JPS6042551A - Solar pond with pool - Google Patents

Solar pond with pool

Info

Publication number
JPS6042551A
JPS6042551A JP58149120A JP14912083A JPS6042551A JP S6042551 A JPS6042551 A JP S6042551A JP 58149120 A JP58149120 A JP 58149120A JP 14912083 A JP14912083 A JP 14912083A JP S6042551 A JPS6042551 A JP S6042551A
Authority
JP
Japan
Prior art keywords
layer
pool
convection
unconvection
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58149120A
Other languages
Japanese (ja)
Inventor
Sadamasa Takeno
武野 貞昌
Hitoshi Kurioka
均 栗岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP58149120A priority Critical patent/JPS6042551A/en
Publication of JPS6042551A publication Critical patent/JPS6042551A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • F24S10/13Salt-gradient ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To obtain a solar pond whose absorbing efficiency is high and having no salt water loss from an unconvention layer and effective use of a pool of a transparent fluid as a fish breeding tank or a hot water pool is contrived, by a method wherein unconvection layer is provided above a convection layer of the bottom part, on which the pool of the transparent fluid is arranged through a transparent partition layer. CONSTITUTION:Energy of insolation S is absorbed partly by a pool 5 of a transparent fluid, a transparent partition layer 4 and unconvection layer 3 and the rest of the same arrives at a convection layer 2 of a solar pond 1. As concentration C of salt of the unconvection layer 3 increases according as a depth becomes deeper and possesses distribution of the concentration which becomes the maximum concentration C1 at a boundary between the convection layer 2, which is the deepest part of the unconvection layer 3, and the unconvection layer 3, a convection is not generated. The convection layer 2, therefore, is turned into a state as if it is covered with a heat insulating layer and solar energy is accumulated as heat. As the unconvection layer 3 does not touch the open air, a disturbance of a concentration gradient of salt close to the surface of the unconvection layer 3 through wind is prevented from occurring and seaweed in both the layers is prevented from growing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プール付ソーラポンドに関し、とじに透明4
191層を介して水泳プール、養魚槽等の透明流体プー
ルを頂部に設けたプール付ソーラポンド7こ関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solar pond with a swimming pool, which has a transparent 4
The present invention relates to a solar pond 7 with a swimming pool provided with a transparent fluid pool such as a swimming pool or a fish tank at the top through 191 layers.

従来技術 太陽エネルギーの有効利用を図るため、水などの熱容h
(の大きい流体に太陽エネルギーを吸収させ長期間にわ
たって熱の形で蓄える蓄熱池としてのソーラポンドか提
案されている。蓄熱体として水を使用した場合には、ソ
ーラポンドに入射する太陽工λルキーがソーラポンド円
の水に吸収され、水の温度が一ト昇する。この加熱され
た水が附近によってソーラポンド表面に移動し表面から
放熱するのを防止するため、ソーラポンド内部の ′流
体の上層部に非対流層を形成し対流層と外気との直接接
触を除く。非対流層は、例えばソーラポンド表面で濃度
が低く、深さが増すに従って濃度が高くなる如き濃度勾
配を有する用水層である。
Conventional technology In order to effectively utilize solar energy, the heat capacity h of water etc.
A solar pond has been proposed as a heat storage pond that absorbs solar energy into a fluid with a large amount of energy and stores it in the form of heat over a long period of time.If water is used as a heat storage body, the solar energy λ ruki incident on the solar pond is It is absorbed by the water in the circle, and the temperature of the water rises.In order to prevent this heated water from moving to the surface of the solar pond and dissipating heat from the surface, a non-convection system is installed in the upper layer of the fluid inside the solar pond. A layer is formed to eliminate direct contact between the convective layer and the outside air.The non-convective layer is, for example, a water layer that has a concentration gradient such that the concentration is low at the surface of the solar pond and increases as the depth increases.

非対流層では、塩分濃度が高く密度の大きい溶液が深い
位置にあり、塩分濃度が低く密度が小ネい溶液が浅い位
置にあるので、深い部分から表面へ向う対流が生じない
。この様な塩水による非対流層の濃度勾配が長期曲にわ
たって維持されることは、自然界で観察され、また実験
により確認されている。
In the non-convection layer, a solution with high salt concentration and high density is located at a deep position, and a solution with low salinity and low density is located at a shallow position, so no convection flows from the deep part to the surface. It has been observed in nature and confirmed by experiments that such a concentration gradient in the non-convective layer due to salt water is maintained over a long period of time.

しかし、従来の非対流層を有するソーラポンドには、 
(イ)非対流層が外気に曝されるため風による濃度勾配
の乱れが避けられないこと、 (ロ)藻の発生により太
陽エネルギーの透過率が低下すること、 (ハ)水数等
による塩分の減少を補給する手間と費用が必要である等
の欠点があった。
However, in a conventional solar pond with a non-convective layer,
(b) Disturbance of the concentration gradient due to wind is unavoidable as the non-convective layer is exposed to the outside air, (b) The transmittance of solar energy decreases due to the growth of algae, and (c) Salinity due to water content, etc. There were disadvantages such as the need for time and money to replenish the decrease in the amount of water.

他方、透明流体プールを使う設備として、水産資源を確
保するため養魚池が注目されているが、従来の養魚池に
はその設置位置や飼育す′る魚種によって冬季加熱の必
要があり、加熱用の設“備費、燃本(費、運転費などが
嵩む欠点があった。また、体育施設として水体用の温水
プールが建設されているが、従来の温水プールにも冬季
加熱用の費用が嵩む欠点かあった。
On the other hand, fish ponds are attracting attention as a facility that uses transparent fluid pools to secure marine resources, but conventional fish ponds require heating in the winter depending on their location and the type of fish being raised. The disadvantage was that equipment costs, fuel costs, operating costs, etc. were high.Additionally, warm water pools are being constructed as sports facilities, but conventional heated pools also have the cost of heating in winter. It had the drawback of being bulky.

発明の目的 従って、本発明の目的は、簡単な構造のプール付ソーラ
ポンドを提供することにより従来技術の1−記欠点を解
決するにある。
OBJECTS OF THE INVENTION Accordingly, it is an object of the present invention to overcome the drawbacks of the prior art by providing a solar pond with a pool of simple construction.

発明の構成 この目的を達成するため、本発明によるプール付ソーラ
ポンドは、底部の対流層の一部に非対流層を設け、ネら
にそのトに透明仕切層を介して水泳プール、養魚槽等の
透明流体プールを配置してなる構成を有する。
Structure of the Invention In order to achieve this object, the solar pond with a pool according to the present invention has a non-convection layer in a part of the convection layer at the bottom, and a transparent partition layer is provided on the top of the convection layer to allow swimming pools, fish tanks, etc. It has a configuration in which a transparent fluid pool is arranged.

実施例 本発明の一実施例の図式的縦断面を示す第1図を参照す
るに、本発明によるプール付ソーラポンドlは、その下
部に対流層2を崩し、非対流層3が対流層2の上に設け
られる。非対流層3の−1−には、透明仕切層4を介し
て透明流体の一プール5が配置される。
Embodiment Referring to FIG. 1, which shows a schematic longitudinal section of an embodiment of the present invention, the solar pond with pool 1 according to the present invention has a convective layer 2 collapsed in its lower part, and a non-convective layer 3 that is a part of the convective layer 2. provided above. A pool 5 of transparent fluid is placed in -1- of the non-convection layer 3 with a transparent partition layer 4 interposed therebetween.

図示例では、透明流体プール5が水体用の温水プールで
あり、透明仕切層4はプール5における水の振動等の外
乱を非対流層3へ伝えない強固な透明板によって形成さ
れる。しかし、本発明の透明流体プール5は、水体用温
水ブールレこ限定されるものではなく、例えば上水槽や
各種プロセス用の透明流体槽であってもよい。また、透
明仕切層4も必ずしも強固な透明板であることを要せず
、透明流体プール5の流体と非対流層3の流体とを仕切
る透明層であれば足りる。また、透明仕切層4は、可視
光線の全てに対して透明であることを要せず、太陽エネ
ルギーの短波長成分を透過させるものであれば足りる。
In the illustrated example, the transparent fluid pool 5 is a heated water pool, and the transparent partition layer 4 is formed of a strong transparent plate that does not transmit disturbances such as vibrations of water in the pool 5 to the non-convection layer 3. However, the transparent fluid pool 5 of the present invention is not limited to a heated water tank for a water body, and may be, for example, a clean water tank or a transparent fluid tank for various processes. Further, the transparent partition layer 4 does not necessarily need to be a strong transparent plate, and it is sufficient if it is a transparent layer that partitions the fluid in the transparent fluid pool 5 and the fluid in the non-convection layer 3. Furthermore, the transparent partition layer 4 does not need to be transparent to all visible light, but only needs to be transparent to short wavelength components of solar energy.

図示例の非対流層3は、深さり、を有する塩化ナトリウ
ムNaCQなどの塩の水溶液層であり、その塩分濃度が
透明仕切層4から対流層2へ向けて深さDと共に増加す
るように構成される。
The non-convective layer 3 in the illustrated example is an aqueous solution layer of a salt such as sodium chloride NaCQ having a depth of 1. The non-convective layer 3 is configured such that its salt concentration increases with the depth D from the transparent partition layer 4 toward the convective layer 2. be done.

作用を説明するに、太陽エネルギーを運ぶ日射Sは先ず
透明流体プール5へ入射する。日射Sのエネルギーは、
透明流体プール5の表面で一部反射され、更に透明流体
プール5、透明仕切層4、及び非対波層3で一部吸収さ
れ、その残りがソーラポンドlの対流層2へ到達する。
To explain the operation, solar radiation S carrying solar energy first enters the transparent fluid pool 5. The energy of solar radiation S is
A portion of the light is reflected by the surface of the transparent fluid pool 5, a portion of which is absorbed by the transparent fluid pool 5, the transparent partition layer 4, and the anti-convection layer 3, and the remainder reaches the convection layer 2 of the solar pond 1.

なお、透明流体プール5と透明仕切層4との境界面、及
び透明仕切層4と非対流層3との境界面においても若干
の反射がある。対流層2における吸収は比較的少なく、
ソーラポンドlの底面Bが日射Sの最後にlJ::−v
た部分により加熱される。対流層2は、この加熱された
底面Bからの熱により暖められる。
Note that there is some reflection also at the interface between the transparent fluid pool 5 and the transparent partition layer 4, and at the interface between the transparent partition layer 4 and the non-convection layer 3. Absorption in convective layer 2 is relatively small;
The bottom surface B of the solar pond l is at the end of the solar radiation S lJ::-v
heated by the exposed part. The convection layer 2 is warmed by the heat from the heated bottom surface B.

非対波層3の塩分濃度Cは、第1図の濃度分布カーブに
示される分布、即ち深さDと共に増大し、その最深部で
ある対流層′2どの境界において最大濃度C,となる濃
度分布を有する。第1図の実施例では、対流層2が濃度
自の塩水によって形成される。対流層2がその一定の塩
分濃度の故に対流を起すのに対し、非対流層3は、その
下部か高濃度高密度でありその上部が低濃度低密度であ
るため対流を起さない。従って、非対流層3を介してと
方へ逃げる熱損失は塩水の熱伝導のみであって対流損失
はな・く、而も塩水の熱伝導は極く僅かである。このた
め、対流層2はあたかも断熱層で覆われた様な状態にな
り、太陽エネルギーを熱として蓄積する。
The salinity concentration C in the non-convective layer 3 has a distribution shown in the concentration distribution curve in Fig. 1, that is, the concentration increases with depth D, and at which boundary of the convective layer '2, which is the deepest part, reaches the maximum concentration C. It has a distribution. In the embodiment of FIG. 1, the convective layer 2 is formed by salt water of a particular concentration. While the convective layer 2 causes convection due to its constant salt concentration, the non-convective layer 3 does not cause convection because its lower part is high concentration and high density and the upper part is low concentration and low density. Therefore, the heat loss that escapes through the non-convection layer 3 is only due to heat conduction of the salt water, and there is no convection loss, and the heat conduction of the salt water is extremely small. Therefore, the convective layer 2 becomes as if covered with a heat insulating layer, and accumulates solar energy as heat.

こうして対流層2に蓄積された熱は、ツーラボ嗜ント1
の熱として温度差発電その他の各種用途に有効に使用さ
れるだけでなく、温水プール等の透明流体プール5の流
体の加熱に使用される。
The heat accumulated in the convection layer 2 in this way is
Not only is the heat effectively used for temperature difference power generation and other various uses, but it is also used to heat the fluid in a transparent fluid pool 5 such as a hot water pool.

第2図は、東京で実施された本発明によるソーラポンド
の実験における年間温度変化の一例を示す。図中、Ta
は外気温度、Tgは第1図の地表E゛の温度、Tsはプ
ール5の表面の温度、T3は非対流層3の温度、Tbは
ソーラポンドlの底面Bの温度。
FIG. 2 shows an example of annual temperature changes in a solar pond experiment according to the present invention conducted in Tokyo. In the figure, Ta
is the outside air temperature, Tg is the temperature of the ground surface E'' in FIG. 1, Ts is the temperature of the surface of the pool 5, T3 is the temperature of the non-convection layer 3, and Tb is the temperature of the bottom surface B of the solar pond 1.

T2は対流層2の温度である。同図から明らかな様に、
対流層2の温度T2の最高値は気温Taの最初の最高値
の日から数日ないし数十H8れて発生し、その温度T2
の最高値は50°C以上」こ達し、対流層イは度T2は
冬期でも約3(1’cであり、ソごラポンドlの底面B
の温度Tbが対流層2の温度T2−よりも常に高いこと
などが認められる。
T2 is the temperature of the convective layer 2. As is clear from the figure,
The maximum value of the temperature T2 of the convective layer 2 occurs several days to several tens of hours after the first maximum value of the temperature Ta, and the temperature T2
The maximum value of T2 reaches 50°C or more, and the temperature of the convective layer T2 is about 3 (1'c) even in winter, and
It is recognized that the temperature Tb of the convective layer 2 is always higher than the temperature T2- of the convective layer 2.

第3図は、誘明温体ブール5に淡水又は海水を入れこれ
を養魚槽として使用する実施例を示す。
FIG. 3 shows an embodiment in which freshwater or seawater is filled in the induction warmer boule 5 and used as a fish tank.

この場合には、透明流体プール5とし−て形成される養
魚槽が、年間を通じて約20−40 ’Cに保たれる非
対流槽3からの熱によって加熱される。
In this case, the fish tank, formed as a transparent fluid pool 5, is heated by heat from the non-convection tank 3, which is maintained at about 20-40'C throughout the year.

従って、養か槽を加熱する燃料が不要になるか又はその
燃料を大幅に節減することができる。
Therefore, fuel for heating the feed tank is not required or can be significantly reduced.

発明の効果 本発明によるプール付ソーラポンドは、ソーラポンド機
能部のに方に透明仕切層を介して透明流体プールを設け
ているので、次の様な効果を奏する。
Effects of the Invention The solar pond with a pool according to the present invention has the transparent fluid pool provided on the side of the solar pond function section via a transparent partition layer, and therefore has the following effects.

(イ)非対流層か外気に接しないので、風による非対流
層表面近くの塩分濃度勾配の乱れが防止され、濃度勾配
を維持するための装置を要しない。
(a) Since the non-convective layer is not in contact with the outside air, disturbance of the salinity concentration gradient near the surface of the non-convective layer due to wind is prevented, and no device is required to maintain the concentration gradient.

(ロ)非対流層からの塩水損失がないので、非対流層へ
の塩分補給装置を要しない。
(b) Since there is no loss of salt water from the non-convection layer, no salt replenishment device is required for the non-convection layer.

(ハ)ソーラポンドの機能を果す対流層及び非対流層が
空気に接しないので、これら両層における藻の発生が防
止されソーラポンド機能部分での光の透過率の低下がな
い。従って、エネルギー吸収効果が高く、しかも塩水浄
化装置などの藻除去装置を要しない。
(c) Since the convection layer and non-convection layer that function as a solar pond do not come into contact with air, the growth of algae in both layers is prevented and there is no decrease in light transmittance in the solar pond functional area. Therefore, it has a high energy absorption effect and does not require an algae removal device such as a salt water purification device.

(ニ)ツーラボZドの機能を果す部分の上方に水泳用温
水プール等の透明流体プール部分を有するので、用地の
有効利用を図リソーラポント部分の建設費を低減するこ
とができる。
(d) Since there is a transparent fluid pool part such as a heated swimming pool above the part that performs the function of the Tour Lab Z, it is possible to make effective use of the land and reduce the construction cost of the Resola Point part.

(ホ)透明流体プールを養魚槽又は温水プールとすれば
、冬季におけるそれらの加熱に要する燃料費を大幅に節
減することができる。
(e) If the transparent fluid pool is a fish tank or a warm water pool, the fuel cost required for heating them in winter can be significantly reduced.

(へ)上記養魚槽又は温水プールの加熱には可動要素を
要しないので操作が簡単であり保守運転費の節減を期待
することができる。
(f) Since no movable elements are required to heat the fish tank or hot water pool, the operation is simple and maintenance and operation costs can be expected to be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の図式的縦断面図、第2図は
本発明の一実施例における温度分布を示す図、第3図は
本発明の他の実施例の図式的縦断面図である ■・・・プール付ソーラポンド、 2・・・対流層、3
・・・・非対流層、 4・・・透明仕切層、5・・・透
明流体プール。 特許出願人 鹿島建設株式会社 特許出願代理人 弁理士 市東禮次部
FIG. 1 is a schematic vertical cross-sectional view of one embodiment of the present invention, FIG. 2 is a diagram showing temperature distribution in one embodiment of the present invention, and FIG. 3 is a schematic vertical cross-sectional view of another embodiment of the present invention. The figure is ■...Solar pond with pool, 2...Convection layer, 3
...Non-convection layer, 4.Transparent partition layer, 5.Transparent fluid pool. Patent applicant Kajima Corporation Patent application agent Patent attorney Tsugube Ichito

Claims (1)

【特許請求の範囲】[Claims] 底部の対流層の1−に非対流層を設け、前記非対流層の
トに透明仕切層を介して透明流体プールを設けてなるプ
ール付ソーラポンド。
A solar pond with a pool, comprising: a non-convection layer at the bottom of the convection layer; and a transparent fluid pool via a transparent partition layer at the bottom of the non-convection layer.
JP58149120A 1983-08-17 1983-08-17 Solar pond with pool Pending JPS6042551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149120A JPS6042551A (en) 1983-08-17 1983-08-17 Solar pond with pool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149120A JPS6042551A (en) 1983-08-17 1983-08-17 Solar pond with pool

Publications (1)

Publication Number Publication Date
JPS6042551A true JPS6042551A (en) 1985-03-06

Family

ID=15468154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149120A Pending JPS6042551A (en) 1983-08-17 1983-08-17 Solar pond with pool

Country Status (1)

Country Link
JP (1) JPS6042551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398072A (en) * 2019-08-01 2019-11-01 燕山大学 Salt gradient solar pond

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398072A (en) * 2019-08-01 2019-11-01 燕山大学 Salt gradient solar pond
CN110398072B (en) * 2019-08-01 2020-09-15 燕山大学 Salt gradient solar pond

Similar Documents

Publication Publication Date Title
US4910912A (en) Aquaculture in nonconvective solar ponds
CA1123286A (en) Heat storage pond and power plant using same
MX167384B (en) METHOD AND APPARATUS TO PRODUCE ENERGY FROM A SALT WATER SOLAR POND AND THERMAL EXCHANGER USED
US4241724A (en) Method and means of preventing heat convection in a solar pond
RU2288578C1 (en) Apparatus for increasing water temperature in fish tanks and basins
Patel et al. Effect of dye on distillation of a single slope active solar still coupled with evacuated glass tube solar collector
SE8106188L (en) SEASONAL STORAGE IN THE WATER
US4121567A (en) Solar energy collecting pond and covering therefor
JPS6042551A (en) Solar pond with pool
Ramteke et al. Recent trends in solar distillation
CN102320673B (en) Method for seawater desalination by utilizing solar energy, natural cold and sea surface
FR2366526A1 (en) Solar energy collector fitted with movable screen - controllable automatically to cover surface when circulating water temp. is too low, increasing efficiency
JPS5911824B2 (en) solar pond
CN109539569B (en) Solar pond
Sonnenfeld et al. Heliothermal lakes
US4553529A (en) Method of an apparatus for dynamically stabilizing the wind-mixed layer of a salt-water solar pond
US4512332A (en) Stable density stratification solar pond
SU1310591A1 (en) Solar heat collector
US3528911A (en) Method and apparatus for purifying water
ES2296519B1 (en) SOLAR SALT EVAPORATOR.
JPS5997492A (en) Heat transfer device
US4577618A (en) Method of and apparatus for dynamically stabilizing the wind-mixed layer of a solar-water pond
JPS5777855A (en) Solar pond
SU2511A1 (en) Method of using solar heat
WO1981003694A1 (en) Improvements in and relating to solar ponds