JPH0138225B2 - - Google Patents

Info

Publication number
JPH0138225B2
JPH0138225B2 JP58078633A JP7863383A JPH0138225B2 JP H0138225 B2 JPH0138225 B2 JP H0138225B2 JP 58078633 A JP58078633 A JP 58078633A JP 7863383 A JP7863383 A JP 7863383A JP H0138225 B2 JPH0138225 B2 JP H0138225B2
Authority
JP
Japan
Prior art keywords
heat
solar
box
pond
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58078633A
Other languages
Japanese (ja)
Other versions
JPS59202356A (en
Inventor
Hiroshi Taoda
Atsushi Fujii
Kaoru Kawase
Kyoshi Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58078633A priority Critical patent/JPS59202356A/en
Publication of JPS59202356A publication Critical patent/JPS59202356A/en
Publication of JPH0138225B2 publication Critical patent/JPH0138225B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は、熱交換装置付きソーラポンドに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar pond with a heat exchange device.

ソーラポンドとは、機械装置を用いずに大規模
に太陽エネルギーを熱の形で吸収、貯蔵する能力
を持つ池のことである。
A solar pond is a pond that has the ability to absorb and store solar energy in the form of heat on a large scale without the use of mechanical devices.

ソーラポンドは、直達と散乱を含めた全天日射
を利用でき、集熱と蓄熱が同時に行える特徴があ
り、最高温度が90℃を超える蓄熱部の温度は、天
候や時間による日射の影響をほとんど受けること
なく季節に伴つてゆつくりと変化するので、現
在、国内及国外でソーラポンドを使用して、大量
の熱の定常的供給が要求される農業用加温、乾
燥、建物の冷暖房のほか、低緯度地帯では発電や
淡水化の、積雪地帯では融雪等の用途開発が進め
られている。
Solar ponds are characterized by the ability to utilize all solar radiation, including direct and scattered solar radiation, and to be able to collect and store heat at the same time.The temperature of the heat storage part, which has a maximum temperature of over 90°C, is largely affected by solar radiation depending on the weather and time of day. Solar ponds are currently being used domestically and internationally for agricultural heating, drying, and building heating and cooling, which require a constant supply of large amounts of heat, as well as for low-temperature heating and cooling of buildings. Development is progressing for uses such as power generation and desalination in latitudinal regions, and snow melting in snowy regions.

そして、従来太陽熱の集熱温度を高く保つため
に、例えば塩類溶液の濃度(密度)を利用して放
熱を少なくする方法が採用され、第1図はこの方
法により建設されたソーラポンドを示すものであ
る。
Conventionally, in order to maintain a high solar heat collection temperature, a method was adopted to reduce heat radiation, for example by using the concentration (density) of a salt solution, and Figure 1 shows a solar pond constructed using this method. be.

これに基いてソーラポンドを説明すると、ソー
ラポンドは一般に上部の非対流層1と下部の対流
層2とからなり、太陽光は上の非対流層を透過し
て下の対流層2へ蓄熱され、低温水5はこの対流
層2で蓄熱されて高温水6となつて出て行き、熱
交換器3を介して利用系4に供するものである。
To explain a solar pond based on this, a solar pond generally consists of an upper non-convective layer 1 and a lower convective layer 2, and sunlight passes through the upper non-convective layer and is stored in the lower convective layer 2, resulting in a low temperature. Water 5 is heat-stored in this convection layer 2, becomes high-temperature water 6, and exits, and is supplied to a utilization system 4 via a heat exchanger 3.

非対流層1では、その下部すなわち対流層2の
少し上から塩類の濃厚溶液7を流入し、上部から
は真水8を流入して、これらが混り合つて濃度の
低下した溶液(希釈溶液)9はその非対流層1の
略中間部から排出させている。
In the non-convection layer 1, a concentrated salt solution 7 flows in from the lower part, that is, slightly above the convection layer 2, and fresh water 8 flows in from the upper part, and these are mixed to form a solution with a reduced concentration (dilute solution). 9 is discharged from approximately the middle of the non-convection layer 1.

このように強制的に流通することによつて、第
2図の濃度、密度、温度と深さの関係に示すよう
に、対流層2では濃度、密度、温度共に一定し、
非対流層1では緩やかな勾配線が形成される。
Due to this forced circulation, the concentration, density, and temperature are all constant in the convective layer 2, as shown in the relationship between concentration, density, temperature, and depth in Figure 2.
In the non-convection layer 1, a gentle gradient line is formed.

したがつて、この非対流層1の塩の種類や供給
する濃塩溶液7の濃度を適当に選択することによ
つて、濃度勾配に応じて密度勾配が形成される。
そして、これにより温度差による密度差が生じな
くなり、延ては浮力による対流の発生が防止さ
れ、非対流層1が形成され、この非対流層1では
水槽の下部の温度が上昇しても密度勾配による対
流が防止されるので、放熱が抑制され、長期間の
蓄熱が可能となる。
Therefore, by appropriately selecting the type of salt in the non-convection layer 1 and the concentration of the concentrated salt solution 7 to be supplied, a density gradient can be formed in accordance with the concentration gradient.
This eliminates the density difference due to temperature difference, which in turn prevents the occurrence of convection due to buoyancy, and forms a non-convection layer 1. In this non-convection layer 1, even if the temperature at the bottom of the tank increases, the density Since convection due to the gradient is prevented, heat radiation is suppressed and long-term heat storage becomes possible.

しかしながら、このようなソーラポンドの構成
方法では、濃度勾配を強制的に形成するため、多
くの濃塩溶液7と真水8を流す必要があり、この
費用がかなり必要となり、保守管理にも手間がか
かる。また、この方法では、塩水勾配の形成を行
つて蓄熱を開始するまでに数カ月の時間がかゝ
り、しかも、漏水による塩害の危険があるので魚
の孵化や養殖、栽倍農業など、塩害が致命的なも
のとなるような用途には使用できず、更に池の深
さが浅い場合には、塩水の濃度勾配が不充分にな
るので、対流を抑制しにくいなどの欠点を有して
いた。
However, in this method of constructing a solar pond, in order to forcibly form a concentration gradient, it is necessary to flow a large amount of concentrated salt solution 7 and fresh water 8, which requires considerable cost and requires a lot of maintenance. . In addition, with this method, it takes several months to form a saltwater gradient and start storing heat, and there is a risk of salt damage due to water leakage, so salt damage can be fatal during fish hatching, aquaculture, cropping agriculture, etc. Furthermore, if the depth of the pond is shallow, the salt water concentration gradient will be insufficient, making it difficult to suppress convection.

本発明は上記実情に鑑み、従来のソーラポンド
の欠点を補い、有効で経済的なソーラポンドを提
供するものである。
In view of the above circumstances, the present invention compensates for the drawbacks of conventional solar ponds and provides an effective and economical solar pond.

すなわち、本発明の熱交換器付きソーラポンド
は、上部表面に多数の伝熱性フインを挿通し、か
つ内部に熱媒体の流路を形成した、金属製箱状体
から成る熱交換器を、所定の水槽の底部に配置
し、その熱交換器の外側に水性ゲルを充填して構
成されている。
That is, in the solar pond with a heat exchanger of the present invention, a heat exchanger consisting of a metal box-like body with a large number of heat conductive fins inserted into the upper surface and a flow path for a heat medium formed inside is installed in a predetermined manner. It is placed at the bottom of the water tank, and the outside of the heat exchanger is filled with aqueous gel.

以下本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

実施例 1 第3図は本発明によるソーラポンドの一実施例
の構造を示したものである。aは縦断面図、bは
上から見た平面図である。これらの図において、
水槽の底部には、多数の伝熱性フイン10,…を
上部表面12に挿通した金属製箱状体が熱交換器
として配置され、その熱交換器の外側の水槽上部
には、水をゲル化した水性ゲル11が充填されて
いる。前記箱状体の上部表面12及びフイン10
は太陽熱の吸収をよくするために黒化しておくの
が有利である。水相をゲル化することにより対流
が抑えられるので、ポンドからの熱の逃げが抑制
され、効率的に太陽熱を蓄えることができる。本
発明のようなゲルを使つたポンドは塩類の水溶液
を使つたポンドと違つて粘度が高いので、第1図
に示すような高温水を取り出し熱交換器を介して
利用系に供するという方法をとることができな
い。そこで、本発明のソーラポンドではフインを
内表面と外表面に設けた金属板の箱状体を用いて
熱交換を行うという方法をとることにより、この
問題を解決した。太陽熱が箱状体の上部表面の黒
化部分12で吸収され、周囲のゲルの温度を上昇
させる。こうしてポンドに蓄えられた熱はフイン
10及び箱状体を通して箱状体内部を流れる熱媒
体としての作動流体13に渡され、熱がポンドか
ら取り出される。ここで、フイン10の形状は棒
状であつても板状であつても良い。箱状体の内部
は仕切り板14によつて流路が形成されている。
本発明において用いられるゲル化剤とは、水に加
えることによつて水の粘度を増加させることがで
きる有機あるいは無機物質である。なお、15は
雨水の排出口である。
Embodiment 1 FIG. 3 shows the structure of an embodiment of a solar pond according to the present invention. A is a longitudinal sectional view, and b is a plan view seen from above. In these figures,
At the bottom of the water tank, a metal box-like body with a large number of heat conductive fins 10, ... inserted into the upper surface 12 is placed as a heat exchanger, and outside of the heat exchanger, at the top of the water tank, water is heated to gel. It is filled with aqueous gel 11. Upper surface 12 and fins 10 of the box-like body
It is advantageous to darken it to better absorb solar heat. Since convection is suppressed by gelling the aqueous phase, heat escape from the pond is suppressed and solar heat can be efficiently stored. Since a pond using a gel like the one of the present invention has a higher viscosity than a pound using an aqueous salt solution, a method of extracting high-temperature water and supplying it to the utilization system through a heat exchanger as shown in Figure 1 is recommended. I can't take it. Therefore, in the solar pond of the present invention, this problem was solved by using a method of performing heat exchange using a box-like body made of a metal plate with fins provided on the inner and outer surfaces. Solar heat is absorbed by the blackened portion 12 on the upper surface of the box, raising the temperature of the surrounding gel. The heat thus stored in the pound is transferred through the fins 10 and the box-like body to the working fluid 13 as a heat medium flowing inside the box-like body, and the heat is taken out from the pound. Here, the shape of the fins 10 may be rod-like or plate-like. A flow path is formed inside the box-like body by a partition plate 14.
The gelling agent used in the present invention is an organic or inorganic substance that can increase the viscosity of water by adding it to water. Note that 15 is a rainwater outlet.

このように本発明によるソーラポンドはゲルを
用いているため、従来の塩を用いたソーラポンド
のように濃塩溶液及び真水を送り込み希釈溶液を
排出するための装置を設けて強制的に濃度勾配を
つくり非対流層を形成する必要がなく、それに要
する維持費用も節減できる。しかも、塩害の必要
がないため、魚の孵化や養殖、栽培農業など幅広
い用途に使用できる。また、熱交換のための箱状
体は低コストで製造でき、上部表面が黒化されて
いるため太陽熱を吸収して直ちに作動流体に熱を
伝えることが可能であり、しかも内部にフインを
設置しているので作動流体への伝熱効率が良い。
そして、ゲルに蓄えられた熱は、箱状体の外部の
フインによつて集められ、内部のフインによつて
効率良く作動流体に伝えられる。ソーラポンドに
よつて集められた太陽熱を用いて暖房を行う場合
には、作動流体として空気を用い、暖められた空
気を直接、室内に吹き出すことにより、簡単に行
うことができる。
As described above, since the solar pond according to the present invention uses gel, unlike the conventional solar pond using salt, a device for feeding concentrated salt solution and fresh water and discharging the diluted solution is installed to forcibly create a concentration gradient. There is no need to form a non-convective layer, and the maintenance costs required for it can also be reduced. Furthermore, since there is no need for salt damage, it can be used for a wide range of purposes, including fish hatching, aquaculture, and cultivation. In addition, the box-shaped body for heat exchange can be manufactured at low cost, and the blackened upper surface allows it to absorb solar heat and immediately transfer heat to the working fluid.Furthermore, fins can be installed inside. Because of this, heat transfer efficiency to the working fluid is good.
The heat stored in the gel is collected by the fins on the outside of the box-like body, and efficiently transferred to the working fluid by the fins inside. When performing heating using solar heat collected by a solar pond, this can be easily done by using air as the working fluid and blowing the warmed air directly into the room.

実施例 2 第4図はフインの形状としてハニカム構造を用
いた場合の実施例を示したものである。ソーラポ
ンドを建設するために広い平地を求めることが困
難な場合には、崖や斜面を利用することが考えら
れる。そこで、本発明は第4図aに示されるよう
なフインにハニカム構造16を用いた箱状体のハ
ニカム構造のすきま及びその上部にゲル11を充
填して箱状体をゲルの中に埋設させ、bに示すよ
うに崖の斜面に埋設することにより、崖や斜面に
ソーラポンドを建設することを可能にしたもので
ある。水や塩水を用いた場合にはポンドから水や
塩水が流れ出してしまうが、ゲルを用いており、
しかもハニカム構造のフインを用いているため、
流出が起こらず、傾けてもそのままの角度を保つ
ことができる。しかもハニカム16は金属製で熱
伝導が良いため、箱状体の内部を流れる作動流体
13に効率良く熱を伝えることができる。また、
箱状体の上部表面及びハニカム構造のフイン16
は黒化されているため、太陽熱を効率良く吸収
し、作動流体に伝えることができる。なお、崖の
地盤が弱い場合には斜面の下手にコンクリート壁
17を設置すると良い。
Embodiment 2 FIG. 4 shows an embodiment in which a honeycomb structure is used as the shape of the fins. If it is difficult to find a large flat area to construct a solar pond, it may be possible to use a cliff or slope. Therefore, the present invention uses a honeycomb structure 16 in the fins of a box-like body as shown in FIG. By burying the solar pond on the slope of a cliff, as shown in , b, it is possible to construct a solar pond on a cliff or slope. If you use water or salt water, the water or salt water will flow out of the pond, but using gel,
Moreover, because it uses honeycomb structure fins,
It does not leak and can maintain the same angle even when tilted. Moreover, since the honeycomb 16 is made of metal and has good heat conductivity, heat can be efficiently transferred to the working fluid 13 flowing inside the box-shaped body. Also,
Upper surface of box-like body and honeycomb structure fins 16
Because it is blackened, it can efficiently absorb solar heat and transfer it to the working fluid. Note that if the ground of the cliff is weak, it is better to install a concrete wall 17 at the bottom of the slope.

実施例 3 第5図に示した、板状フイン18を外表面に、
棒状フイン19を内表面に設けた金属板の箱状体
は第4図に示したものと同じ目的に使用され、第
4図に示したものよりも構造を単純化したもので
ある。第5図aはその箱状体の見取り図、bはそ
の断面図である。14は箱状体内部に設けられた
仕切り板を示す。
Example 3 The plate-like fins 18 shown in FIG. 5 are provided on the outer surface,
A box-like body made of a metal plate having rod-like fins 19 on its inner surface is used for the same purpose as the one shown in FIG. 4, and has a simpler structure than the one shown in FIG. FIG. 5a is a sketch of the box-like body, and FIG. 5b is a sectional view thereof. Reference numeral 14 indicates a partition plate provided inside the box-like body.

以上のように、本発明は低コストで高性能のソ
ーラポンドを提供するものであり、実用的な効果
は極めて大きい。
As described above, the present invention provides a low-cost, high-performance solar pond, and has extremely large practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のソーラポンドの構造を示す縦断
面図、第2図は第1図のソーラポンドにおける塩
類の濃度勾配をあらわす図、第3図aは本発明に
よる実施例1のソーラポンドの構造を示す縦断面
図、bはその上から見た平面図。第4図aは本発
明による実施例2で熱交換器として用いられる箱
状体の見取り図、bは本発明による実施例2のソ
ーラポンドの構造を示す縦断面図。第5図aは本
発明による実施例3で熱交換器として用いられる
箱状体の見取り図、bはその断面図。 10…フイン、11…ゲル、12…黒色吸熱
部、13…作動流体、14…仕切り板、15…雨
水等の排出口、16…ハニカムフイン、17…コ
ンクリート壁、18…板状フイン、19…棒状フ
イン。
FIG. 1 is a vertical cross-sectional view showing the structure of a conventional solar pond, FIG. 2 is a diagram showing the concentration gradient of salts in the solar pond of FIG. 1, and FIG. 3a shows the structure of a solar pond of Example 1 according to the present invention. A vertical cross-sectional view, and b is a plan view seen from above. FIG. 4a is a sketch of a box-like body used as a heat exchanger in Embodiment 2 of the present invention, and FIG. 4B is a longitudinal sectional view showing the structure of the solar pond of Embodiment 2 of the present invention. FIG. 5a is a sketch of a box-shaped body used as a heat exchanger in Embodiment 3 of the present invention, and FIG. 5b is a sectional view thereof. DESCRIPTION OF SYMBOLS 10... Fin, 11... Gel, 12... Black heat absorbing part, 13... Working fluid, 14... Partition plate, 15... Outlet for rainwater etc., 16... Honeycomb fin, 17... Concrete wall, 18... Plate fin, 19... Rod-shaped fin.

Claims (1)

【特許請求の範囲】[Claims] 1 上部表面に多数の伝熱性フインを挿通し、か
つ内部に熱媒体の流路を形成した、金属製箱状体
から成る熱交換器を、所定の水槽の底部に配置
し、その熱交換器の外側に水性ゲルを充填したこ
とを特徴とする熱交換器付きソーラポンド。
1. A heat exchanger consisting of a metal box-like body with a large number of heat conductive fins inserted into the upper surface and a heat medium flow path formed inside is placed at the bottom of a predetermined water tank, and the heat exchanger A solar pond with a heat exchanger characterized by filling the outside with aqueous gel.
JP58078633A 1983-05-04 1983-05-04 Solar pond with heat exchanger Granted JPS59202356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078633A JPS59202356A (en) 1983-05-04 1983-05-04 Solar pond with heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078633A JPS59202356A (en) 1983-05-04 1983-05-04 Solar pond with heat exchanger

Publications (2)

Publication Number Publication Date
JPS59202356A JPS59202356A (en) 1984-11-16
JPH0138225B2 true JPH0138225B2 (en) 1989-08-11

Family

ID=13667271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078633A Granted JPS59202356A (en) 1983-05-04 1983-05-04 Solar pond with heat exchanger

Country Status (1)

Country Link
JP (1) JPS59202356A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236129B (en) * 2013-06-21 2018-06-08 中盈长江国际新能源投资有限公司 The double-deck salt-free solar pond of cold, hot two-purpose and across season accumulation of energy cold and heat supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413025A (en) * 1977-05-09 1979-01-31 Jackson Peter Heat storage pond and electric power plant using same
JPS5790550A (en) * 1980-11-25 1982-06-05 Hitachi Zosen Corp Solar pond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413025A (en) * 1977-05-09 1979-01-31 Jackson Peter Heat storage pond and electric power plant using same
JPS5790550A (en) * 1980-11-25 1982-06-05 Hitachi Zosen Corp Solar pond

Also Published As

Publication number Publication date
JPS59202356A (en) 1984-11-16

Similar Documents

Publication Publication Date Title
CA1123286A (en) Heat storage pond and power plant using same
RU2651276C1 (en) Soil heating device
US4459177A (en) Ground moisture transfer system
CN103635757B (en) solar water heater
RU2288578C1 (en) Apparatus for increasing water temperature in fish tanks and basins
JPH0138225B2 (en)
WO1982003271A1 (en) Container filled with heat storage material and solar heat storage chamber and hot water heater utilizing the same
CN207162719U (en) A kind of heating system of solar energy combination phase-change material across season heat accumulation
JPS5911824B2 (en) solar pond
JPS6359057B2 (en)
RU2095967C1 (en) Portable heating apparatus for protected ground
FI67949B (en) SAETT ATT LAGRA TERMISKT ENERGI I ETT MARKLAGER
TWI653934B (en) Thermostat for breeding fish gills
KR870001323B1 (en) Heating apparatus using heat accumulated
US4553529A (en) Method of an apparatus for dynamically stabilizing the wind-mixed layer of a salt-water solar pond
JPS6341525B2 (en)
JPS6129645A (en) Solar heat water heater
US4577618A (en) Method of and apparatus for dynamically stabilizing the wind-mixed layer of a solar-water pond
JPS60223505A (en) Snow melting apparatus of road
JPH0578758B2 (en)
KR810000931Y1 (en) Heat accumulation type water heating apparatus utilizing solar heat
JPS58198228A (en) Greenhouse
JPS6240225A (en) Method for heating greenhouse
JPS608610Y2 (en) Greenhouse house heat exchange pipe equipment
JPS6359056B2 (en)