JPS59119679A - Electrode for fuel cell - Google Patents

Electrode for fuel cell

Info

Publication number
JPS59119679A
JPS59119679A JP57232333A JP23233382A JPS59119679A JP S59119679 A JPS59119679 A JP S59119679A JP 57232333 A JP57232333 A JP 57232333A JP 23233382 A JP23233382 A JP 23233382A JP S59119679 A JPS59119679 A JP S59119679A
Authority
JP
Japan
Prior art keywords
electrode
powder
noble metal
fuel cell
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57232333A
Other languages
Japanese (ja)
Inventor
Tadanori Maoka
忠則 真岡
Sanji Ueno
上野 三司
Tamotsu Shirogami
城上 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57232333A priority Critical patent/JPS59119679A/en
Publication of JPS59119679A publication Critical patent/JPS59119679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the property of a carbon carrier and increase the activity and performance of a catalyst of an electrode for a fuel cell by using graphite powder prepared by heating with a specified metal oxide as graphite carrying a noble metal catalyst. CONSTITUTION:At least one kind of metal oxide selected from K2O, Na2O, or Al2O3 is uniformly mixed with graphite powder, and they are heated in an atmosphere of argon. New pores are formed in graphite powder by this treatment. A noble metal catalyst prepared by carrying a noble metal of platinum group on the graphite is spreaded in a porous substrate with a binder to form an electrode for a fuel cell. Carrying ability of noble metal powder and conductivity in horizontal and vertical directions of carbon powder are increased by this process. Therefore, a fuel cell using this electrode provides high cativity and long life.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は新規な燃料電池用電極、特に炭素担体の性質を
改良して燃料電池の性能を向上せしめた新規な燃料電池
用電極に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a novel fuel cell electrode, and particularly to a novel fuel cell electrode that improves the performance of the fuel cell by improving the properties of the carbon support. .

〔発明の技術的背景〕[Technical background of the invention]

一対の隔置された燃料極と酸化剤極間に電解質保持マ)
 IJクスを配置してなる酸性電解質燃料電池において
、上記の両電極は通常炭素粉担体に貴金属粒子を担持し
てなる貴金属触媒を結着剤とともに混練したものを多孔
性基体上に塗着することにより製造されている。周知の
ように、白金等の貴金属粒子を担体に担持させてなる触
媒を基体上に塗着してなる電極においてはその触媒の活
性は担体の性質によるところが大きい。更に電池を作動
させたとき、担体上の触媒粒子が凝集を起し、その表面
積を減少させ、ひいては性能の劣化を来すシンタリング
と呼ばれる現象のおこり易さ、又電池稼動時において担
体自体が電解質腐食溶解を起し性能劣化を来す現象もま
た担体の性質によるところが太きい。かくて燃料電池の
商品化に際しての高性能化、長寿命化という工大要請に
対して効果のある触媒担体を有する電極の開発が要求さ
れていた。
An electrolyte retainer between a pair of spaced apart fuel electrodes and oxidizer electrodes)
In an acid electrolyte fuel cell in which an IJ gas is arranged, both of the above electrodes are usually made by kneading a noble metal catalyst consisting of noble metal particles supported on a carbon powder carrier with a binder and applying it onto a porous substrate. Manufactured by. As is well known, in an electrode formed by coating a catalyst on a substrate, which is made by supporting noble metal particles such as platinum on a carrier, the activity of the catalyst largely depends on the properties of the carrier. Furthermore, when the battery is operated, catalyst particles on the carrier tend to agglomerate, reducing its surface area and resulting in performance deterioration, a phenomenon called sintering. The phenomenon of electrolyte corrosion and dissolution resulting in performance deterioration also largely depends on the properties of the carrier. Thus, there has been a demand for the development of an electrode having a catalyst carrier that is effective in meeting the demands of engineering universities for higher performance and longer life when commercializing fuel cells.

〔従来技術の問題点〕[Problems with conventional technology]

電極触媒担体としての炭素粉の一般的性質としては導電
性が良く高温高圧において化学的に安定であり、かつ貴
金属微粒子が薄く分散されるように比表面積が大である
ことが要求される。炭素粉末には、活性炭、カーボンブ
ラック、黒鉛などがある。活性炭は比表面積が1000
m”/y に達するほど大きく高度の多孔性構造を有し
ている。又カーボンブラックは高カーボン含有の有機物
質の燃焼により製造し、多孔質のものと非多孔質のもの
とがある。黒鉛には天然のものと人造のものがある。こ
の他非結晶性のガラス状カーボン、セルロースカーボン
等もある。
The general properties of carbon powder used as an electrode catalyst carrier are that it has good conductivity, is chemically stable at high temperatures and pressures, and has a large specific surface area so that noble metal fine particles can be thinly dispersed. Carbon powders include activated carbon, carbon black, and graphite. Activated carbon has a specific surface area of 1000
m”/y and has a highly porous structure. Carbon black is also produced by combustion of organic materials with high carbon content, and can be porous or non-porous. Graphite There are natural and man-made carbons.In addition, there are also non-crystalline glassy carbons, cellulose carbons, etc.

これら炭素粉担体の効果を調べるため、同一量の白金を
担持させてカソード極をつくり、その性能をテストする
と、炭素粉担体の効果として、黒鉛、カーボンブラック
、活性炭の順に良い性能を示すことが知られているC 
IJatiOnal Fuel CellElemin
ar  、  July  /デtO,P3り 、  
 P、5tonehart6 thl)a即ちカーボン
ブラックを加熱処理すると黒鉛化が進行し、これにつれ
て酸素還元反応に対する活性が増進されると報告されて
いる。従って黒鉛粉末が高性能電極の構成に必要と期待
される。黒鉛粉末は加熱処理したものが高性能である。
In order to investigate the effects of these carbon powder carriers, a cathode electrode was made with the same amount of platinum supported and its performance was tested. As a result, the carbon powder carriers showed better performance in the order of graphite, carbon black, and activated carbon. known C
IJatiOnal Fuel CellElemin
ar, July / DetO, P3ri,
It has been reported that when P, 5tonehart6 thl) a, that is, carbon black is heat-treated, graphitization progresses, and the activity for oxygen reduction reaction increases accordingly. Therefore, graphite powder is expected to be necessary in the construction of high-performance electrodes. Graphite powder that has been heat-treated has high performance.

しかしこの黒鉛粉は層状構造をなしており、その導電性
は水平方向と垂直方向において大きな差があり、垂直方
向の導電性がかなり低いことが難点になっていた。又黒
鉛粉は一般に貴金属微粒子の担持能力が小さいことも難
点になっていた。
However, this graphite powder has a layered structure, and its electrical conductivity differs greatly between the horizontal and vertical directions, and the drawback is that the electrical conductivity in the vertical direction is quite low. Another drawback is that graphite powder generally has a low ability to support fine noble metal particles.

〔発明の目的〕[Purpose of the invention]

従って本発明の目的は触媒を担持する炭素粉として用い
られる黒鉛粉の性質を改良して触媒の活性乃至性能の改
良された燃料電池用電極を提供することを目的とするも
のである。
Therefore, an object of the present invention is to provide a fuel cell electrode with improved catalyst activity and performance by improving the properties of graphite powder used as carbon powder supporting a catalyst.

〔発明の概要〕[Summary of the invention]

よって本発明は炭素粉に貴金属粒子を担持させた貴金属
触媒を結着剤とともに多孔性基体上に塗着せしめてなる
燃料電池用電極において、前記炭素粉として、K、0.
Na2O,Al、O,からなる群から選ばれた少くとも
7種の金属酸化物とともに加熱処理を施した黒鉛粉を用
いることを特徴とする燃料電池用電極を提供するもので
ある。
Therefore, the present invention provides a fuel cell electrode in which a noble metal catalyst in which noble metal particles are supported on carbon powder is coated on a porous substrate together with a binder.
The present invention provides an electrode for a fuel cell characterized by using graphite powder heat-treated with at least seven metal oxides selected from the group consisting of Na2O, Al, and O.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明について更に詳しく説明すれば、本発明では黒鉛
粉に金属酸化物を添加して加熱処理したものを用いるの
であって、この金属酸化物としては酸化カリウムに、0
 、酸化ナトリウムNaユO1酸化アル1ニウムAl、
20.が用いられる。これら金属酸化物は少くともls
i用いられる。即ち通常は7種であるが数種組合わせて
用いることもできる。この黒鉛粉は平均粒径0J−jμ
の範囲の大きさが好ましく、金属酸化物も同じ程度の大
きさの粉末として用いられる。添加する量は重量で黒鉛
粉/に対して金属酸化物0.0/ −0,Ojの範囲の
割合が好ましい。この範囲以下では効果なく、又これ以
上加えても効果は変らない。
To explain the present invention in more detail, the present invention uses graphite powder that has been heat-treated by adding a metal oxide.
, sodium oxide, NaYO1, aluminum oxide, Al,
20. is used. These metal oxides are at least ls
i is used. That is, seven types are usually used, but several types can be used in combination. This graphite powder has an average particle size of 0J-jμ
The metal oxide is preferably used as a powder of a similar size. The amount to be added is preferably in the range of 0.0/-0.0, Oj of graphite powder/metal oxide. There is no effect below this range, and the effect will not change even if added beyond this range.

このようにして黒鉛粉に上記金属酸化物を添加して均一
に混合した後、不活性ガス、例えば窒素、アルゴンの雰
囲気下に300〜3jO″Cの温度で73〜3分間加熱
する。このように黒鉛粉をにユO,HaユOAmユO0
の中のいづれかの金属酸化物とともに加熱するときは黒
鉛粉中に新しい細孔が形成され、また層間にアルカリ金
属又はアルミニウム金属な導入することにより垂直方向
に、水平方向と同程度の高い導電性を与えることができ
る。
After adding the above-mentioned metal oxide to the graphite powder and mixing it uniformly, it is heated at a temperature of 300 to 3JO''C for 73 to 3 minutes in an atmosphere of an inert gas such as nitrogen or argon. Add graphite powder to the graphite powder.
When heated with any of the metal oxides in the graphite powder, new pores are formed in the graphite powder, and by introducing alkali metal or aluminum metal between the layers, the conductivity is as high in the vertical direction as in the horizontal direction. can be given.

このようにして見られた黒鉛粉を用いて以後は従来と同
様にして燃料電池用電極とする。即ち上記の金属酸化物
のいずれか少くとも7種を添加し不活性ガス雰囲気下に
加熱処理してえられた黒鉛粉は徐冷後、水に分散させ、
触媒作用をする白金等白金族金属からなる貴金属の化合
物の溶液、たとえば塩化白金酸溶液を加えて攪拌する。
The graphite powder obtained in this way is then used to prepare a fuel cell electrode in the same manner as in the conventional method. That is, graphite powder obtained by adding at least seven of the above metal oxides and heat-treating in an inert gas atmosphere is slowly cooled and then dispersed in water.
A solution of a noble metal compound consisting of a platinum group metal such as platinum that acts as a catalyst, such as a chloroplatinic acid solution, is added and stirred.

ここに更に過剰量の蟻酸ナトリウムを加えて3〜j時間
の間超音波で攪拌する。吸引f過してr液に塩素イオン
が認められなくなるまでよく水洗した後、乾燥させて炭
素粉にたとえば白金微粒子を担持させた貴金属触媒粉末
とする。
An excess amount of sodium formate is further added to the mixture, and the mixture is stirred with ultrasonic waves for 3 to 1 hours. After passing through suction f and thoroughly washing with water until chlorine ions are no longer observed in the r liquid, it is dried to obtain noble metal catalyst powder in which fine particles of platinum, for example, are supported on carbon powder.

このようにして見られた貴金属触媒粉末は次いで撥水性
の結着剤、たとえばポリテトラフルオロエチレンの分散
液(商品名テフロンディスバージ1ン)を適量加えてよ
く混練し、この触媒粉末と結着剤の混合物を噴霧、塗布
或は浸漬等の適宜の手段、好ましくは噴霧、吹付けによ
り多孔質基体、例えばカーボンペーパーに塗着させ次い
で上記の如き不活性ガス雰囲気下に30O〜J!O’C
の温度に加熱、焼成して燃料電池用電極が製造される。
The precious metal catalyst powder thus obtained is then thoroughly kneaded with an appropriate amount of a water-repellent binder, such as a dispersion of polytetrafluoroethylene (trade name: Teflon Dispersion 1), to form a binder with the catalyst powder. A mixture of the agents is applied to a porous substrate, such as carbon paper, by appropriate means such as spraying, coating, or dipping, and is then applied to a porous substrate, such as carbon paper, under an inert gas atmosphere as described above. O'C
A fuel cell electrode is produced by heating and firing to a temperature of .

上記基体への塗着を完全にするために多孔性基体裏面か
ら真空ポンプにて吸引しなから噴霧、吹付けて塗着を行
なうこともできる。このようにしてえられた電極は貴金
属粒子の担持能力が増大され、導電性も増加され、より
高性能の燃料電池を組立てることができる。
In order to completely coat the substrate, the coating may be carried out by suctioning from the back surface of the porous substrate using a vacuum pump and then by spraying or spraying. The electrode thus obtained has an increased capacity to support noble metal particles and has increased conductivity, allowing for the construction of higher performance fuel cells.

同、このような電極を燃料電池用電極として用いるに際
してそれが具備すべき条件としては■素電池積層化時の
機械的強度、■高い電気伝導性、■ガス透過性、■高温
、高圧下における物理的、化学的安定性等があげられる
。このような諸条件を満たす電極を作製するには多孔性
基体であるカーボンペーパーの選定、貴金属触媒の担体
である炭素粉の選定とともに、貴金属触媒と結着剤との
混合法乃至はその塗着法の検討が必要である。
Similarly, when using such an electrode as a fuel cell electrode, the following conditions must be met: ■ Mechanical strength when stacking unit cells, ■ High electrical conductivity, ■ Gas permeability, and ■ High temperature and high pressure resistance. Examples include physical and chemical stability. In order to produce an electrode that satisfies these conditions, it is necessary to select carbon paper as a porous substrate, carbon powder as a carrier for a noble metal catalyst, and the method of mixing the noble metal catalyst and binder or its application. It is necessary to consider the law.

上述のように選定された多孔性基体上に相持触媒を塗着
する際、黒鉛粉(或はカーボンブラック)のうちのある
ものは粉体の粒子径が小さいため、噴霧、吹付けの際多
孔性基体の裏面に殆どの貴金属粒子が透過してしまうと
いう問題点がある。又このような電極を用いた素電池で
はマトリツクスとしてたとえばリン酸含有SiO粉体を
用いた場合SiC微粒子の電極裏面へのしみ出しによる
反応ガスのブロッキングが起り、電極反応が阻害される
という欠点があった。これに対して結着剤の種頌の選定
或はその量の増加によりその透過の割合を減らそうと試
みられたが、有効な結果はえられなかった。
When coating a supported catalyst on a porous substrate selected as described above, some graphite powders (or carbon black) have small particle diameters, so they do not have pores when sprayed or sprayed. There is a problem in that most of the noble metal particles pass through the back surface of the transparent substrate. In addition, in a unit cell using such an electrode, for example, if phosphoric acid-containing SiO powder is used as a matrix, reaction gas is blocked by seeping of SiC fine particles to the back surface of the electrode, which inhibits the electrode reaction. there were. Attempts have been made to reduce the permeation rate by selecting a starting binder or increasing its amount, but no effective results have been obtained.

しか1一本発明者等によれば、上記のような基体上に担
持触媒を塗着するに際し、その触媒塗着に先立ってあら
かじめ担体たる黒鉛粉と結着剤との混合物を少くとも2
回以上塗布、圧着することによって噴霧吹付は時の触媒
粒子の担体裏面への透過を阻止しうろことが見出された
However, according to the present inventors, when coating a supported catalyst on a substrate such as the one described above, a mixture of graphite powder serving as a carrier and a binder is preliminarily mixed with at least two
It has been found that by applying and pressing the catalyst more than once, it is possible to prevent the catalyst particles from permeating to the back surface of the carrier during spraying.

今、黒鉛粉gyを水xtomtに分散させ、ミキサー攪
拌する。ここに30係テフロンデイヌパージ冒ン6dを
加え、おだ・やかに攪拌した後スプレーにてノズル圧、
y 駿4  で多孔性基体上に吹きつける。
Now, graphite powder gy is dispersed in water xtomt and stirred with a mixer. Add 6 d of 30% Teflon Dayne Purge to this, stir gently, and then spray to reduce the nozzle pressure.
Spray onto the porous substrate at 4 y.

この時、この基体裏面の吸引圧を測定すると’I:1c
mAqであった。次に同様にして黒鉛粉のみの分散液を
前記基体上に更に重ねてスプレー塗着すると裏面よりの
吸引圧はqOtYnAqに上昇した。最後に貴金属微粒
子を担持した平均粒径5ミクロンの鱗片黒鉛粉25Fを
水200 mlに分散させ、30チテフロンデイスバ一
ジ四ン/gmlを添加し穏かに攪拌した後、前記の基体
上に更に重ねてスプレー塗着すると裏面よりの吸引圧は
/りOcmk  に上昇したこと図面第3図に示すとお
りである。同、この図において黒丸は活性炭1回吹付け
の場合の吸引圧を示す。
At this time, when measuring the suction pressure on the back surface of this substrate, 'I: 1c
It was mAq. Next, in the same manner, when a dispersion of only graphite powder was further layered and spray-coated on the substrate, the suction pressure from the back surface increased to qOtYnAq. Finally, flake graphite powder 25F with an average particle size of 5 microns supporting precious metal fine particles was dispersed in 200 ml of water, and 30 titeflon difluoride/gml was added and stirred gently. As shown in Figure 3 of the drawings, when the coating was further applied by spray coating, the suction pressure from the back side increased to /Ocmk. In this figure, the black circle indicates the suction pressure when activated carbon is sprayed once.

この基体裏面よりの吸引圧は基体上への触欽の付着率、
逆に云うと基体裏面への触媒粒子の透過率の目安となっ
ている。たとえに活性炭に貴金属微粒子を担持したとき
のように炭素粉の粒径の太きたものは同一の真空ポンプ
で吸引した場合、その吸引圧はコ00tnA  にも達
する。これは吹きつけにより、活性炭粒子が多孔性基体
表面をほに完全に覆うため基体裏面よりの吸引効率がよ
くなり真空度が上昇するためと考えられ、この場合、基
体裏面への触媒の透過は殆どないと考えられる。
This suction pressure from the back side of the substrate is the adhesion rate of the touch on the substrate,
In other words, it is a measure of the transmittance of catalyst particles to the back surface of the substrate. For example, when carbon powder with a large particle size, such as when fine metal particles are supported on activated carbon, is suctioned by the same vacuum pump, the suction pressure reaches 00 tnA. This is thought to be because activated carbon particles completely cover the surface of the porous substrate by spraying, which improves suction efficiency from the back surface of the substrate and increases the degree of vacuum.In this case, the catalyst permeates to the back surface of the substrate. It is thought that there are almost no.

同、スプレー塗着の回数を増しても反応ガスの透過が抑
えられることなく従って電池の性能を損なうことはない
Similarly, even if the number of spray coatings is increased, the permeation of the reactive gas will not be suppressed and therefore the performance of the battery will not be impaired.

かくて本発明において金属酸化物を添加し加熱処理され
た黒鉛粉に貴金属微粒子を担持させてなる貴金属触媒を
結着剤とよく混練した後多孔質基体上に噴霧、吹付けに
より塗着する場合は、その塗着に先立りて予め黒鉛粉と
結着剤の混合物又は黒鉛粉の分散液を少くともコ度多孔
性基体上に噴霧塗着しておくこと、そしてその後に触媒
を担持した黒鉛粉を噴霧塗着させることが好ましい。
Thus, in the present invention, when a noble metal catalyst made by supporting noble metal fine particles on heat-treated graphite powder to which a metal oxide has been added is well kneaded with a binder, it is applied onto a porous substrate by spraying or spraying. Prior to application, a mixture of graphite powder and a binder or a dispersion of graphite powder is sprayed onto at least a solid porous substrate, and then a catalyst is supported. It is preferable to apply graphite powder by spraying.

〔発明の実施例〕[Embodiments of the invention]

例1・ 黒鉛粉309に酸化カリウムに、20  !fを添加し
、均一に混合した後アルゴンガス中−!00″Cにて/
j分間熱処理する。徐冷抜水コO0dに分散させそこに
73−の塩化白金酸溶液10−を加え攪拌する。
Example 1: Graphite powder 309, potassium oxide, 20! After adding f and mixing uniformly, in argon gas -! At 00″C/
Heat treat for j minutes. The mixture is dispersed in slowly cooled and drained water O0d, and a chloroplatinic acid solution of 73-10 is added thereto and stirred.

ここに過剰量の蟻酸ナトリウムを加え3〜j時間超音波
攪拌する。吸引f過してr液に塩素イオンが認められな
くなるまで水洗いした後乾燥させて白金触媒粉末とする
。このようにしてえられた触媒粒子wyを水3θdに分
散し攪拌後30%テフロンディスバージ冒ンlコdを加
え攪拌したものをカーボンペーパーからなる多孔性基体
にスプレー塗着し、ローラー圧着後窒素ガス中33o”
cでSO分間加熱焼成して電極を得た。
An excess amount of sodium formate is added to the mixture, and the mixture is ultrasonically stirred for 3 to 5 hours. The solution is filtered by suction and washed with water until no chlorine ions are observed in the solution, and then dried to obtain a platinum catalyst powder. The catalyst particles obtained in this manner were dispersed in water 3θd, stirred, and 30% Teflon disbarge solution was added and stirred.The resulting mixture was sprayed onto a porous substrate made of carbon paper, and after being crimped with a roller. 33o” in nitrogen gas
An electrode was obtained by heating and firing at SO for a minute at c.

かくて得られた電極を用いて素電池を組立てると第7図
の曲線のにみられるように、従来型の電極を用いた電池
よりも高い電池電圧を示すより高性能な電池を組立てる
ことができた。又この電極が溶解腐食に対して耐性の強
い性質が発揮され長寿命の電極を形成しうること第一図
ののとおりである。なお第一図はココOmA /6n:
lの定格電流で分極時の端子電圧の経時変化を示したも
のである。ここに用いた燃料は水素10%十炭酸ガス2
0%、酸化剤は空気であり、温度は190℃、圧力は常
圧であった。同、第1.2図曲線■は金属酸化物を添加
しない点を除いて例1のようにしてつくられた従来法に
よる電極を用いた電池の場合である。
When a unit cell is assembled using the electrodes obtained in this way, it is possible to assemble a higher performance battery that exhibits a higher battery voltage than a battery using conventional electrodes, as seen in the curve in Figure 7. did it. In addition, this electrode exhibits strong resistance to dissolution corrosion and can form a long-life electrode, as shown in Figure 1. The first figure is here OmA /6n:
This figure shows the change in terminal voltage over time during polarization at a rated current of 1. The fuel used here was 10% hydrogen and 2 carbon dioxide gas.
0%, the oxidizing agent was air, the temperature was 190°C, and the pressure was normal pressure. Curve 1 in FIG. 1.2 is for a battery using an electrode made by the conventional method as in Example 1, except that no metal oxide was added.

例コ。Example.

平均粒径jμの鱗状黒鉛粉g1pを水−〇〇 m/に分
散させミキサーで攪拌する。30%テフロンディスバー
ジ■ン6dを加え攪拌した後、表面積lIコ00i、厚
す0.41 ms、気孔率70%、面積抵抗o、4t(
Ωi)のカーボンペーパーからなる多孔性基体の裏面を
吸引しながらノズル圧3墾4−でその多孔性基体上にス
プレー塗着する。ローラー等で軽く圧着した後、同様の
混合液を再度塗着する。
1 p of scaly graphite powder with an average particle size of jμ is dispersed in -〇〇 m/ of water and stirred with a mixer. After adding 6d of 30% Teflon dispersion and stirring, the surface area was 00i, the thickness was 0.41 ms, the porosity was 70%, the area resistance was 4t (
While suctioning the back surface of a porous substrate made of carbon paper (Ωi), spray coating is applied onto the porous substrate at a nozzle pressure of 3-4. After pressing lightly with a roller, etc., apply the same mixture again.

最後に別途調製された白金微粒子を担持した黒鉛微粉末
myを水コθO−に分散攪拌後、30%テフロンディス
バージ璽ン/gdを加え攪拌した混合液を、前記の如く
a同氏に塗着した多孔性基体上に更にスプレー塗着し、
ローラーにより圧着した後窒素ガス中330 ’Cにて
9分間焼成して電極とする。
Finally, after dispersing and stirring separately prepared fine graphite powder my supporting platinum particles in water θO-, 30% Teflon disbarge/gd was added and stirred, and the mixture was applied to Mr. A as described above. Further spray coating on the porous substrate
After being pressed with a roller, the electrode was baked at 330'C in nitrogen gas for 9 minutes.

このようにして見られた電極を用いて素電池を組立てる
と第4図の曲線のにみられるような高活性、の特性を示
した。これに対して事前の一回塗着を行なわなかった従
来法による電極を用いた電池の場合は同曲線■のようで
あった。このときの燃料、酸化剤その他は例1の場合と
同様である。
When a unit cell was assembled using the electrode thus obtained, it exhibited high activity characteristics as seen in the curve of FIG. 4. On the other hand, in the case of a battery using an electrode according to the conventional method in which no single coating was applied in advance, the same curve (■) appeared. The fuel, oxidizer, and other components used at this time were the same as in Example 1.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明に従って、炭素粉としてに、O,N
a、Ol及びAI、03の群の金属酸化物の中食くとも
1種を添加し加熱処理を施してなる黒鉛粉を用いること
により、該黒鉛粉中の貴金属粒子担持能力の向上、水平
方向とともに垂直方向の導電性の向上などがはかられて
、炭素粉担体の性質が改良され、これを用いて見られた
燃料電池の高活性化、長寿命化を達成することができて
誠に有効である。
As described above, according to the present invention, as carbon powder, O, N
By using graphite powder obtained by adding at least one type of metal oxide of group a, Ol, AI, and 03 and subjecting it to heat treatment, the ability to support noble metal particles in the graphite powder can be improved, and the ability to support noble metal particles in the horizontal direction can be improved. At the same time, efforts were made to improve conductivity in the vertical direction, and the properties of the carbon powder carrier were improved, making it extremely effective in achieving high activation and long life of fuel cells using this material. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は例/によって見られた電極と従来法によって見
られた電極を用いた電池の分極性能を比較して示すグラ
フ、第2図は例/による電極と従来法による電極を用い
た電池の寿命特性を比較して示すグラフ、第3図は多孔
性基体への黒鉛粉粒子の噴霧塗着回数による該基体裏面
よりの吸引圧の上昇を示すグラフ、第4図は例λによっ
て見られた電極と従来法によって見られた電極を用いた
電池の分極性能を比較して示すグラフである。
Figure 1 is a graph showing a comparison of the polarization performance of batteries using electrodes found in Example/ and electrodes created by the conventional method. Figure 2 is a graph showing batteries using electrodes in Example/ and electrodes created by the conventional method. Figure 3 is a graph showing the increase in suction pressure from the back surface of a porous substrate depending on the number of times graphite powder particles are sprayed onto the porous substrate, and Figure 4 is a graph showing the increase in suction pressure from the back surface of the substrate as seen in Example λ. 2 is a graph showing a comparison of the polarization performance of a battery using an electrode obtained by a conventional method and an electrode obtained by a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 炭素粉に貴金属粒子を担持させた貴金属触媒を結着剤と
共に多孔性基体上に塗着させてなる燃料電池用電極にお
いて、前記炭素粉として、K、01NaユO及びA1ユ
O5からなる群から選ばれた少くとも7種の金属酸化物
とともに加熱処理を施した黒鉛粉を用いることを特徴と
する、燃料電池用電極・
In a fuel cell electrode in which a noble metal catalyst in which noble metal particles are supported on carbon powder is coated on a porous substrate together with a binder, the carbon powder is selected from the group consisting of K, 01NaYO, and A1YO5. An electrode for a fuel cell characterized by using graphite powder that has been heat-treated together with at least seven selected metal oxides.
JP57232333A 1982-12-27 1982-12-27 Electrode for fuel cell Pending JPS59119679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232333A JPS59119679A (en) 1982-12-27 1982-12-27 Electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232333A JPS59119679A (en) 1982-12-27 1982-12-27 Electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPS59119679A true JPS59119679A (en) 1984-07-10

Family

ID=16937549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232333A Pending JPS59119679A (en) 1982-12-27 1982-12-27 Electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS59119679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515122B2 (en) 2004-06-02 2009-04-07 Eastman Kodak Company Color display device with enhanced pixel pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515122B2 (en) 2004-06-02 2009-04-07 Eastman Kodak Company Color display device with enhanced pixel pattern

Similar Documents

Publication Publication Date Title
CN106784943A (en) A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof
JP2003500803A (en) Hybrid membrane electrode assembly
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
CN109560310A (en) A kind of fuel cell very low platinum carrying amount self-humidifying membrane electrode and preparation method thereof
US20190027738A1 (en) Multi-functional electrode additive
JP2003033668A (en) Method of manufacturing conductive catalyst particle and method of manufacturing gas diffusive catalyst electrode, and apparatus and vibration device used for method of manufacturing conductive catalyst particle
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
WO2005057698A1 (en) Fuel cell
JP3326254B2 (en) Fuel cell
JP3395356B2 (en) Method for producing electrode for fuel cell
JP3648988B2 (en) Fuel cell electrode and method of manufacturing the same
JPS59119679A (en) Electrode for fuel cell
JP4997438B2 (en) Proton conducting membrane and method for producing the same
JP2003297392A (en) Proton conductor, its manufacturing method and fuel cell
JPS6023962A (en) Electrode for fuel cell
JP2003086191A (en) Solid polymer fuel cell and its manufacturing method
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst
JPH0722020B2 (en) Method for manufacturing gas diffusion electrode
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JPH10102273A (en) Water electrolytic cell
JP4008221B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JPS59186265A (en) Method for manufacture of gas diffusion electrode for battery
JP2003151566A (en) Electrode catalyst layer forming method
JPH04206153A (en) Fuel cell electrode and liquid fuel cell using the same electrode
JPS62226571A (en) Manufacture of electrode for fuel cell