
In FIG. 4, in order to simplify the explanation, it is assumed that the distance is constant and the amplitude Rr of the reflected signal light changes as shown in FIG. 4a.

このとき、第4b図に示すように参照信号光を(1,〜
t2)間でOFF状態、(t2〜t 3)間でON状態
になるように繰り返し断続させると、受光素子は、第4
c図に示すように、ON状態で参照信号光と反射信号光
との合成信号光を、また、OFF状態では、反射信号光
のみをそれぞれ受光することになる。
At this time, the reference signal light (1, ~
When the light-receiving element is repeatedly turned on and off so that it is in the OFF state between t2) and the ON state between t2 and t3, the fourth light-receiving element
As shown in FIG. c, in the ON state, the combined signal light of the reference signal light and the reflected signal light is received, and in the OFF state, only the reflected signal light is received.

従って、反射信号光の光量を検出するためには、第4d
図に示すように、OFF状態のときの受信光レベルを選
択的に抽出すればよい。
Therefore, in order to detect the amount of reflected signal light, the fourth d
As shown in the figure, the received light level in the OFF state may be selectively extracted.

第5a図は、この発明における参照信号光の光量調節用
反射鏡としてリング状の反射鏡を示したものでありりこ
の反射鏡は、平面鏡に穴をあけただけの簡単なものであ
る。
FIG. 5a shows a ring-shaped reflecting mirror as a reflecting mirror for adjusting the amount of reference signal light in the present invention, and this reflecting mirror is simply a plane mirror with a hole.

このリング状の反射鏡を入射光の光軸に対して直角方向
に移動させると、反射される光量Riは、第5b図に示
すように変化する。
When this ring-shaped reflecting mirror is moved in a direction perpendicular to the optical axis of the incident light, the amount of reflected light Ri changes as shown in FIG. 5b.

従って、反射鏡の設置位置を移動させることにより、参
照信号光の光量調節が容易に行える。
Therefore, by moving the installation position of the reflecting mirror, the light intensity of the reference signal light can be easily adjusted.

第6図は、上記の測定原理に基づく、この発明による実
施例の装置構成のブロック図である。
FIG. 6 is a block diagram of an apparatus configuration according to an embodiment of the present invention based on the above measurement principle.

第6図において、1〜10は第1図と同じであり、正弦
波発振器6からの信号をもとに駆動回路7を用いて強度
変調した発光素子2から放射される変調光を、移動体4
へ向は送信し、この移動体4からの反射信号光とリング
状の反射鏡5′で反射される参照信号光との合成信号光
を受光素子3で受光する。
In FIG. 6, 1 to 10 are the same as in FIG. 4
The light receiving element 3 receives a combined signal light of the reflected signal light from the moving body 4 and the reference signal light reflected by the ring-shaped reflecting mirror 5'.

このとき、ビームスプリッタ1とリング状の反射鏡5′
間に挿入した光チョッパ(opticalchoppr
) 11で光ビームを繰り返し断続すると、受光素子
3は、光ビームが遮断されている間は、反射信号光のみ
を、また、光ビームが通過している間では、反射信号光
と参照信号光との合成信号光をそれぞれ繰り返し受光す
ることになる。
At this time, the beam splitter 1 and the ring-shaped reflecting mirror 5'
An optical chopper inserted between
) When the light beam is repeatedly interrupted in step 11, the light receiving element 3 receives only the reflected signal light while the light beam is interrupted, and receives the reflected signal light and the reference signal light while the light beam is passing through. The combined signal light is repeatedly received.

このようにして得られる受信信号をアナログ・スイッチ
回路12に入力し、光チョッパ11からの同期信号に基
づいて各成分毎に分離し、その各信号を検波器q、9“
でそれぞれ検波する。
The received signal obtained in this way is input to the analog switch circuit 12, separated into each component based on the synchronization signal from the optical chopper 11, and each signal is sent to the detectors q and 9".
Detect each wave.

光ビームの遮断状態に同期させて取り出した検波器9′
からの検波出力信号を演算回路13に入力させ、基準信
号発生回路14で発生する基準信号との比較を行ないそ
の信号に基づき、サーボモータなどで構成した反射鏡移
動装置15を用いて、リング状の反射鏡51の位置を動
かし、参照信号光の光量を調節する。
Detector 9' taken out in synchronization with the cutoff state of the optical beam
The detected output signal is inputted to the arithmetic circuit 13, and compared with the reference signal generated by the reference signal generation circuit 14. Based on the signal, a ring-shaped The light intensity of the reference signal light is adjusted by moving the position of the reflecting mirror 51.

それとともに上記演算回路13からの比較信号に比例さ
せてAGC付増幅器16の利得を制御し、光ビームが次
に通過状態になったときの検波器9“からの検波信号を
、上記のAGC付増幅器16に入力し、その出力信号レ
ベルをレベル計10を用いて読みとることによって、距
離の基準値に設定した信号レベルとの差から、距離の変
化量を容易に求めることができる。
At the same time, the gain of the AGC amplifier 16 is controlled in proportion to the comparison signal from the arithmetic circuit 13, and the detection signal from the detector 9'' when the light beam enters the passing state is detected by the AGC amplifier 16. By inputting the signal to the amplifier 16 and reading its output signal level using the level meter 10, the amount of change in distance can be easily determined from the difference between the signal level and the signal level set as the distance reference value.

このように、この発明によれば、移動体の反射率の変動
や空間伝搬に伴う受信効率の変動などによって生じる反
射信号光の光量変動の影響を除去できるため測定誤差が
低減し測定精度を高くすることができる。
As described above, according to the present invention, it is possible to eliminate the influence of variations in the amount of reflected signal light caused by variations in the reflectance of a moving body, variations in reception efficiency due to spatial propagation, etc., thereby reducing measurement errors and increasing measurement accuracy. can do.

また光学系が従来の装置のものに光チョッパを挿入した
だけの簡単な構成で、反射信号光の光量を同時に検出で
きるという利点がある。
Another advantage is that the optical system has a simple configuration in which an optical chopper is inserted into a conventional device, and the amount of reflected signal light can be detected simultaneously.

なお、以上では、この発明による装置を静止させ、距離
を測定する場合について説明したが、この発明はこれに
限らず上記装置を車輛などの移動物に塔載し、移動しな
がら静止または移動している反射物体までの距離を測定
する場合にも適用できることはいうまでもない。
Although the above description has been given of the case where the device according to the present invention is stationary and the distance is measured, the present invention is not limited to this. Needless to say, this method can also be applied to measuring the distance to a reflective object.

以上のように、この発明に係わる距離検知装置では、参
照信号光と反射信号光とを1個の受光素子で受光する光
学系の構成となっており、かつ、光チョッパを用いて送
信信号光の一部から取り出す参照信号光を断続させるこ
とにより移動体からの反射信号光の光量を検出し、その
検出信号に基づいて参照信号光の光量を変化させる装置
構成となっているので移動体の反射率の変化などに伴っ
て生じる反射信号光の光量変動の影響を取り除くことが
できるため測定精度が高く、しかも反射信号光の光量を
同時に検出できるため装置の運用や保守が容易に行なえ
るという利点がある。
As described above, the distance detection device according to the present invention has an optical system that receives the reference signal light and the reflected signal light with one light receiving element, and uses an optical chopper to detect the transmitted signal light. The device configuration detects the amount of reflected signal light from the moving object by intermittent reference signal light taken out from a part of the moving object, and changes the amount of reference signal light based on the detected signal. The measurement accuracy is high because it eliminates the effects of fluctuations in the amount of reflected signal light that occur due to changes in reflectance, and the device can be easily operated and maintained because the amount of reflected signal light can be detected simultaneously. There are advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、参照信号光と移動体からの反射信号光との合
成受信信号の振幅変化から距離を測定する従来装置の構
成を示すブロック図、第2a図は合成受信信号光の距離
変化を示すベクトル図、第2b図は、受信振幅と距離と
の関係を示す特性図、第2c図は反射信号光の光量変動
の効果を示すベクトル図、第3図はこの発明・ノ)測定
原理を示すベクトル図、第4図は反射信号光の光量の検
出原理を説明するための概念図、第5a図はリング状反
射鏡の外形図、第5b図はリング状反射鏡の移動距離と
反射光量との関係を示す特性図、第6図はこの発明装置
の一実施例の装置構成のブロック図である。 図中1はビームスプリッタ、2は発光素子、3は受光素
子、4は移動体、5は反射鏡、シはリング状反射鏡、6
は正弦波発振器、7は駆動回路、8は増幅器、9.γ、
9“は検波器、10はレベル計、11は光チョッパ、1
2はアナログ・スイッチ回路、13は演算回路、14は
基準信号発生回路、15は反射鏡移動装置、16はAG
C付増幅器である。 なお図中同一あるいは相当部分には、同一符号を付して
示しである。
Fig. 1 is a block diagram showing the configuration of a conventional device that measures distance from the amplitude change of a combined received signal of a reference signal light and a reflected signal light from a moving object, and Fig. 2a shows a distance change of the combined received signal light. Figure 2b is a characteristic diagram showing the relationship between reception amplitude and distance, Figure 2c is a vector diagram showing the effect of variation in the amount of reflected signal light, and Figure 3 is a diagram showing the measurement principle of this invention. 4 is a conceptual diagram for explaining the principle of detecting the amount of reflected signal light, FIG. 5a is an outline diagram of the ring-shaped reflector, and FIG. 5b is the moving distance of the ring-shaped reflector and the amount of reflected light. FIG. 6 is a block diagram of the device configuration of an embodiment of the device of the present invention. In the figure, 1 is a beam splitter, 2 is a light emitting element, 3 is a light receiving element, 4 is a moving body, 5 is a reflecting mirror, C is a ring-shaped reflecting mirror, 6
7 is a sine wave oscillator, 7 is a drive circuit, 8 is an amplifier, 9. γ,
9" is a detector, 10 is a level meter, 11 is an optical chopper, 1
2 is an analog switch circuit, 13 is an arithmetic circuit, 14 is a reference signal generation circuit, 15 is a reflector moving device, and 16 is an AG
It is an amplifier with C. Note that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 発光素子から出射する正弦波変調された送信信号光
を移動体へ向は放射し、その移動体から反射される信号
光と、上記送信信号光の一部を取り出した参照信号光と
の合成信号光を受光し、その受信倍幅の変化から移動体
までの距離を測定する距離検知装置において、ビーム・
スプリッタを介して発光素子、受光素子、移動体、およ
びリング状の反射鏡とを互いに90°の角度をなすよう
に配置するとともに上記ビーム・スプリッタとリング状
の反射鏡との間に光チョッパーを挿入することにより移
動体からの反射信号光量を検出し、その検出信号を用い
て上記リング状の反射鏡の設置位置を動かし、上記参照
信号光の光量を変化させるように光学系を構成したこと
を特徴とする距離検知装置。
1. Sine wave modulated transmission signal light emitted from a light emitting element is emitted toward a moving object, and the signal light reflected from the moving object is combined with a reference signal light obtained by extracting a part of the above transmission signal light. In a distance detection device that receives signal light and measures the distance to a moving object from changes in the reception double width,
A light emitting element, a light receiving element, a moving body, and a ring-shaped reflecting mirror are arranged through a splitter so as to make an angle of 90 degrees to each other, and an optical chopper is installed between the beam splitter and the ring-shaped reflecting mirror. The optical system is configured to detect the amount of reflected signal light from the moving body by inserting the ring-shaped reflector, and use the detected signal to move the installation position of the ring-shaped reflector to change the amount of the reference signal light. A distance detection device featuring:
JP52019875A 1977-02-25 1977-02-25 distance detection device Expired JPS5912146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52019875A JPS5912146B2 (en) 1977-02-25 1977-02-25 distance detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52019875A JPS5912146B2 (en) 1977-02-25 1977-02-25 distance detection device

Publications (2)

Publication Number Publication Date
JPS53105263A JPS53105263A (en) 1978-09-13
JPS5912146B2 true JPS5912146B2 (en) 1984-03-21

Family

ID=12011375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52019875A Expired JPS5912146B2 (en) 1977-02-25 1977-02-25 distance detection device

Country Status (1)

Country Link
JP (1) JPS5912146B2 (en)

Also Published As

Publication number Publication date
JPS53105263A (en) 1978-09-13

Similar Documents

Publication Publication Date Title
US3419330A (en) Diffraction grating angular rate sensor
JP5590884B2 (en) Optical distance measuring method and optical distance measuring apparatus using the same
US4600299A (en) Optical distance measuring instrument
JP3622969B2 (en) Laser sensor capable of measuring distance, speed and acceleration
JPH0749207A (en) Absolute interference measuring method and laser interferometer suitable for method thereof
EP0947834B1 (en) Detection of air flow speed and flow direction
JP2732849B2 (en) Interferometer
US5546185A (en) Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on michelson interferometer
US5210587A (en) Optical distance measuring apparatus
US20060060759A1 (en) Method and apparatus for measurement of optical detector linearity
JPS6123910A (en) Optical range measuring device
JPS5912146B2 (en) distance detection device
JPH1123710A (en) Range finder
US4397548A (en) Distance measuring system
US4884888A (en) Method and device for contactless optical measurement of distance changes
JP3529516B2 (en) Optical measuring device
JPS5866881A (en) Surveying equipment by light wave
JPS5930233B2 (en) distance measuring device
JPH10339605A (en) Optical range finder
JPS5928273B2 (en) distance measuring device
KR0140128B1 (en) The apparatus and method for distance error correctable optic distantt measurement
CN113280739A (en) Displacement sensor based on photoelectric detector array and measuring method thereof
KR950005035Y1 (en) Distance counting apparauts for auto focus camera
JPH0534437A (en) Laser distance measuring apparatus
JPS5811565B2 (en) fiber optic equipment