JPS5928273B2 - distance measuring device - Google Patents

distance measuring device

Info

Publication number
JPS5928273B2
JPS5928273B2 JP51153712A JP15371276A JPS5928273B2 JP S5928273 B2 JPS5928273 B2 JP S5928273B2 JP 51153712 A JP51153712 A JP 51153712A JP 15371276 A JP15371276 A JP 15371276A JP S5928273 B2 JPS5928273 B2 JP S5928273B2
Authority
JP
Japan
Prior art keywords
light
frequency
signal light
distance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51153712A
Other languages
Japanese (ja)
Other versions
JPS5377660A (en
Inventor
宗彦 長能
久美雄 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP51153712A priority Critical patent/JPS5928273B2/en
Publication of JPS5377660A publication Critical patent/JPS5377660A/en
Publication of JPS5928273B2 publication Critical patent/JPS5928273B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 この発明は、正弦波変調光を用いて静止または移動して
いる物体までの距離を測定する装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that uses sinusoidally modulated light to measure the distance to a stationary or moving object.

正弦波変調光を送信・受信し、その信号間の位相差θか
ら送信変調光を反射する物体までの距離を求める従来装
置は、第1図のブロック図で示すような構成であった。
A conventional device that transmits and receives sinusoidal modulated light and determines the distance to an object that reflects the transmitted modulated light from the phase difference θ between the signals has a configuration as shown in the block diagram of FIG.

すなわち、光学系の構成は、1個のビームスプリッタ1
を中心に、発光素子2と受光素子3とが互いに直交する
ようになっており、この発光素子2を変調周波数fの発
振器4の信号で変調し発光素子2から出射する送信信号
光は、静止または移動している反射物体5で反射され、
再びビームスプリッタ1に戻り、このビームスプリッタ
1で光路を変更され、受光素子3で受信される。
In other words, the configuration of the optical system consists of one beam splitter 1
The light-emitting element 2 and the light-receiving element 3 are arranged orthogonal to each other with the center at or reflected by a moving reflective object 5,
The light returns to the beam splitter 1 again, the optical path is changed by the beam splitter 1, and the light is received by the light receiving element 3.

この装置で送信・受信信号間の位相差を求めるには、上
記発振器4からの信号位相を基準とし、受光素子3から
の受信信号位相を位相測定器6で測定することになって
いるため、送信部では駆動回路γまた、受信部では増幅
器8、波形変換回路9などで位相ドリフトなどの信号位
相変動が発生し、測定精度が高くなる欠点があった。
In order to determine the phase difference between the transmitted and received signals with this device, the phase of the signal received from the light receiving element 3 is measured using the phase measuring device 6, using the signal phase from the oscillator 4 as a reference. Signal phase fluctuations such as phase drift occur in the drive circuit γ in the transmitting section and in the amplifier 8, waveform conversion circuit 9, etc. in the receiving section, resulting in high measurement accuracy.

この発明は、これらの欠点を除去するため、受光素子に
対向させて反射鏡を設け、静止または移動している反射
物体からの反射信号光と、送信信号光の一部との合成信
号光を受信し、かス変調周波数の掃引によって得られる
合成受信信号光の振幅変化と変調周波数との関係を用い
て反射物体までの距離を高精度で測定する測距装置を提
供しようとするものである。
In order to eliminate these drawbacks, the present invention provides a reflecting mirror facing the light-receiving element, and combines the reflected signal light from a stationary or moving reflecting object with a part of the transmitted signal light. The object of the present invention is to provide a distance measuring device that measures the distance to a reflecting object with high precision using the relationship between the modulation frequency and the amplitude change of the synthesized received signal light obtained by sweeping the cass modulation frequency. .

第2図、第3図はこの発明の詳細な説明する概念図であ
る。
FIGS. 2 and 3 are conceptual diagrams explaining the invention in detail.

第2図は、光学系の基本構成図を示したものであり、発
光素子2、受光素子3、静止または移動している反射物
体5および反射鏡10は、ビームスプリッタ1を中心に
して互いに90゜の角度をなす位置関係になっており、
受光素子3には、反射物体5からの反射信号光と発行素
子2から出射される送信信号光の一部が反射鏡10で反
射された参照信号光との合成信号光が入射することにな
る。
FIG. 2 shows a basic configuration diagram of the optical system, in which a light emitting element 2, a light receiving element 3, a stationary or moving reflecting object 5, and a reflecting mirror 10 are arranged at 90 degrees from each other with the beam splitter 1 at the center. The positional relationship forms an angle of °,
A combined signal light consisting of the reflected signal light from the reflecting object 5 and the reference signal light obtained by reflecting a part of the transmitted signal light emitted from the emitting element 2 by the reflecting mirror 10 enters the light receiving element 3. .

第3図aは、反射物体が静止している場合の上記合成信
号光の変調周波数変化に対するベクトル変化を示したも
ので、合成受信信号光Rsは、参照信号光Riと静止し
ている反射物体からの反射信号光Rrとのベクトル和と
なり、その受信信号光の振幅Rsは、変調周波数の変化
に伴って図の円周α上を動く。
FIG. 3a shows the vector change with respect to the modulation frequency change of the composite signal light when the reflecting object is stationary. The amplitude Rs of the received signal light moves on the circumference α in the figure as the modulation frequency changes.

変調周波数の変化と振幅Psの変化との関係を示したの
が第3図すであり、波形の変化は正弦波状になり、その
振幅の最大値と最小値はそれぞれ第3図aにおけるA点
、B点に対応する。
Figure 3 shows the relationship between the change in modulation frequency and the change in amplitude Ps.The change in waveform is sinusoidal, and the maximum and minimum values of the amplitude are respectively at point A in Figure 3a. , corresponds to point B.

このようなA−Bの変化を与える変調周波数差△fは、
第1式のようになる。
The modulation frequency difference △f that gives such a change in A-B is:
It becomes like the first equation.

すなわち、合成受信信号光の振幅変化の最大・最小値か
ら第(1)式より、静止している反射物体までの距離り
が求まることがわかる。
That is, it can be seen that the distance to the stationary reflecting object can be found from the maximum and minimum values of the amplitude change of the combined received signal light from equation (1).

なお、Cは光速である。Note that C is the speed of light.

以上では、反射物体が静止している場合について説明し
たが、移動する反射体の場合にも、その反射体の移動距
離の時間変化は最大]、Oms程度であるのに対し変調
周波数の掃引時間が高々100μsにでき、第4図に示
すようにその距離の時間変化は、掃引時間△Tに比べて
緩やかとなるため、1回の周波数掃引時間内では距離一
定と見ることができる。
In the above, we have explained the case where the reflecting object is stationary, but even in the case of a moving reflecting object, the maximum time change in the moving distance of the reflecting object is about Oms, whereas the sweep time of the modulation frequency is can be 100 μs at most, and as shown in FIG. 4, the time change in the distance is gradual compared to the sweep time ΔT, so the distance can be considered to be constant within one frequency sweep time.

第4図aは、距離りの時間変更を示しており、その任意
の2点PおよびQ部分を拡大して、それぞれ距離りの時
間変化と変調周波数fの掃引の時間変化ならびに受信幅
Rsの時間変化との関係を示したのが第4図b、第4図
Cである。
Figure 4a shows the time change of the distance, and the two arbitrary points P and Q are enlarged to show the time change of the distance, the time change of the sweep of the modulation frequency f, and the reception width Rs. Figures 4b and 4c show the relationship with time changes.

このとき、変調周波数の掃引により変化する受信倍幅R
sの最大値と最小値とを与える周波数の差△f1p△f
2を求めることにより、第(1)式から移動している反
射物体までの瞬時の距離L1.L2をそれぞれ求めるこ
とができる。
At this time, the reception double width R changes due to the sweep of the modulation frequency.
Difference in frequencies △f1p△f that gives the maximum and minimum values of s
2, the instantaneous distance L1.2 to the moving reflecting object can be obtained from equation (1). L2 can be obtained respectively.

第5図は、上記測定原理に基く、この発明による実施例
を示すブロック図である。
FIG. 5 is a block diagram showing an embodiment of the present invention based on the above measurement principle.

第5図において、1〜10は第1図、第2図と同じであ
り、駆動回路7を用い周波数掃引発振器11からの信号
に比例させて発光素子2を変調し、変調光を出射する。
In FIG. 5, numerals 1 to 10 are the same as those in FIGS. 1 and 2, and a drive circuit 7 is used to modulate the light emitting element 2 in proportion to the signal from the frequency sweep oscillator 11 to emit modulated light.

そのとき静止または移動している反射物体5からの反射
信号光と反射鏡10で反射される参照信号光との合成信
号光を受光素子3で受光し増幅器8で増幅した後、検波
器12で検波する。
At that time, the combined signal light of the reflected signal light from the stationary or moving reflecting object 5 and the reference signal light reflected by the reflecting mirror 10 is received by the light receiving element 3, amplified by the amplifier 8, and then transmitted to the detector 12. Detect.

その後、検波した信号をリミッタアンプ13に入力した
後、ゲート回路14に入れる。
Thereafter, the detected signal is input to the limiter amplifier 13 and then to the gate circuit 14.

ゲート回路14では、変調周波数の掃引に伴い、受信信
号の振幅変化の最大・最小値に対してON、OFFの切
換え信号を発生し、そのときのON、OFF切換え時の
変調周波数を周波数計15で読みとる。
The gate circuit 14 generates an ON/OFF switching signal for the maximum/minimum value of the amplitude change of the received signal as the modulation frequency is swept, and the frequency meter 15 measures the modulation frequency at the time of ON/OFF switching. Read it with

このとき周波数掃引発振器11を自動的に繰り返し掃引
させるとともに、ゲート回路14から出力されるON、
OFFの切換え信号に基づいて周波数計15により読み
取った変調周波数を、各々一時レジスタに記憶した後、
両者の周波数差を求め、第(1)式を用いて距離を計算
する演算回路16によって、自動的に表示回路17に反
射物体5までの距離を表示する。
At this time, the frequency sweep oscillator 11 is automatically repeatedly swept, and the ON signal output from the gate circuit 14 is
After storing the modulation frequencies read by the frequency meter 15 in the respective temporary registers based on the OFF switching signal,
The distance to the reflective object 5 is automatically displayed on the display circuit 17 by the arithmetic circuit 16 which determines the frequency difference between the two and calculates the distance using equation (1).

なお、この発明において、反射物体までの距離が異なる
と合成受信信号の光量が異なるので、受信幅の最大値、
最小値は相対的に変化するが、その振幅の最大・最小を
与える変調周波数の関係は変らず問題はない。
In addition, in this invention, since the light intensity of the combined received signal differs when the distance to the reflecting object differs, the maximum value of the reception width,
Although the minimum value changes relatively, the relationship between the modulation frequencies that give the maximum and minimum amplitude does not change and there is no problem.

また、反射物体が移動中にその反射率が変動する場合に
は測定誤差となるが、繰り返し掃引を行うことによって
、誤差を補償することができる。
Further, if the reflectance of the reflective object changes while it is moving, a measurement error will occur, but this error can be compensated for by repeatedly performing sweeps.

以上のように、この発明によれば、発光素子から出射す
る変調光の周波数を掃引し、そのときの受信振幅変化の
最大・最小値を与える変調周波数の差を求めるだけであ
り、装置が簡単になりしかも安定に動作する。
As described above, according to the present invention, it is only necessary to sweep the frequency of the modulated light emitted from the light emitting element and find the difference in the modulation frequency that gives the maximum and minimum values of the received amplitude change at that time, and the device is simple. Moreover, it operates stably.

また、この発明では、電子回路部分で発生する位相変動
が除去できるため測定精度を高くすることができる。
Further, according to the present invention, since phase fluctuations occurring in the electronic circuit portion can be removed, measurement accuracy can be increased.

なお以上では、この発明による装置は、静止している場
合について説明したがこの発明は、これに限らずこの発
明による装置を移動体に塔載して距離を測定する場合に
も適用できることは言うまでもない。
Although the device according to the present invention has been described above with reference to the case where it is stationary, it goes without saying that the present invention is not limited to this and can be applied to cases where the device according to the present invention is mounted on a moving body to measure distance. stomach.

以上のように、この発明に係わる測距装置では、静止ま
たは移動している反射物体からの反射信号光と、送信信
号光の一部を取り出した参照信号光との合成信号光を1
個の受光素子で受光する光学系の構成となっており、し
かも、変調周波数を掃引することによって生じる上記合
成信号光の振幅変化を測定する方式となっているので、
光学的にも、電子回路的にも構成が簡単で、しかも測定
精度が高く簡便で安価に距離を測定する手段を提供する
ことができる。
As described above, in the distance measuring device according to the present invention, the combined signal light of the reflected signal light from a stationary or moving reflecting object and the reference signal light extracted from a part of the transmitted signal light is combined into one signal light.
The optical system is configured to receive light with individual light receiving elements, and the method measures the amplitude change of the composite signal light caused by sweeping the modulation frequency.
It is possible to provide a means for measuring distance simply and inexpensively, which has a simple configuration both optically and electronically, and has high measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、正弦波変調光の位相差から、距離を測定する
従来装置のブロック図、第2図はこの発明による光学系
の基本構成図、第3a図は合成受信信号光の変調周波数
変化に対するベクトル図、第3b図は受信倍幅と変調周
波数との関係を示す特性図、第4a図は距離の時間変化
を示す概念図、第4b図、第4c図はそれぞれP点およ
び9点における距離の時間変化と周波数掃引の時間変化
ならびに受信振幅の時間変化との関係を示す拡大図、第
5図はこの発明による測距装置の一実施例を示すブロッ
ク図であり、1はビームスプリッタ、2は発光素子、3
は受光素子、4は発振器、5は静止または移動している
反射物体、6は位相測定器、7は駆動回路器、8は増幅
器、9は波形変換回路、10は反射鏡、11は周波数掃
引発振器、12は検波器、13はリミッタアンプ、14
はゲート回路、15は周波数計、16は演算回路、17
は表示回路である。 なお、図中同一あるいは相幽部分には同一符号を付して
示しである。
Figure 1 is a block diagram of a conventional device that measures distance from the phase difference of sinusoidally modulated light, Figure 2 is a basic configuration diagram of an optical system according to the present invention, and Figure 3a is a change in modulation frequency of combined received signal light. Figure 3b is a characteristic diagram showing the relationship between reception double width and modulation frequency, Figure 4a is a conceptual diagram showing changes in distance over time, and Figures 4b and 4c are vector diagrams at points P and 9, respectively. FIG. 5 is an enlarged view showing the relationship between the time change of distance, the time change of frequency sweep, and the time change of reception amplitude. FIG. 2 is a light emitting element, 3
is a light receiving element, 4 is an oscillator, 5 is a stationary or moving reflective object, 6 is a phase measuring device, 7 is a drive circuit, 8 is an amplifier, 9 is a waveform conversion circuit, 10 is a reflecting mirror, 11 is a frequency sweep Oscillator, 12 is a detector, 13 is a limiter amplifier, 14
is a gate circuit, 15 is a frequency meter, 16 is an arithmetic circuit, 17
is a display circuit. In addition, the same reference numerals are attached to the same or similar parts in the figures.

Claims (1)

【特許請求の範囲】[Claims] 1 変調光を静止または移動する物体に向は出射させ、
物体から反射される信号光と送信信号光間の位置差から
上記物体までの距離を測定する測定装置において、周波
数掃引発振器で発生させた変調信号に基づいた送信信号
光を出射する発光素子、上記発行素子から出射した送信
信号光の一部を参照信号光として反射させ受光素子に入
射させる反射鏡、前記物体からの反射信号光と上記参照
信号光とを合成して受光する受光素子をビームスプリッ
タを中心に上記反射鏡と受光素子を対向させ、かつ発光
素子を上記反射鏡と受光素子に対し互いに直角になすよ
うに構成した光学系と、上記発光素子に供給する変調信
号の周波数を掃引する周波数掃引発振器、上記受光素子
で光−電変換して得た合成受信信号の振幅変化の1周期
に対応する変調周波数差を検出する周波数計、上記周波
数計で検出した変調周波数差を物体までの距離に換算す
る演算回路、上記演算回路からの出力を表示する表示回
路とで構成した信号処理系とを具備したことを特徴とす
る測距装置。
1. Emits the modulated light toward a stationary or moving object,
In a measuring device that measures the distance to the object based on the positional difference between the signal light reflected from the object and the transmitted signal light, the light emitting element emits the transmitted signal light based on the modulated signal generated by the frequency sweep oscillator; A reflecting mirror that reflects a part of the transmitted signal light emitted from the emitting element as a reference signal light and makes it enter the light receiving element, and a light receiving element that combines the reflected signal light from the object and the reference signal light and receives the light is a beam splitter. an optical system configured such that the reflecting mirror and the light-receiving element are opposed to each other with the center at the center, and the light-emitting element is perpendicular to the reflecting mirror and the light-receiving element, and the frequency of the modulation signal supplied to the light-emitting element is swept. A frequency sweep oscillator, a frequency meter that detects the modulation frequency difference corresponding to one cycle of the amplitude change of the composite received signal obtained by photo-electrical conversion with the photodetector, and a frequency sweep oscillator that detects the modulation frequency difference detected by the frequency meter to the object. What is claimed is: 1. A distance measuring device comprising: a signal processing system comprising an arithmetic circuit that converts into a distance; and a display circuit that displays an output from the arithmetic circuit.
JP51153712A 1976-12-21 1976-12-21 distance measuring device Expired JPS5928273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51153712A JPS5928273B2 (en) 1976-12-21 1976-12-21 distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51153712A JPS5928273B2 (en) 1976-12-21 1976-12-21 distance measuring device

Publications (2)

Publication Number Publication Date
JPS5377660A JPS5377660A (en) 1978-07-10
JPS5928273B2 true JPS5928273B2 (en) 1984-07-11

Family

ID=15568438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51153712A Expired JPS5928273B2 (en) 1976-12-21 1976-12-21 distance measuring device

Country Status (1)

Country Link
JP (1) JPS5928273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115885A (en) * 1983-11-29 1985-06-22 West Electric Co Ltd Method and device for distance measurement utilizing received light quantity detection system
FR2608284B1 (en) * 1986-12-16 1989-03-31 Thomson Csf COHERENT ILLUMINATOR OPTICAL TELEMETER, INSENSITIVE TO VIBRATIONS AND THERMAL VARIATIONS

Also Published As

Publication number Publication date
JPS5377660A (en) 1978-07-10

Similar Documents

Publication Publication Date Title
US11467282B2 (en) Chirped coherent laser radar system and method
US5309212A (en) Scanning rangefinder with range to frequency conversion
US5200793A (en) Range finding array camera
EP2728377B1 (en) Modulated laser range finder and method
US20230029592A1 (en) Method for scanning a transmitted beam through a 360° field-of-view (fov)
US4666304A (en) Optical measurement apparatus
JPS5928273B2 (en) distance measuring device
JPH0569192B2 (en)
JPH0915334A (en) Laser equipment for measuring distance
EP0449337A2 (en) Range finding array camera
JPS61260113A (en) Detector for tilt angle of plane
JPS5866881A (en) Surveying equipment by light wave
US4397548A (en) Distance measuring system
JPS6371675A (en) Laser distance measuring instrument
JPS5930233B2 (en) distance measuring device
JPH0921871A (en) Semiconductor laser distance measuring device
JP2007218728A (en) Range finder
JPH11118928A (en) Electrooptical distance meter
JPH02239843A (en) Height measuring instrument
JP2509301B2 (en) Lightwave ranging device
JP3263781B2 (en) Light wave phase difference type snow depth automatic measurement method and apparatus
JPH08129068A (en) Radar method using frequency sweep/modulation
JPH0357913A (en) Distance measuring sensor
JPS5811565B2 (en) fiber optic equipment
JP2685922B2 (en) Long-distance ranging sensor