JPS59119160A - Method of preventing crystallization of absorption refrigerator - Google Patents

Method of preventing crystallization of absorption refrigerator

Info

Publication number
JPS59119160A
JPS59119160A JP22665782A JP22665782A JPS59119160A JP S59119160 A JPS59119160 A JP S59119160A JP 22665782 A JP22665782 A JP 22665782A JP 22665782 A JP22665782 A JP 22665782A JP S59119160 A JPS59119160 A JP S59119160A
Authority
JP
Japan
Prior art keywords
generator
refrigerant liquid
flow rate
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22665782A
Other languages
Japanese (ja)
Other versions
JPH0240948B2 (en
Inventor
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP22665782A priority Critical patent/JPS59119160A/en
Publication of JPS59119160A publication Critical patent/JPS59119160A/en
Publication of JPH0240948B2 publication Critical patent/JPH0240948B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、吸収冷凍機において溶液の結晶化を防止する
方法に関するものである。なお本明細書においては、「
吸収冷凍機」なる用語は、代温部から熱を汲み上げて高
温部に供給するいわV)る狭義のヒートポンプも含むも
のとする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing crystallization of a solution in an absorption refrigerator. In this specification, "
The term "absorption refrigerator" also includes a narrowly defined heat pump that pumps heat from a subtemperature section and supplies it to a high temperature section.

吸収ヒートポンプにおいては、例えは冷却水温度の変化
の大きい場合、或いは凝縮温度の変化が大きい場合は溶
液が結晶化するおそれかある。
In an absorption heat pump, for example, if there is a large change in cooling water temperature or if there is a large change in condensation temperature, there is a risk that the solution will crystallize.

冷却水温度変化が大とい例を挙げれば、狭義のビートポ
ンプとして用いるとき、起動時の冷却水温度は、定常運
転時の冷却水温度とは大幅に異なる。このため同一熱源
温度、例えは同一蒸気温度を用いても、発生器の伝熱量
が大きく異なり、起動時には多量の冷媒が発生器より放
出され、発生型出]」の溶液は非常に高濃度となり結晶
の危険がある。
To take an example where the temperature of the cooling water changes significantly, when used as a beat pump in the narrow sense, the temperature of the cooling water at startup is significantly different from the temperature of the cooling water during steady operation. For this reason, even if the same heat source temperature, for example the same steam temperature, is used, the amount of heat transfer in the generator varies greatly, and a large amount of refrigerant is released from the generator at startup, resulting in a very concentrated solution. There is a danger of crystals.

例えば、第1図に示す例においで、凝縮温度80°C1
発生器出口溶液温度 140℃程度で設計されたいB r −)−120系の
吸収式ヒートポンプでは、定常運転ではAの如きサイク
ルとなり、発生器出口溶液は63%の濃度でバランスす
る。起動後にもしばらくの間冷動水温度が低く(特に蓄
熱槽を用いている場合や冷却水、即ち温水保有量の多い
゛場合には長時間かかる)、凝縮温度が40℃程度まで
・しか上昇していない場合に、同一熱源で、蒸気圧か一
定なるときに、発生器出口温度が120°C以」二にな
ると、サイクルはBの如くなり、発生器出口では溶液濃
度か70%を越え73%程度にもなり、吸収器に戻るま
でに結晶線Kに達して結晶してしまう。このケースでは
、サイクル八と世イクルBとで゛は平均濃度かほとんど
同しであり、蒸発器冷媒液面から平均溶液濃度を推定し
て結晶防止をしようとする従来の方法は、有効な結晶防
止とはならない。
For example, in the example shown in Figure 1, the condensation temperature is 80°C1
In a B r -)-120 type absorption heat pump designed to have a generator outlet solution temperature of about 140° C., a cycle like A occurs in steady operation, and the generator outlet solution is balanced at a concentration of 63%. Even after startup, the chilled water temperature remains low for a while (especially when a heat storage tank is used or when there is a large amount of cooled water, i.e. hot water, it takes a long time), and the condensing temperature only rises to about 40℃. If not, and with the same heat source and constant vapor pressure, if the generator outlet temperature exceeds 120°C, the cycle will be as shown in B, and the solution concentration will exceed 70% at the generator outlet. It reaches about 73% and reaches crystal line K before returning to the absorber and crystallizes. In this case, the average concentrations in cycle 8 and cycle B are almost the same, and the conventional method of trying to prevent crystallization by estimating the average solution concentration from the evaporator refrigerant liquid level is not effective in preventing crystallization. It is not prevention.

凝縮温度変化の天外い例を挙げれば、冷却水系が汚れて
いで、多量のスケールの111着か予想される場合、ス
ケールがイ」着している状態で所定の能力か出るように
冷凍機か設計されている。このような場合スケール付着
の前後で凝縮温度の変化か大きく、新設時又はスケール
除去直後は凝縮温度が吐く冷媒か多量に発生し溶′eL
濃度か゛高くなり結晶の危険を招く。
To give an unusual example of a change in condensing temperature, if the cooling water system is dirty and a large amount of scale is expected to arrive, the refrigerator should be turned on so that it can reach the specified capacity with the scale still on. Designed. In such cases, the condensing temperature changes significantly before and after scale adhesion, and when installing a new facility or immediately after removing scale, the condensing temperature may be higher than the refrigerant being discharged, causing a large amount of solvate to be generated.
The concentration becomes too high, leading to the danger of crystal formation.

また、発生器の加熱用熱源温度の変化が激しい場合も、
激しい加熱の折に冷媒か多量に発生し溶液濃度が高まり
結晶の危険を招く。
Also, if the temperature of the heating source for the generator changes drastically,
During intense heating, a large amount of refrigerant is generated, which increases the concentration of the solution and poses a danger of crystal formation.

本発明は、従来の方法の上記の欠点を除き、起動時や、
据付当初なと過負荷がかかつて溶液か過)層線されるこ
とを防ぎ、結晶のおそれをなくすことかでとる吸収冷凍
機の結晶防止方法を提供することを目的とするものであ
る。
The present invention eliminates the above-mentioned drawbacks of the conventional method and solves the problem of
The object of the present invention is to provide a method for preventing crystallization in an absorption refrigerator by preventing overload from being applied to the solution at the time of installation and eliminating the risk of crystallization.

本発明は、吸収器、発生器、凝縮器、蒸発器及びこれら
の機器を接続する溶液経路、冷媒経路を有する吸収冷凍
機の結晶防止方法において、前記凝縮器にて凝縮する凝
縮冷媒液流量を検出上その検出値が設定値を越えたとき
に、蒸気を含む、二ともある冷媒液を前記発生器又は該
発生器に出入するl容液中に混入せしめることを特徴と
する吸収冷凍機の結晶防止方法である。
The present invention provides a method for preventing crystallization of an absorption refrigerator having an absorber, a generator, a condenser, an evaporator, and a solution path and a refrigerant path connecting these devices. An absorption refrigerating machine characterized in that, when the detected value exceeds a set value, both refrigerant liquids containing vapor are mixed into the generator or into the volume of liquid flowing into and out of the generator. This is a method of preventing crystallization.

本発明の実施例を図面を用いて説明すれば、第2図に示
す如く、吸収器A、発生器G、凝縮器C1蒸発器E、溶
液熱交換器X、溶液ポンプS P、冷媒ポンプl’< 
Pか備えられ、溶液経路として配管1.2.3.4.5
、スプレー管6、オーバーフロー管7を備え、冷媒経路
として配管8.9、スプレー管10、配管11が上述の
機器を接続して冷凍サイクルを形成している。
An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 2, an absorber A, a generator G, a condenser C1, an evaporator E, a solution heat exchanger '<
1.2.3.4.5 Piping is provided as a solution route.
, a spray pipe 6, and an overflow pipe 7, and piping 8.9, spray pipe 10, and piping 11 as refrigerant paths connect the above-mentioned devices to form a refrigeration cycle.

12は加熱管、]3は熱源熱量調節弁である。12 is a heating tube, ] 3 is a heat source calorie adjustment valve.

冷却水系統としては、冷却水ポンプ14、配管15、冷
却水管16、配管17、冷却水管18、配管19が備え
られ、吸収器A及び凝縮器Cを冷却するようになってい
る。冷却水に代えて空気で冷却する方法もある。この場
合冷却水ポンプ14の代りに冷却ファンを用いる。20
は冷水管で、配管21.22により蒸発器Eに冷水を導
くものである。
The cooling water system includes a cooling water pump 14, piping 15, cooling water pipe 16, piping 17, cooling water pipe 18, and piping 19, and is configured to cool the absorber A and the condenser C. There is also a method of cooling with air instead of cooling water. In this case, a cooling fan is used instead of the cooling water pump 14. 20
is a cold water pipe which leads cold water to the evaporator E through pipes 21 and 22.

23は凝縮器C内の冷媒液面の高さを検出する液面計、
24は配管11と発生器にとを接続するバイパス管、2
5は制御弁、26は制御器、27はオリフィスである。
23 is a liquid level gauge that detects the height of the refrigerant liquid level in the condenser C;
24 is a bypass pipe connecting the pipe 11 and the generator;
5 is a control valve, 26 is a controller, and 27 is an orifice.

制御弁25は通常は閉じられているか、液面計23によ
り検出した凝縮器C内の?疑縮冷媒液面高さが設定値を
超えた場合に、その信号により制御器26が作動して制
御弁25を開き、冷媒液の一部を発生器G中の溶液に混
入するようになっている。このバイパス管24の先端は
発生器Gに限らず、冷媒液が発生器Gに出入する溶液に
混入するよう、例えば配管3.4.5、溶液熱交換器X
などに接続してもよい。また、吸収器Aに接続してもよ
い。冷媒液が溶液に混入する際に冷媒蒸気を伴っていて
も差支えない。
Is the control valve 25 normally closed, or is the temperature inside the condenser C detected by the liquid level gauge 23? When the liquid level of the pseudo-condensed refrigerant exceeds a set value, the signal activates the controller 26, opens the control valve 25, and mixes a portion of the refrigerant into the solution in the generator G. ing. The tip of this bypass pipe 24 is connected not only to the generator G, but also to pipes 3.4.5, solution heat exchanger
You can also connect to Alternatively, it may be connected to absorber A. There is no problem even if the refrigerant liquid is accompanied by refrigerant vapor when mixed into the solution.

作用につき説明すれば、前述の如き種々の原因により発
生器Gにおける冷媒の放出が激しくなると凝縮器Cにお
ける凝縮量も増大し凝縮冷媒液の流量ら増える。これに
伴って凝縮器C内の液面も上昇する。液面の高さが設定
値を越えると液面計23の信号により制御器26が作動
して制御弁25を開とする。冷媒液の一部はバイパス管
24を経て発生器Gに流入し溶液を稀釈し、濃度を下げ
て結晶化を防止する。バイパス管24への冷媒液の分岐
により液面が下がれば再び制御弁25が閉しられる。
To explain the operation, when the discharge of refrigerant in the generator G increases due to the various causes mentioned above, the amount of condensation in the condenser C also increases and the flow rate of the condensed refrigerant liquid increases. Along with this, the liquid level in the condenser C also rises. When the height of the liquid level exceeds a set value, a signal from the liquid level gauge 23 activates the controller 26 to open the control valve 25. A portion of the refrigerant liquid flows into generator G via bypass pipe 24 to dilute the solution, lowering its concentration and preventing crystallization. When the liquid level drops due to the branching of the refrigerant liquid to the bypass pipe 24, the control valve 25 is closed again.

以」二の実施例においては、凝縮器C内の冷媒液レベル
を検出することにより、凝縮冷媒液の流量を検出し、こ
れにより溶液の濃度を推定して高濃度化を防ぐようにし
たものであるが、?縦線冷媒液の流量検出を池の方法に
より行なってもよい。以下その実施例につき述べる。
In the second embodiment, the flow rate of the condensed refrigerant liquid is detected by detecting the refrigerant liquid level in the condenser C, and the concentration of the solution is estimated from this to prevent the concentration from becoming high. In Although,? Detection of the flow rate of the vertical line refrigerant liquid may be performed by the pond method. Examples will be described below.

例えば第3図に示す如く凝縮器Cに連通する室である冷
媒液溜り28を設け、制御弁25を有するバイパス管2
4で発生器Gと接続上オリフィス29を介して冷媒受け
30に冷媒液を流下せしめるようにしてもよい。この場
合オリフィス29の差圧を液レベルとして検出でべろよ
うオリフィス29の前後の空間を冷媒受け30の室内で
連通せしめて同圧になるようにしている。前述の例と同
様に液面計23にて液面高さを検出し、設定値を越えれ
ば制御弁25を開と冷媒を発生器G中の溶液に混入する
For example, as shown in FIG.
4, the refrigerant liquid may be made to flow down into the refrigerant receiver 30 via the orifice 29 connected to the generator G. In this case, the differential pressure across the orifice 29 is detected as a liquid level, and the space before and after the orifice 29 is communicated with the interior of the refrigerant receiver 30 to maintain the same pressure. As in the previous example, the liquid level height is detected by the liquid level gauge 23, and if it exceeds a set value, the control valve 25 is opened and the refrigerant is mixed into the solution in the generator G.

第4図は飢の実施例であり、凝縮器Cから配管11に行
く冷媒液の流路に冷媒室31を設け、その中にせ外32
を設ける。オリフィス27を設ける代りに、配管11自
体のオリフィス作用を利用してもよい。冷媒室31内の
液面高さが設定値を越えるとせき32を越えて冷媒液が
濡流し、発生器G中の溶液に混入する。
FIG. 4 shows an example of starvation, in which a refrigerant chamber 31 is provided in the flow path of the refrigerant liquid going from the condenser C to the pipe 11.
will be established. Instead of providing the orifice 27, the orifice action of the pipe 11 itself may be used. When the liquid level in the refrigerant chamber 31 exceeds a set value, the refrigerant liquid flows over the weir 32 and mixes into the solution in the generator G.

第5図は池の実施例であり、オリフィス29を有する冷
媒液溜り28のバイパス管24の入口高さを高くして壁
の一部にせき32を形成したものであり、冷媒液溜り2
8の液面が設定値を越えると、冷媒液かせぎ32を越え
て溢流し、発生器Gに流入する。
FIG. 5 shows an embodiment of a pond, in which the height of the inlet of the bypass pipe 24 of the refrigerant reservoir 28 having an orifice 29 is increased to form a weir 32 in a part of the wall.
When the liquid level of 8 exceeds the set value, the refrigerant liquid overflows over the basin 32 and flows into the generator G.

凝縮冷媒液流量(即ち発生冷媒蒸気量)は「凝縮熱量/
凝縮潜熱」に基づいても演算により求められる。凝縮熱
量は凝縮器Cでの伝熱量、即ち冷却水の受熱量、即ち冷
却水の温度」二重で検知できる。
The condensed refrigerant liquid flow rate (i.e., the amount of generated refrigerant vapor) is calculated as “heat of condensation/
It can also be calculated based on the "latent heat of condensation". The amount of heat of condensation can be detected by the amount of heat transferred in the condenser C, that is, the amount of heat received by the cooling water, and the temperature of the cooling water.

従って凝縮器Cの入口及び出口の冷却水温度差及び冷却
水流量を検出してその検出値に基づぎ凝縮冷媒液流量を
演算により求め、設定値を越えた場合、冷媒液を発生器
Gなどに導入する。
Therefore, the cooling water temperature difference and the cooling water flow rate at the inlet and outlet of the condenser C are detected, and the condensed refrigerant liquid flow rate is calculated based on the detected values. If the set value is exceeded, the refrigerant liquid is transferred to the generator G. etc. will be introduced.

また、冷媒蒸気の発生量は発生器(電における加熱量に
対応するので、加熱量を検知することによっても凝縮冷
媒液流量を知ることができる。例えば蒸気駆動の場合、
凝縮した蒸気の量又は蒸気流量を検出することによって
求めることかできる。
In addition, since the amount of refrigerant vapor generated corresponds to the amount of heating in the generator (electrical generator), the flow rate of the condensed refrigerant liquid can also be determined by detecting the amount of heating. For example, in the case of steam drive,
It can be determined by detecting the amount of condensed steam or the steam flow rate.

以」−は単効用の例であるか、二重効用吸収冷凍機にお
いても同様に適用で外る。即ち凝縮器と1成縮発生器と
の間に前述の方法を適用し、凝縮器からの冷媒液が多い
とき、余剰冷媒液を低温発生器内の溶液に渚、入する。
The following is an example of a single-effect absorption refrigerator, or it can be similarly applied to a double-effect absorption refrigerator. That is, the above method is applied between the condenser and the one-condensation generator, and when there is a large amount of refrigerant liquid from the condenser, the excess refrigerant liquid is added to the solution in the low temperature generator.

また、低温発生器の加熱側を凝縮器と゛みなし、高温発
生器との間で前述の方法を適用し、高温発生器で発生し
、低温発生器で凝縮する冷媒量か多いとぎ、この冷媒液
の一部を高温発生器の溶液に)混入するようにする。
In addition, if the heating side of the low temperature generator is regarded as a condenser and the above method is applied between it and the high temperature generator, if the amount of refrigerant generated in the high temperature generator and condensed in the low temperature generator is large, this refrigerant liquid () into the solution of the high temperature generator.

以上の実施例において溶液に導入する冷媒液は凝縮dC
1配管11などからのほか、蒸発器Eから導いてもよい
In the above examples, the refrigerant liquid introduced into the solution is a condensed dC
It may be led from the evaporator E other than from the 1 pipe 11 or the like.

本発明により、起動時や新設時などにおいても溶液が過
濃縮されることを防ぎ、結晶のおそれをなくすことがで
きる吸収冷凍機の結晶防止方法を提供することかでき、
実用上tmめて犬なる効果を奏する。
According to the present invention, it is possible to provide a method for preventing crystallization of an absorption refrigerator, which can prevent a solution from being overconcentrated and eliminate the risk of crystallization even when starting up or newly installed.
In practical terms, it has the same effect as a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収冷凍機のサイクル線図、第2図は本発明の
実施例の70−図、第3図、第4図、第5図は本発明の
冷媒液流量測定数構の実施例のフロー図である。 A・・吸収器、G・・発生器、C・・凝縮器、E・・蒸
発器、X・・溶液熱交換器、Sl)・・溶液ポンプ、R
P・・冷媒ポンプ、1.2.3.4.5・・配%I、6
・・スプレー管、7・・オーバーフロー管、8.9・・
配!’、10・・スプレー管、11・・配管、12・・
加熱管、13・・熱源熱量調節弁、14・・冷却水ポン
プ、15・・配管、16・・冷却水管、17・・配管、
18・・冷却水管、19・・配管、20・・冷水管、2
]、22・・配管、23・・液面計、24・・バイパス
管、25・・制御弁、26・・制御器、27・・オリフ
ィス、28・・冷媒液溜り、29・・オリフィス、30
・・冷媒受け、31・・冷媒室、32・・せき。 特許出願人  株式会社 荏原製作所 代理人弁理士 千  1)    稔
Fig. 1 is a cycle diagram of an absorption refrigerator, Fig. 2 is a 70-diagram of an embodiment of the present invention, and Figs. 3, 4, and 5 are embodiments of several refrigerant liquid flow rate measurement structures of the present invention. FIG. A...Absorber, G...Generator, C...Condenser, E...Evaporator, X...Solution heat exchanger, Sl)...Solution pump, R
P... Refrigerant pump, 1.2.3.4.5... Distribution % I, 6
...Spray pipe, 7..Overflow pipe, 8.9...
Delivery! ', 10...Spray pipe, 11...Piping, 12...
Heating pipe, 13...Heat source heat amount control valve, 14...Cooling water pump, 15...Piping, 16...Cooling water pipe, 17...Piping,
18... Cooling water pipe, 19... Piping, 20... Cold water pipe, 2
], 22... Piping, 23... Level gauge, 24... Bypass pipe, 25... Control valve, 26... Controller, 27... Orifice, 28... Refrigerant liquid reservoir, 29... Orifice, 30
... Refrigerant receiver, 31.. Refrigerant chamber, 32.. Cough. Patent applicant Minoru Sen 1) Patent attorney representing Ebara Corporation

Claims (1)

【特許請求の範囲】 1、吸収器、発生器、凝縮器、蒸発器及びこれらの機器
を接続する溶液経路、冷媒経路を有する吸収冷凍機の結
晶防止方法において、前記凝縮器にて凝縮する凝縮冷媒
液流量を検出し、その検出値が設定値を越えたときに、
蒸気を含むこともある冷媒液を前記発生器又は該発生器
に出入する)δ液中に混入せしめることを特徴とする吸
収冷凍機の結晶防止方法。 2、 前記凝縮冷媒液の流量の検出が、前記イ疑縮器又
は該凝縮器に連通する室における冷媒液の液面高さの検
出により行なわれる特a’l’ tlr(求の範囲第1
項記載の方法。 3、 1iij記凝縮冷媒液の流量の検出か、nij記
発生器における加熱【こ要した熱量の検知lこより行な
われる特許請求の範囲@1項記載の方法。 4、frji記凝縮冷媒液の流量の検出が、前記凝縮器
における冷却水流量と、冷却水出入口温度差の検知によ
り行なわれる特許請求の範囲第」項記載の方法。 5、 前記凝縮冷媒液の流量の検出か、冷媒液流路に設
けたせきにより検出され、流量が設定値を越えた場合冷
媒液が前記せ外を越えて前記発生器又は該発生器に出入
する溶液の中に混入する特許請求の範囲ff11項記載
の方法。
[Claims] 1. A method for preventing crystallization of an absorption refrigerator having an absorber, a generator, a condenser, an evaporator, and a solution path and a refrigerant path connecting these devices; Detects the refrigerant liquid flow rate and when the detected value exceeds the set value,
A method for preventing crystallization in an absorption refrigerator, characterized in that a refrigerant liquid, which may contain vapor, is mixed into the generator or into the δ liquid flowing into and out of the generator. 2. The flow rate of the condensed refrigerant liquid is detected by detecting the liquid level of the refrigerant liquid in the condenser or a chamber communicating with the condenser.
The method described in section. 3. The method according to claim 1, which is carried out by detecting the flow rate of the condensed refrigerant liquid or by detecting the amount of heat required for heating in the generator. 4. The method according to claim 1, wherein the flow rate of the condensed refrigerant liquid is detected by detecting the flow rate of cooling water in the condenser and the temperature difference between the inlet and outlet of the cooling water. 5. Detection of the flow rate of the condensed refrigerant liquid or a weir provided in the refrigerant liquid flow path, and if the flow rate exceeds a set value, the refrigerant liquid crosses the outside of the above-mentioned wall and enters and exits the generator or the generator. The method according to claim 11, wherein the method is mixed into a solution of
JP22665782A 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator Granted JPS59119160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22665782A JPS59119160A (en) 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22665782A JPS59119160A (en) 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS59119160A true JPS59119160A (en) 1984-07-10
JPH0240948B2 JPH0240948B2 (en) 1990-09-13

Family

ID=16848608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22665782A Granted JPS59119160A (en) 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS59119160A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146358U (en) * 1984-08-29 1986-03-27 三洋電機株式会社 Absorption heat pump device
US5241775A (en) * 1990-05-02 1993-09-07 Kabushiki Kaisha Hakutaka Kogyo Method of attaching leader to fishhook and fishhook having leader attached thereto
JP2013253746A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
KR101531339B1 (en) * 2015-02-06 2015-06-26 (주) 월드에너지 Two stage absorption refrigerator of low temperature water for maintaining level of absorbent liquid and preventing crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140941A (en) * 1974-04-26 1975-11-12
JPS5249493U (en) * 1975-10-04 1977-04-08
JPS5787573A (en) * 1980-11-21 1982-06-01 Ebara Mfg Absorption refrigerating machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140941A (en) * 1974-04-26 1975-11-12
JPS5249493U (en) * 1975-10-04 1977-04-08
JPS5787573A (en) * 1980-11-21 1982-06-01 Ebara Mfg Absorption refrigerating machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146358U (en) * 1984-08-29 1986-03-27 三洋電機株式会社 Absorption heat pump device
US5241775A (en) * 1990-05-02 1993-09-07 Kabushiki Kaisha Hakutaka Kogyo Method of attaching leader to fishhook and fishhook having leader attached thereto
JP2013253746A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
KR101531339B1 (en) * 2015-02-06 2015-06-26 (주) 월드에너지 Two stage absorption refrigerator of low temperature water for maintaining level of absorbent liquid and preventing crystal

Also Published As

Publication number Publication date
JPH0240948B2 (en) 1990-09-13

Similar Documents

Publication Publication Date Title
RU2417344C2 (en) Device and procedure for control of cooling systems
US2378177A (en) Means for refrigerating
JPS59119160A (en) Method of preventing crystallization of absorption refrigerator
JP2003130587A (en) Circulating type cooling apparatus for cooling water and water quality controlling method
US5752388A (en) Absorption type refrigerating apparatus
JPS62186178A (en) Absorption refrigerator
JPS59122871A (en) Method of preventing crystallization of absorption refrigerator
JPH0688653A (en) Method for preventing crystallization of absorption refrigerating machine
US2022787A (en) Refrigerating apparatus
JPS62178858A (en) Absorption refrigerator
CN212457500U (en) Absorption type refrigerating unit
JPH0243105B2 (en)
JPS6248786B2 (en)
JP3603006B2 (en) Absorption refrigerator and control method of absorption refrigerator
JPH06347126A (en) Absorption freezer
JPS5857668B2 (en) Absorption liquid crystal prevention device for absorption refrigerators
JP3077977B1 (en) Absorption refrigerator
JPH02203166A (en) Absorption type refrigerator
JPS604045Y2 (en) Cavitation prevention device for absorption liquid pump
JPS5835972Y2 (en) Refrigeration equipment
CN111503930A (en) Absorption type refrigerating unit and control method
JPH08105661A (en) Absorption chilled and warm water generator and controlling method therefor
JPH01147290A (en) Heat moving device
US3279210A (en) Cooler with refrigerant and water separating means
JP3182233B2 (en) Operation control method in absorption refrigerator