JPS5911724A - Current limiter - Google Patents

Current limiter

Info

Publication number
JPS5911724A
JPS5911724A JP12085182A JP12085182A JPS5911724A JP S5911724 A JPS5911724 A JP S5911724A JP 12085182 A JP12085182 A JP 12085182A JP 12085182 A JP12085182 A JP 12085182A JP S5911724 A JPS5911724 A JP S5911724A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide element
capacitor
current
bypass switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12085182A
Other languages
Japanese (ja)
Inventor
春本 容正
正和 長田
陽一郎 阿部
平河 宏之
前川 洋
江頭 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP12085182A priority Critical patent/JPS5911724A/en
Publication of JPS5911724A publication Critical patent/JPS5911724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、送電線路に挿入され、常時はインピーダン
スはゾゼロで線路を接続し、事故発生時lこは高インピ
ーダンスとなって限流機能を呈し、過渡的電流が流れる
のを抑制して、事故゛電流のしゃ断を容易にするととも
に、発″凋機の加速をおさえ過渡安定度を向上さセるた
めの限流装置6に関するものである。
[Detailed description of the invention] This invention is inserted into a power transmission line, normally connects the line with zero impedance, and when an accident occurs, the impedance becomes high and exhibits a current limiting function, allowing transient current to flow. This invention relates to a current limiting device 6 for suppressing the occurrence of an accident, making it easy to cut off the current, and suppressing acceleration of the generator to improve transient stability.

酸化亜鉛素子を使用した限流装置の従来例としては箱1
図のようなものかある、 第1図において、(1) 、 +21は接続される送°
市1線路、(3)は線路(1)に接続されたりアクドル
、(4)はりアクドル(3)と線路(2)間に接続され
たコンデンサ、(5)はコンデンサ(4)と並列に接続
された酸化亜鉛素子である。
Box 1 is a conventional example of a current limiting device using a zinc oxide element.
Something like the figure below. In Figure 1, (1) and +21 are the connected feeders.
City 1 track, (3) is connected to track (1) or axle, (4) capacitor connected between beam axle (3) and track (2), (5) is connected in parallel with capacitor (4) This is a zinc oxide element.

次に第1図のものの動作について説明する。Next, the operation of the one shown in FIG. 1 will be explained.

同1図において、酸化亜鉛素子(5)の特性は、平常時
の電流によるコンデンサ(4)の端子・−電圧において
は抵抗値がきわめて大きく、事故電流によるコンデンサ
(4)の端子電圧においては抵抗値がきイっめて小さく
なるように設定されており、平常時は、リアクトル(3
)とコンデンサ(4)との共振点を交流周波数にとれば
、線路(11、(2+はインピーダンスはゾゼロで接続
されていることになる、線路(11、+2)の一方に事
故が生じると、事故側の線路に向って、リアクトル(3
)とコンデンサ(4)の直列回路に事故電流が流れる。
In Figure 1, the characteristics of the zinc oxide element (5) are that the resistance value is extremely large at the terminal voltage of the capacitor (4) caused by a normal current, and the resistance value is extremely large at the terminal voltage of the capacitor (4) caused by an accident current. The value is set to be extremely small, and under normal conditions, the reactor (3
) and capacitor (4) at the AC frequency, lines (11, (2+) are connected with zero impedance. If a fault occurs on one side of line (11, +2), Move the reactor (3) toward the track on the accident side.
) and the capacitor (4) in series circuit.

この時コンデンサ(4)の端子電圧が大きくなるので、
酸化亜鉛素子(5)の抵抗値が小さくなり、コンデンサ
(4)が短絡状態に近くなって、線路(11、(2+は
りアクドル(3)を介して接続される。この時リアクト
ル(3)iζ大きなインピーダンスのものを選べば過渡
的に流れる大電流を抑制することができる。又、事故が
取除かねた時は、コンデンサ(4)の端子電圧がトがる
ので、酸化亜鉛素子(5)は、ただちに抵抗値が大とな
り、もとのLC直列共振状態に自動的lこ復帰する。
At this time, the terminal voltage of capacitor (4) increases, so
The resistance value of the zinc oxide element (5) becomes small, and the capacitor (4) becomes almost short-circuited, and the lines (11, (2+) are connected via the axle (3). At this time, the reactor (3) iζ If you choose a capacitor with high impedance, you can suppress the large current that flows transiently.Also, if the fault cannot be removed, the terminal voltage of the capacitor (4) will rise, so the zinc oxide element (5) The resistance value becomes large immediately, and the original LC series resonance state is automatically restored.

しかしながら、事故の継続時間が長い場合や、高速度再
閉路のシーケンスのまうな事故が連続して発生した場合
には、酸化亜鉛素子(5)のエネルギー処理量が問題と
なる。この対策としては、酸化亜鉛素子の体積、つまり
使用制激をふやすことが考えられるが、事故のあらゆる
ケースを想定すると、その使用個数は膨大なものとなり
経済的な問題が生じる。
However, if the duration of the accident is long, or if accidents occur consecutively without a correct high-speed reclosing sequence, the amount of energy that the zinc oxide element (5) can handle becomes a problem. One possible countermeasure to this problem is to increase the volume of the zinc oxide element, that is, to limit its use, but assuming all possible cases of accidents, the number of such elements used would be enormous, creating an economical problem.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、酸化亜鉛素子エネルギー処理量か
ら所定量に達すると作動するバイパススイッチと抵抗と
の直列回路を、酸化亜鉛素子(5)lこ並列に接続する
こと(こより、過渡安定度を損うことなく、大きな限流
効果を発揮する信頼度の高い限流装置を提供することを
目的とする。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and a series circuit of a bypass switch and a resistor, which is activated when the amount of energy handled by the zinc oxide element reaches a predetermined amount, is connected to the zinc oxide element (5 ) are connected in parallel (Thus, the object is to provide a highly reliable current limiting device that exhibits a large current limiting effect without impairing transient stability.

以−ト、この発明の一実施例を図1へついて説明する。An embodiment of the present invention will now be described with reference to FIG.

第2し1において、(11、+21は接続さ11る送主
線路、(3)は線路(liにつながれたりアクドル、(
4)はりアクドル(3)と線路(2)との間に直列接続
さノまたコンデンサ、(5)はコンデンサ(4)と並列
に接続された酸化亜鉛素子である。(6)は酸化亜鉛素
子(5)の温度などのエネルギー処理量に対応する幇が
設定量(こ達したことを検出して作動するバイパススイ
ッチ、(7)は抵抗で、バイパススイッチ(6)に直列
に接続され、酸化亜鉛素子(5)には並列に接続されて
いる。
In the second 1, (11, +21 is the transmitter line connected to 11, (3) is the line (connected to li or acdle, (
4) A capacitor is connected in series between the beam axle (3) and the line (2), and (5) is a zinc oxide element connected in parallel with the capacitor (4). (6) is a bypass switch that operates when it detects that the temperature of the zinc oxide element (5), which corresponds to the energy processing amount, has reached a set amount (7) is a resistor, and the bypass switch (6) The zinc oxide element (5) is connected in parallel to the zinc oxide element (5).

次に動作について説明する。酸化亜鉛素子(5)の抵抗
値が小さくなり、事故UC流を限流するまでの動作は、
前述の従来例と同じである。問題は、酸化亜鉛素子(5
)のエネルギー耐λMをこえるような事故電流が流れた
時の動作である。酸化亜鉛素子のエネルギー処理能力は
、酸化亜鉛素子(5)の温度などを測定することによっ
て推定できる。バイパススイッチ(6)は、酸化亜鉛素
子(5)のエネルギー処理能力が限界に達した時の温度
lこおいて閉路し、品1度が再びエネルギー処理可能な
状1ルまでFがった時に開路するようにシーケンスが組
まれている。
Next, the operation will be explained. The operation until the resistance value of the zinc oxide element (5) becomes small and limits the accidental UC flow is as follows:
This is the same as the conventional example described above. The problem is that the zinc oxide element (5
) is the operation when a fault current exceeding the energy resistance λM flows. The energy handling capacity of the zinc oxide element can be estimated by measuring the temperature of the zinc oxide element (5). The bypass switch (6) closes at the temperature when the energy processing capacity of the zinc oxide element (5) reaches its limit, and when the product returns to a state where energy processing is possible again. The sequence is set to open the circuit.

従って、q4故の継続時間が長い場合や、多重雷のよう
に短い時間に事故が連続した場合等で、酸化亜鉛素子(
5)の温度が破壊直前まで−L昇した場合には、バイパ
ススイッチ(6)が動作して、酸化亜鉛素子(5)を、
抵抗(7)を通じて短絡する。抵抗(7)は、酸化亜鉛
素子(5)の抵抗値に比較して十分に低い値に設定され
る。抵抗(7)は、リアクトル(3)と共に、限流イン
ピーダンスを描成すると共に、バイパススイッチ(6)
の動作にまる回路条件の急変を緩和し、過渡的安定度を
向上させるための減衰抵抗として入れらノ]でいる。バ
イパススイッチ(6)は、酸化亜鉛素子(5)の温度が
再びエネルギー処理可能な状態までFがった時、開路し
、もとのLC直列共振状態に復帰させる。
Therefore, in cases where the duration of a q4 accident is long, or when accidents occur consecutively in a short period of time such as multiple lightning strikes, zinc oxide elements (
5) rises by -L to just before breakdown, the bypass switch (6) operates and the zinc oxide element (5)
Short circuit through resistor (7). The resistance (7) is set to a value sufficiently lower than the resistance value of the zinc oxide element (5). The resistor (7), together with the reactor (3), creates a current-limiting impedance and also serves as a bypass switch (6).
It is used as a damping resistor to alleviate sudden changes in circuit conditions and improve transient stability. The bypass switch (6) is opened when the temperature of the zinc oxide element (5) returns to a state where it can process energy again, and returns to the original LC series resonance state.

以上のように、本発明によれば、従来の酸化亜鉛形限流
装揃に、酸化亜鉛素子のエネルギー処理用が設定量に達
すると動作するバイパススイッチを11Cけたので、従
来例と比較して酸化亜鉛素子の使用個数を大幅に低凸1
にすることができると4((こ、種々のケースの事故に
対しても酸化亜鉛素子υ)熱的破壊を未然Eこ防出して
鋪い信頼性を得ること力(できる。また、バイパススイ
ッチに抵抗を直列にJm入することにまり、バイノでス
スイッチ開閉時σ)過渡安定度をJHうことなく、限流
効果を一層向上させることができる。
As described above, according to the present invention, in addition to the conventional zinc oxide type current limiting device, a bypass switch that is activated when the energy processing of the zinc oxide element reaches a set amount is added by 11C, so compared to the conventional example, Significantly reduced convexity in the number of zinc oxide elements used1
If it is possible to prevent thermal breakdown of the zinc oxide element υ against accidents in various cases, it is possible to obtain greater reliability. By inserting a resistor in series with JH, the current limiting effect can be further improved without reducing the transient stability when the switch is opened and closed.

【図面の簡単な説明】 第1図は従来の限流装置ト・;を示す接続図、第2図は
この発明の限流装NQの一実施例を示す接続図である、 図において、+11 、 +21は接続される送71を
線路、(3)はりアクドル、(4)はコンデンサ、(5
)は酸化亜鉛素子、(6)はバイパススイッチ、(7)
は抵抗である。 なお、図中同一′符号は同一、又は相当部分を示す。 代理人 葛野信− 第1図 J 第2図 東京都千代田区丸の内2丁目2 番3号
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a connection diagram showing a conventional current limiter NQ, and Fig. 2 is a connection diagram showing an embodiment of the current limiter NQ of the present invention. , +21 is the connected transmission line 71, (3) beam axle, (4) is the capacitor, (5
) is a zinc oxide element, (6) is a bypass switch, (7)
is resistance. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kazuno - Figure 1 J Figure 2 2-2-3 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛素子とコンデンサの並列回路にリアクトルを直
列接続して構成した限流装置において、上記酸化亜鉛素
子のエネルギー処理量が所定停に達すると作動するバイ
パススイッチと抵抗との直列回路を、上記酸化亜鉛素子
と並列に接続したことを特徴とする限流装置。
In a current limiting device configured by connecting a reactor in series to a parallel circuit of a zinc oxide element and a capacitor, a series circuit of a resistor and a bypass switch that is activated when the energy processing amount of the zinc oxide element reaches a predetermined stop is connected to the parallel circuit of a zinc oxide element and a capacitor. A current limiting device characterized by being connected in parallel with a zinc element.
JP12085182A 1982-07-12 1982-07-12 Current limiter Pending JPS5911724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12085182A JPS5911724A (en) 1982-07-12 1982-07-12 Current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12085182A JPS5911724A (en) 1982-07-12 1982-07-12 Current limiter

Publications (1)

Publication Number Publication Date
JPS5911724A true JPS5911724A (en) 1984-01-21

Family

ID=14796513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12085182A Pending JPS5911724A (en) 1982-07-12 1982-07-12 Current limiter

Country Status (1)

Country Link
JP (1) JPS5911724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869778A (en) * 1993-12-14 1999-02-09 Lsi Logic Corporation Powder metal heat sink for integrated circuit devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869778A (en) * 1993-12-14 1999-02-09 Lsi Logic Corporation Powder metal heat sink for integrated circuit devices

Similar Documents

Publication Publication Date Title
US4475139A (en) Thyristor-switched capacitor apparatus
US3793535A (en) Circuit for protecting semiconductors against transient voltages
US1966077A (en) Surge absorbing apparatus
EP3387723B1 (en) Surge protection circuit and surge protection method
US4321644A (en) Power line transient limiter
WO2024183357A1 (en) Power supply surge protection apparatus and protection system
CN203774781U (en) Signal interface high-power electromagnetic pulse protection device
JP2003111270A (en) Surge protector
JPS5877326A (en) Fet driver circuit
JPS5911724A (en) Current limiter
US4181921A (en) Harmonic distortion attenuator
JPS61254019A (en) Protector for consumption unit in which electric energy network is connected to energy supply wire
US4089033A (en) High speed bus differential relay
JPS5911723A (en) Current limiter
US2476843A (en) Contact protection network
US3344318A (en) Semi-conductor power supply regulator and protective circuitry therefor
US3283211A (en) Device for reducing erosion in electric contacts
JPS6026416A (en) Current limiter
CN219086800U (en) Surge protection circuit and switching power supply
GB2163303A (en) Socket including voltage peak clipping filter
JPS58162085A (en) Protecting circuit
JPS59128716A (en) Dc breaker
RU2022437C1 (en) Overvoltage protection device for dc systems
Christopoulos et al. Analysis of nonlinear RLC circuits using transmission-line modelling
Reich Protection of semiconductor devices, circuits, and equipment from voltage transients