JPS5911824B2 - solar pond - Google Patents

solar pond

Info

Publication number
JPS5911824B2
JPS5911824B2 JP55166320A JP16632080A JPS5911824B2 JP S5911824 B2 JPS5911824 B2 JP S5911824B2 JP 55166320 A JP55166320 A JP 55166320A JP 16632080 A JP16632080 A JP 16632080A JP S5911824 B2 JPS5911824 B2 JP S5911824B2
Authority
JP
Japan
Prior art keywords
layer
temperature
solar pond
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55166320A
Other languages
Japanese (ja)
Other versions
JPS5790550A (en
Inventor
見 安藤
司朗 井上
良規 脇山
勝 保永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP55166320A priority Critical patent/JPS5911824B2/en
Publication of JPS5790550A publication Critical patent/JPS5790550A/en
Publication of JPS5911824B2 publication Critical patent/JPS5911824B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • F24S10/13Salt-gradient ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【発明の詳細な説明】 本発明はソーラポンドに関するものである。[Detailed description of the invention] The present invention relates to solar ponds.

ソーラポンドとは、太陽熱を池の水に蓄える設備である
A solar pond is a device that stores solar heat in pond water.

従来、太陽熱の集熱温度を高く昧つため例えば塩類溶液
の一度(密度)を利用して、放熱を少なくする方策が成
されている。
Conventionally, in order to increase the solar heat collection temperature, measures have been taken to reduce heat dissipation by, for example, using the density of a salt solution.

第1図に基づき、従来の一般的なソーラポンドの構造を
説明する。
The structure of a conventional general solar pond will be explained based on FIG.

ソーラポンドは一般に図に示すように上部を非対流層1
、下部を対流層2と呼び、太陽光は土の非対流層1を透
過して下の対流層2へ蓄熱され、低温水Aはこの対流層
2で蓄熱されて高温水Bとなって出て行き、熱交換器3
を介して利用系4に供される。
Solar ponds generally have a non-convection layer 1 at the top as shown in the figure.
, the lower part is called the convective layer 2, and sunlight passes through the non-convective layer 1 of the soil and stores heat in the convective layer 2 below, and low-temperature water A is stored in this convective layer 2 and comes out as high-temperature water B. Go to heat exchanger 3
The data is provided to the usage system 4 via.

対流層2の上の非対流層1では、その下部から、すなわ
ち対流層2の少し土から塩類の濃厚溶液Cを流入し、上
部からは真水りを流入して、これらが混り合って濃度の
低下した溶液(希釈溶液)Eは該非対流層1の略中間部
から排出せしめている。
In the non-convective layer 1 above the convective layer 2, a concentrated solution C of salts flows in from the lower part, that is, from a little soil in the convective layer 2, and fresh water flows in from the upper part, and these mix and become concentrated. The solution (diluted solution) E in which the concentration has decreased is discharged from approximately the middle of the non-convection layer 1.

この様に強制的に流通することによって、第2図の濃度
・密度・温度と深さの関係に示す如く、対流層2の位置
にあっては濃度・密度・温度共に一定し、非対流層1の
位置にあっては緩やかな勾配線が形成される。
Due to this forced circulation, as shown in the relationship between concentration, density, temperature, and depth in Figure 2, the concentration, density, and temperature are constant at the location of convective layer 2, and the concentration, density, and temperature are constant in the non-convective layer. At position 1, a gentle slope line is formed.

この非対流層1の塩の種類や供給する製塩溶液Cの濃度
を適当に選択することによって、濃度勾配に応じて密度
勾配が形成される。
By appropriately selecting the type of salt in the non-convection layer 1 and the concentration of the salt-making solution C to be supplied, a density gradient is formed in accordance with the concentration gradient.

この密度勾配を生じさせることにより、温度差による密
度差の発生を防Iトシ、ひいては浮力による対流の発生
を防止して非対流層1とすることができる。
By creating this density gradient, it is possible to prevent the density difference caused by the temperature difference, and furthermore, to prevent the occurrence of convection due to buoyancy, thereby forming the non-convection layer 1.

従って、水槽の下部の温度が上昇しても、非対流層1で
は密度勾配によって対流が防止され、ひいては放熱を防
ぐことができ、長時間の蓄熱が可能となる。
Therefore, even if the temperature in the lower part of the water tank rises, convection is prevented in the non-convection layer 1 due to the density gradient, which in turn can prevent heat radiation, making it possible to store heat for a long time.

しかし、このソーラポンドを形成するには、濃度勾配を
強制的に形成するため、多くの製塩溶液Cと真水りを流
すことが必要であり、この費用もかなり必要である。
However, to form this solar pond, in order to forcibly form a concentration gradient, it is necessary to flow a large amount of salt-making solution C and fresh water, which also requires considerable cost.

本発明は簡単な手段によって、前記゛ソーラポンドの欠
点をカバーし、有効で経済的なソーラポンドを提供する
ものである。
The present invention overcomes the drawbacks of the solar pond and provides an effective and economical solar pond by simple means.

以下本発明の一実施例を図面に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

第3図は本発明のソーラポンドの構造である。太陽光を
吸収し易くするため水槽の底面をアスファルトや黒色プ
ラスチックによって黒化し、その黒化した底面5近傍の
上方に水平方向に縦型フインチューブ6を貫通させ、黒
化した底面5上に特殊処理によって黒化した塩類の結晶
7を蓄積し、その上方に飽和塩溶液8を満たして、さら
にその上に真水層9を存在させる。
FIG. 3 shows the structure of the solar pond of the present invention. To make it easier to absorb sunlight, the bottom of the aquarium is blackened with asphalt or black plastic, and a vertical fin tube 6 is passed horizontally above the blackened bottom 5, and a special tube is placed on the blackened bottom 5. Salt crystals 7 that have become black due to the treatment are accumulated, and a saturated salt solution 8 is filled above them, and a fresh water layer 9 is further formed above them.

このような状態においては、飽和塩溶液8と真水層9の
界面において、急激な濃度変化が形成され、真水層9は
断熱の役目と濃度変化の維持の役割を果たしている。
In such a state, a rapid change in concentration is formed at the interface between the saturated salt solution 8 and the fresh water layer 9, and the fresh water layer 9 plays the role of heat insulation and the role of maintaining the concentration change.

太陽熱は底面の黒化部分で吸収され、周囲の飽和塩溶液
8の温度を上昇させる。
Solar heat is absorbed by the blackened portion of the bottom surface, raising the temperature of the surrounding saturated salt solution 8.

温度が上昇すれば飽和溶液は不飽和となり、溶解度が上
昇して、塩類の結晶Tが更に溶は出し、自然に底面近傍
程濃度が高くなり、真水層9と飽和溶液8の界面から底
面にかけて緩やかな濃度勾配が自然に形成されてゆき、
第4図に示すような濃度・密度・温度分布が形づくられ
る。
As the temperature rises, the saturated solution becomes unsaturated, the solubility increases, and salt crystals T begin to dissolve further, and the concentration naturally increases near the bottom, and from the interface between the fresh water layer 9 and the saturated solution 8 to the bottom. A gentle concentration gradient is naturally formed,
A concentration/density/temperature distribution is formed as shown in Figure 4.

本ソーラポンドには薬液注入口Fおよび排水流出口Gを
設けているが、これはかならずしも必要ではなく、真水
層9の表面のマス口型のウキ10または透過性もしくは
反射性をもつ構造物を利用して、その操作を行なうこと
もできる。
This solar pond is provided with a chemical inlet F and a drainage outlet G, but these are not always necessary, and a mass-mouth type float 10 on the surface of the fresh water layer 9 or a transparent or reflective structure is used. You can also perform this operation.

なお、排水流出口Gは雨水など流入水の処理を行うため
であり、薬液注入口Fは真水層9の透明度を保つため、
藻やプランクトンの繁殖を防止する目的で時時薬液を注
入するためのものである。
Note that the drainage outlet G is for treating inflow water such as rainwater, and the chemical solution inlet F is for maintaining the transparency of the fresh water layer 9.
It is used to periodically inject a chemical solution to prevent the growth of algae and plankton.

また、マス口型のウキ10等は氷表面の波や風の影響を
ソーラポンド内部へ伝達することを防止する目的で設置
したものである。
In addition, the trout-shaped floats 10 and the like were installed for the purpose of preventing the effects of waves and wind on the ice surface from being transmitted to the inside of the solar pond.

以上の構成で、熱の取り出しには前記縦型フィンチュー
ブ6を用い、低温水Aはここで昇温されて高温水Bとな
って出て行き熱交換器3を介して利用系4に供する。
With the above configuration, the vertical fin tube 6 is used to extract heat, and the low temperature water A is heated here and becomes high temperature water B, which exits and is supplied to the utilization system 4 via the heat exchanger 3. .

縦型フィンチューブ6を用いるのは、水槽の底部は塩類
の飽和溶液8層になっているため、熱の取り出し時に冷
却されて塩類の析出が生じて縦型フィンチューブ6に固
着するが、該縦型フィンチューブ6であればある程度固
着した結晶が成長すれば剥雅するという固着防止の効果
を持つため、熱伝達の阻害防止が可能となる。
The reason why the vertical fin tube 6 is used is because the bottom of the water tank is made up of eight layers of saturated solution of salts, which is cooled when heat is taken out and salts precipitate and stick to the vertical fin tube 6. Since the vertical fin tube 6 has the effect of preventing sticking in that crystals that are fixed to a certain extent will peel off once they grow, it is possible to prevent heat transfer from being inhibited.

第4図は本発明のソーラポンドにおける、濃度・密度・
温度と深さの関係を示す。
Figure 4 shows the concentration, density, and
Shows the relationship between temperature and depth.

第2図の従来例と比較して、濃度・密度・温度共に底に
行く程自然な増加を示し、放熱の防止効果をはたしてい
ることが分かる。
In comparison with the conventional example shown in FIG. 2, the concentration, density, and temperature all show a natural increase toward the bottom, indicating that it has an effect of preventing heat radiation.

第5図は飽和溶液の比重と温度の関係を示し、飽和溶液
の温度が増せば比重も増している。
FIG. 5 shows the relationship between the specific gravity and temperature of a saturated solution, and as the temperature of the saturated solution increases, the specific gravity also increases.

本発明のソーラポンドの底部に太陽熱が蓄熱されても比
重が増すので上部の真水層9と飽和塩溶液8との間およ
び飽和塩溶液8層内でも対流が起こらないことが分かる
It can be seen that even if solar heat is stored at the bottom of the solar pond of the present invention, the specific gravity increases, so no convection occurs between the upper fresh water layer 9 and the saturated salt solution 8 and within the saturated salt solution 8 layer.

以上述べたように本発明のソーラポンドによると、自然
に濃度勾配を形成させるので、従来のソーラポンドの如
く製塩溶液及び真水を送り込み希釈溶液を排出するため
の装置を設けて強制的に濃度勾配をつくり非対流層を形
成する必要はなくなり、従ってそれに要する維持費用も
節減できる。
As described above, according to the solar pond of the present invention, a concentration gradient is naturally formed, so a device for feeding the salt-making solution and fresh water and discharging the diluted solution is provided to forcibly create a concentration gradient, as in the conventional solar pond. It is no longer necessary to form a non-convective layer, thus reducing the maintenance costs involved.

しかも縦型フィンチューブを用いるので、チューブに塩
類が固着するのを防止でき、その効果は非常に大きい。
Moreover, since a vertical fin tube is used, it is possible to prevent salts from sticking to the tube, which is very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のソーラポンドの構造を示す縦断面図、第
2図は第1図のソーラポンドにおける濃度・密度・温度
と深さの関係をあられす図、第3図は本発明のソーラポ
ンドの構造を示す縦断面図、第4図は第3図のソーラポ
ンドにおける濃度・密度・温度と深さの関係をあられす
図、第5図は飽和溶液の比重と温度の関係をあられす図
である。 5・・・・・・黒化した底面、6・・・・・・縦型フィ
ンチューブ、7・・・・・・塩類の結晶、8・・・・・
・飽和塩溶液、A・・・・・・低温水、B・・・・・・
高温水。
Figure 1 is a longitudinal cross-sectional view showing the structure of a conventional solar pond, Figure 2 is a diagram showing the relationship between concentration, density, temperature, and depth in the solar pond shown in Figure 1. Figure 3 is the structure of the solar pond of the present invention. FIG. 4 is a diagram showing the relationship between concentration, density, temperature, and depth in the solar pond shown in FIG. 3, and FIG. 5 is a diagram showing the relationship between specific gravity and temperature of the saturated solution. 5... Blackened bottom surface, 6... Vertical fin tube, 7... Salt crystals, 8...
・Saturated salt solution, A...Low temperature water, B...
High temperature water.

Claims (1)

【特許請求の範囲】[Claims] 1 水槽の底面を黒化し、該水層の底面近傍の上方に水
平方向に縦型フィンチューブを貫通させると共に、該底
面上に塩類の結晶を蓄積し、その上方に飽和塩溶液を満
たし、さらにその上方に真水層を設けて、飽和塩溶液層
と真水層の境界にシャープな(大きな)濃度差を形成さ
せるとともに、飽和塩溶液層中にも緩やかな濃度分布が
自然に形成されることを特徴とするソーラポンド。
1. The bottom of the aquarium is blackened, a vertical fin tube is passed horizontally above the bottom near the water layer, salt crystals are accumulated on the bottom, and a saturated salt solution is filled above it, and By providing a fresh water layer above it, a sharp (large) concentration difference is formed at the boundary between the saturated salt solution layer and the fresh water layer, and a gentle concentration distribution is naturally formed in the saturated salt solution layer as well. Features solar pond.
JP55166320A 1980-11-25 1980-11-25 solar pond Expired JPS5911824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55166320A JPS5911824B2 (en) 1980-11-25 1980-11-25 solar pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55166320A JPS5911824B2 (en) 1980-11-25 1980-11-25 solar pond

Publications (2)

Publication Number Publication Date
JPS5790550A JPS5790550A (en) 1982-06-05
JPS5911824B2 true JPS5911824B2 (en) 1984-03-17

Family

ID=15829160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55166320A Expired JPS5911824B2 (en) 1980-11-25 1980-11-25 solar pond

Country Status (1)

Country Link
JP (1) JPS5911824B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202356A (en) * 1983-05-04 1984-11-16 Agency Of Ind Science & Technol Solar pond with heat exchanger
WO2002073099A1 (en) * 2001-03-12 2002-09-19 Mikio Kinoshita Solar thermal system with solar pond and method of maintaining solar pond
CN104236129B (en) * 2013-06-21 2018-06-08 中盈长江国际新能源投资有限公司 The double-deck salt-free solar pond of cold, hot two-purpose and across season accumulation of energy cold and heat supply system
CN104819587A (en) * 2015-03-31 2015-08-05 戚荣生 Heat energy warehouse

Also Published As

Publication number Publication date
JPS5790550A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
US4910912A (en) Aquaculture in nonconvective solar ponds
US5839391A (en) Aquaculture farming system
US4249518A (en) Method for maintaining a correct density gradient in a non-convecting solar pond
US4422408A (en) Shielding device for the temperature and pollution control of water in a farming enclosure for fish and other aquatic organisms
RU2288578C1 (en) Apparatus for increasing water temperature in fish tanks and basins
JPS5911824B2 (en) solar pond
US4429683A (en) Gradient zone boundary control in salt gradient solar ponds
JPH0320526B2 (en)
US4380993A (en) Combined solar collector and storage pond
CN102320673B (en) Method for seawater desalination by utilizing solar energy, natural cold and sea surface
CN107572555A (en) A kind of salt making apparatus
CN207435051U (en) A kind of salt making apparatus
CN202213710U (en) Device for seawater desalination by solar energy, natural cold and sea level
US4553529A (en) Method of an apparatus for dynamically stabilizing the wind-mixed layer of a salt-water solar pond
SE408470B (en) WAY TO STORE THERMAL ENERGY IN A GROUND STORE
JPS6042551A (en) Solar pond with pool
Dannevig Apparatus and methods employed at the marine fish hatchery at Flodevig, Norway
US4577618A (en) Method of and apparatus for dynamically stabilizing the wind-mixed layer of a solar-water pond
SU1310591A1 (en) Solar heat collector
RU2276236C1 (en) Method for frozen rock and ground thawing
JPH0138225B2 (en)
RU195291U1 (en) DEVICE FOR LIFTING SEA WATER FROM DEPTH LAYERS TO THE SURFACE OF A RESERVOIR
JP7112070B2 (en) aquaculture system
CN208378538U (en) A kind of minisize ecological filtering ponds
JPH0319477B2 (en)