JPS5911662B2 - How to prevent strip vibration - Google Patents

How to prevent strip vibration

Info

Publication number
JPS5911662B2
JPS5911662B2 JP16162379A JP16162379A JPS5911662B2 JP S5911662 B2 JPS5911662 B2 JP S5911662B2 JP 16162379 A JP16162379 A JP 16162379A JP 16162379 A JP16162379 A JP 16162379A JP S5911662 B2 JPS5911662 B2 JP S5911662B2
Authority
JP
Japan
Prior art keywords
strip
static pressure
fluid
flow
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16162379A
Other languages
Japanese (ja)
Other versions
JPS5684452A (en
Inventor
元 日戸
完五 酒井
英毅 石川
靖夫 下川
勝士 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16162379A priority Critical patent/JPS5911662B2/en
Publication of JPS5684452A publication Critical patent/JPS5684452A/en
Publication of JPS5911662B2 publication Critical patent/JPS5911662B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives

Description

【発明の詳細な説明】 本発明はストリップの振動を防止し、ストリツプを安定
して所定の通板ライン上に非接触保持させる方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing vibration of a strip and stably holding the strip on a predetermined threading line in a non-contact manner.

鋼ストリップの各種処理ラインにおいて連続してストリ
ップを搬送する場合、ストリップの安定な位置制御を考
慮してかなり長い区間にわたつてストリップを何らの接
触型ガイドを設けることなく移送しなければならないこ
とがある。
When conveying strips continuously in various processing lines for steel strips, it is often necessary to convey the strips over a fairly long distance without providing any contact type guides in order to ensure stable position control of the strips. be.

例えば、鋼ストリップの溶融亜鉛メツキカ法を例にした
場合、前処理設備を出たストリップは溶融亜鉛メッキ浴
中に角度をもつて導入されてから、メッキ浴内に設置さ
れているポットロールによつて方向を変えメッキ金属を
付着した状態でメッキ浴面上に垂直に引き出された後、
ストリップ面の付着メッキ金属が溶融状態を呈している
間に、ストリップをはさんで対向設置される一対のガス
ワイピングノズルからのガス吹付けにより余剰のメッキ
金属を払拭し所望の目付量に制御される。
For example, in the hot-dip galvanizing process for steel strip, the strip leaving the pretreatment equipment is introduced at an angle into the hot-dip galvanizing bath and then passed through pot rolls placed in the bath. After changing the direction and pulling it out vertically onto the plating bath surface with the plating metal attached,
While the plated metal adhered to the strip surface is in a molten state, excess plated metal is wiped away by gas spray from a pair of gas wiping nozzles installed opposite to each other across the strip, and the desired coating weight is controlled. Ru.

ワイピングを終えたストリップはその表面メッキ層がほ
ぼ凝固するまでそのまま垂直に上昇移行され、トップロ
ール位置で転向されて次工程へ送られる。)なお、ワイ
ピングノズルの後力部位には必要に応じてゼロスパング
ル装置、ガルパニール装置あるいは冷却装置等がストリ
ップ通板ラインに対向して配置することもある。上記の
溶融メッキラインにおいては、ストリツプ面に付着した
メッキ金属が凝固するまで垂直にストリップを引き上げ
ねばならないため、垂直通板部の距離がかなり長くなる
After wiping, the strip is vertically moved upward until the surface plating layer is almost solidified, then turned around at the top roll position and sent to the next process. ) In addition, a zero spangle device, a galpaneer device, a cooling device, etc. may be arranged at the rear force portion of the wiping nozzle, facing the strip threading line, as necessary. In the hot-dip plating line described above, the strip must be vertically pulled up until the plated metal adhering to the strip surface solidifies, so the distance of the vertical plate passing section becomes quite long.

そのため、ストリップの横力向の振動が発生するが、未
凝固金属表面のためロール等での接触支持が不可能であ
る。特に、最近の如く生産性向上のため高速通板(15
Om/wLin以上)を行なう際には付着メッキ層の凝
固位置が高くなり上記垂直通板部はより長くなる。
Therefore, vibration of the strip occurs in the direction of the lateral force, but contact support with rolls or the like is impossible because of the unsolidified metal surface. In particular, in recent years, high-speed sheet threading (15
Om/wLin or more), the solidification position of the deposited plating layer becomes higher and the vertical threading section becomes longer.

例えば30mを超えることもあり、振動はより一層増幅
される。従来ではこのストリツプの振動幅を予測し、ワ
イピングノズルをストリツプに接触させないため振動幅
範囲外にセツトするように配慮している。
For example, the distance may exceed 30 m, and the vibrations are further amplified. Conventionally, the vibration width of the strip is predicted and care is taken to set the wiping nozzle outside the vibration width range in order to prevent the wiping nozzle from coming into contact with the strip.

このためワイピングノズルのストリツプへの近接化が困
難となることから、ワイピング能力即ちメツキ目付量制
御範囲が狭いという問題点がある。また、ストリツプの
振動によりワイピングノズル先端とストリツプ面との距
離が変動するため、ストリツプ長手力向巾力向および表
裏において均一なメツキ厚が得られず、その結果メツキ
層にむらが生じ著しく製品(品質)を劣化せしめる問題
点も見られる。一力、溶融メツキラインに限らず他のス
トリツプ処理ラインにおいてもストリツプを所定の通路
に沿つて搬送させることはきわめて重要な要素である。
This makes it difficult to bring the wiping nozzle close to the strip, resulting in a problem that the wiping ability, that is, the control range of the plating amount is narrow. In addition, because the distance between the wiping nozzle tip and the strip surface changes due to the vibration of the strip, it is not possible to obtain a uniform plating thickness in the longitudinal direction, width direction, and front and back sides of the strip, resulting in unevenness in the plating layer and noticeable product defects. There are also problems that degrade quality. Conveying the strip along a predetermined path is an extremely important factor not only in the melt plating line but also in other strip processing lines.

例えば、ストリツプを連続して走行させながら該ストリ
ツプを包囲する炉内でガス状物質を吹付けて所望温度に
加熱したりあるいは所望の冷却速度で冷却する場合、ス
トリツプが振動して、通板ラインが変動すると、ストリ
ツプの加熱あるいは冷却にバラツキを生じ所要の性状が
得られないし、またストリツプの振動によつてストリツ
プが他部材と接触し表面性状を損う問題がある。以上の
如くストリツプの振動を抑止し、安定して所定のライン
に沿つて移送させることは、品質の向上および均一化さ
らには他の設備の操作面で大きなメリツトをもたらすこ
とになり、その実現が強く要望されている。勿論、この
場合直接ストリツプに接触するガイドロールの如き保持
手段はストリツプの表面性状を損うため、非接触型のス
トリツプ保持手段が好ましいことは言うまでもない。ス
トリツプの非接触型保持手段としては従来でもストリツ
プ面に噴射する流体の保持力を利用したものが知られて
おり、特に静圧力をヌトリツプに作用せしめることが有
効であることが知見されている。
For example, when a strip is run continuously and heated to a desired temperature by spraying a gaseous substance in a furnace surrounding the strip, or when the strip is cooled at a desired cooling rate, the strip vibrates and If this changes, the heating or cooling of the strip will vary, making it impossible to obtain the desired properties, and vibrations of the strip will cause the strip to come into contact with other members, causing a problem in that the surface properties will be impaired. As described above, suppressing the vibration of the strip and stably transporting it along a predetermined line will bring great benefits in terms of quality improvement and uniformity as well as the operation of other equipment. It is strongly requested. Of course, in this case, a holding means such as a guide roll that comes into direct contact with the strip will damage the surface quality of the strip, so it goes without saying that a non-contact type strip holding means is preferable. Conventionally, non-contact holding means for the strip have been known that utilize the holding force of fluid sprayed onto the strip surface, and it has been found that applying static pressure to the strip is particularly effective.

この公知の非接触型ストリツプ保持手段の代表的な技術
は、特開昭50−67729号公報によつて開示されて
いる。この特開昭5067729号公報に示された内容
は、連続亜鉛メツキ装置に特定されているが、ワイピン
グノズルの如き、絞り装置を設けた材料垂直走行部の任
意の個所に材料を挟んで両側に静圧パツドを対称的に取
付け、前記絞り装置近辺を通過する材料の安定走行を図
り、材料表面に均一なメツキ層を得るようにしたもので
ある。また、静圧パツドとしてはストリツプの巾方向に
伸びるボツクス状の中空体から形成し、該中空体に互い
に対称的な角度で材料に流体を噴出する一対のガス噴出
口が設けられ、該噴出口間に形成したじやま板とストリ
ツプ面との間に静圧域を生成しこれによつてストリツプ
を静圧力で保持するようにしている。しかるに、上記特
開昭50−67729号公報による開示は、ストリツプ
の連続亜鉛メツキラインにおけるストリツプの非接触支
持について重要な示唆を与えるものと認められるが、こ
れを実際の設備に適用するに当つては幾つかの解決すべ
き問題が残されている。
A typical technique of this known non-contact type strip holding means is disclosed in Japanese Patent Laid-Open No. 50-67729. The contents shown in this Japanese Patent Application Laid-open No. 5067729 are specific to continuous galvanizing equipment, but the material is placed at any point on the vertical running part of the material provided with a squeezing device, such as a wiping nozzle, on both sides with the material sandwiched between them. Static pressure pads are installed symmetrically to ensure stable movement of the material passing near the expansion device and to obtain a uniform plating layer on the surface of the material. Further, the static pressure pad is formed from a box-shaped hollow body extending in the width direction of the strip, and a pair of gas jet ports for jetting fluid onto the material at mutually symmetrical angles are provided in the hollow body. A static pressure area is created between the strip surface and the cutting board formed in between, thereby holding the strip under static pressure. However, although it is recognized that the disclosure in JP-A-50-67729 provides important suggestions regarding non-contact support of strips in continuous galvanizing lines, it is difficult to apply this to actual equipment. Several issues remain to be resolved.

すなわち、ストリツプの安定走行を達成するためにはス
トリツプの振動を抑制することが必要とされるが、振動
防止のためには具体的にどの程度の静圧力をストリツプ
に作用せしめたらよいのか、あるいは静圧力を生ぜしめ
るに必要なガス流量、さらには静圧パツドと他の設備と
の位置関係等を特定しなければならないが、上記先行技
術ではこのような具体的な事項については何らふれると
ころがない。したがつて静圧パツドを実際の設備に適用
する際に、以上の点を明らかにしない限りその実施は到
底困難と考えられる。本発明者等はストリツズの連続溶
融メツキラインを含めたストリツプの処理ラインにおい
て、静圧パツドを用いてストリツプの振動を可及的に抑
止してストリツプの安定移送を計るにあたり、静圧パツ
ドに供給するガス流量を増大せしめることなくストリツ
プ振動防止効果を高めることができるストリツプの振動
防止方法について種々研究実験の結果、ストリツプ面に
沿つて流れるガス流れを活用しこれを静圧パツドの排出
流に作用させることにより静圧力との相乗効果によつて
ストリツプの支持力を向上しストリツプの効率的な振動
防止を計る力法を見い出したものである。
In other words, in order to achieve stable running of the strip, it is necessary to suppress the vibration of the strip, but how much static pressure should be applied to the strip in order to prevent vibration? It is necessary to specify the gas flow rate required to generate static pressure, as well as the positional relationship between the static pressure pad and other equipment, but the above-mentioned prior art does not mention any of these specific matters. . Therefore, it will be extremely difficult to apply static pressure pads to actual equipment unless the above points are clarified. The present inventors used a static pressure pad to suppress the vibration of the strip as much as possible in a strip processing line including a continuous melt plating line for strips, in order to ensure stable transfer of the strip. As a result of various research experiments on a strip vibration prevention method that can enhance the strip vibration prevention effect without increasing the gas flow rate, we have found that we utilize the gas flow flowing along the strip surface and apply it to the discharge flow of the static pressure pad. As a result, we have discovered a force method that improves the supporting force of the strip through a synergistic effect with static pressure and effectively prevents vibration of the strip.

すなわち、本発明の目的とするところは静圧パツドに供
給するガス流量又は流体圧が小さくとも(例えばそれ自
体ではストリツプの振動防止には不十分な静圧力しか得
られない程度であつても)、実際には振動を十分抑止し
安定したストリツプの移送が行なえるストリツプの振動
防止力法を提供することにある。
That is, the object of the present invention is to provide a static pressure pad that can be used even if the gas flow rate or fluid pressure supplied to the static pressure pad is small (for example, even if the static pressure itself is insufficient to prevent vibration of the strip). The object of the present invention is to provide a method for preventing vibrations of a strip, which actually sufficiently suppresses vibrations and allows stable conveyance of the strip.

また、本発明の他の目的は静圧パツドによるストリツプ
支持力を飛躍的に向上させ、ストリツプの振動をほぼ完
全に(±1mm程度にまで)防止し得るストリツプの振
動防止力法を提供することにある。
Another object of the present invention is to provide a method for preventing vibration of a strip, which can dramatically improve the supporting force of the strip by the static pressure pad and almost completely prevent the vibration of the strip (to about ±1 mm). It is in.

また本発明の他の目的はヌトリツプを安定して移送でき
ることにより従来ある距離をおいて設けていたワイピン
グノズルやガス噴射ノズル等をきわめてヌトリツプ面に
近接して設置でき、均等かつ効率のよいストリツプの処
理が行なえるようにしたストリツプの振動防止力法を提
供することにある。
Another object of the present invention is that by stably transporting the nut strips, wiping nozzles, gas injection nozzles, etc., which were conventionally installed at a certain distance, can be installed very close to the nut strip surface, and the strip can be transferred evenly and efficiently. It is an object of the present invention to provide a method for preventing vibration of a strip which can be treated.

さらに、本発明の別の目的は連続溶融メツキラインやス
トリツプの熱処理ラインの如き各種処理ライン特に高速
ライン通板に適用してその際、生じる持ち出し量例えば
、溶融Znメツキの目付量の制御を可能ならしめるに有
効なヌトリツプの振動防止力法を提供することにある。
Furthermore, another object of the present invention is to apply it to various processing lines such as continuous molten plating lines and strip heat treatment lines, especially high-speed line threading, so that it is possible to control the amount of take-out, for example, the basis weight of molten Zn plating. The purpose of the present invention is to provide an effective method for preventing vibration of nutrips.

以下本発明力法について詳細に説明する。The power method of the present invention will be explained in detail below.

本発明はヌトリツプの通板ラインをはさんで対向する静
圧パツドを配置するに際し、ストリツプの面に沿つて流
体の流れが存在する範囲内に、前記静圧パツドを設置し
、静圧パツドとストリツプ面間に流体を封じ込めるもの
である。
In the present invention, when arranging the static pressure pads facing each other across the threading line of the Nutrip, the static pressure pads are installed within a range where a fluid flow exists along the surface of the strip, and the static pressure pads are It confines fluid between the strip surfaces.

すなわち、ストリツプ面に流体流れがある位置に、この
流体流れを遮断するように静圧パツドを設置した場合静
圧パツドの一端側から外カへ放出するガヌ流れがストリ
ツプ面に沿つて流れてくる流体流れと衝突してヌトリツ
プと静圧パツド間に封じ込められることから、静圧パツ
ドの本来の静圧力に前記封じ込めに基く圧力が相乗する
ことにより、静圧力の増大と共に静圧作用面積も拡大し
、その結果ヌトリツプの振動防止を効果的ならしめる。
上記封じ込め効果を生じさせるためのストリツプ面の流
体流れは、該ヌトリツプの処理設備自体の構成から必然
的に生成される(例:ワイピングノズルからの噴射流)
ものであれば好適であるが、勿論この流体流れを作為的
に作り出す設備を設けてもよい。
In other words, if a static pressure pad is installed at a position where there is a fluid flow on the strip surface so as to block this fluid flow, the flow released from one end of the static pressure pad to the outside will flow along the strip surface. Since it collides with the coming fluid flow and is confined between the Nutrip and the static pressure pad, the pressure based on the confinement is added to the original static pressure of the static pressure pad, and as the static pressure increases, the area of static pressure action also expands. As a result, the vibration of the Nutrip is effectively prevented.
The fluid flow on the strip surface to produce the containment effect is necessarily generated from the configuration of the strip processing equipment itself (e.g. jet flow from a wiping nozzle).
Of course, it is also possible to provide equipment that artificially creates this fluid flow.

なお流体流れは静圧パツドの位置で十分封じ込め作用を
果たす程度の流速、即ち少くとも静圧パツドからの排出
流体と同等の流速を維持していることが必要である。実
際に本発明力法を適用するストリツプの処理ラインとし
ては、連続溶融メツキラインにおいてヌトリツプがメツ
キ浴から垂直力向に引き上げられワイピングノズルによ
つてガスワイピングされた後の位置であつて、ストリツ
プ面に前記ワイピングノズルによるガス吹付けによりガ
ス流が存在する区域に、対向する静圧パツドを設置すれ
ば、前述の封じ込め効果が期待できる。
It is necessary that the fluid flow maintains a flow velocity at the position of the static pressure pad that is sufficient to perform a containment effect, that is, a flow velocity that is at least equivalent to that of the fluid discharged from the static pressure pad. In practice, the strip processing line to which the force method of the present invention is applied is the position after the nutrips are pulled up from the plating bath in the vertical force direction and gas wiped by the wiping nozzle in the continuous melt plating line, and are applied to the strip surface. The above-mentioned containment effect can be expected if opposing static pressure pads are installed in the area where a gas flow exists due to the gas sprayed by the wiping nozzle.

また、ストリツプの加熱又は冷却を行なう炉内をヌトリ
ツプが通過する場合においては、炉内におけるガス状物
質の吹付けによりあるいはドラフト効果により炉外に出
たストリツプ面に沿つてガス流れが存在する区域に、静
圧パツドを設置しても同様の効果が期待できる。次に、
本発明を図面に示す実施例に基いて説明するが、本発明
は図示する例に限定されるものではなく、本発明の技術
思想に包含されるものであればいかなる態様であつても
よい。
In addition, when the strip passes through a furnace where the strip is heated or cooled, there is a gas flow along the surface of the strip that exits from the furnace due to the blowing of a gaseous substance in the furnace or due to a draft effect. A similar effect can be expected by installing a static pressure pad. next,
Although the present invention will be described based on embodiments shown in the drawings, the present invention is not limited to the illustrated examples, and may take any form as long as it falls within the technical idea of the present invention.

第1図は本発明の原理を説明するものである。FIG. 1 explains the principle of the invention.

図において、1は一定の通板速度で垂直に走行するスト
リツプ、2は該ストリツプ1面に近接して配置される静
圧流体パツド、3はストリツプ1面に沿つて上昇してく
る流体流れを示す。前記静圧パツド2はストリツプ1と
の間において平行かつ一定の範囲内でヌトリツプ面に対
し圧力を作用させるもので、その構造は図示するように
適宜の流体供給源に接続したボツクヌ状に形成され、互
いに向い合う角度にした流体噴出口4を設け、中央部に
ストリツプ1とほぼ平行な板5を有している。流体噴出
口4はパツドの周縁から所望の巾の縁板6を残した位置
に設けられかつ中央部の板5を包囲するようなヌリツト
孔にて形成することが好ましく、また流体としては例え
ばN2ガヌ等の不活性ガヌが用いられる。上記において
静圧パツド2の噴出口4から流体を噴出させると、ヌト
リツプ1と静圧パツド2の板5との間の空間5に静圧力
が発生し、これがヌトリツプ1の支持力となり振動を抑
止する。
In the figure, 1 is a strip that runs vertically at a constant threading speed, 2 is a static pressure fluid pad placed close to the first surface of the strip, and 3 is a fluid flow rising along the first surface of the strip. show. The static pressure pad 2 is parallel to the strip 1 and applies pressure to the Nutrip surface within a certain range, and its structure is formed in the shape of a box connected to an appropriate fluid supply source as shown in the figure. , with fluid jets 4 oriented at angles facing each other, and a plate 5 substantially parallel to the strip 1 in the center. The fluid spout 4 is preferably formed as a null hole that is provided at a position leaving an edge plate 6 of a desired width from the periphery of the pad and surrounds the central plate 5, and the fluid is, for example, N2. An inert ganu such as ganu is used. In the above case, when fluid is ejected from the spout 4 of the static pressure pad 2, static pressure is generated in the space 5 between the nut trip 1 and the plate 5 of the static pressure pad 2, and this becomes a supporting force for the nut trip 1 and suppresses vibration. do.

この支持力は静圧パツド2に供給される流体の圧力又は
流量が一定ならばほぼ不変である。しかるに第1図の如
くヌトリツプ1面に沿つた少くとも静圧パツドからの排
出流体と同等の流速をもつた流体流れ3が存在する場合
、静圧パツド2の下部噴出口4からヌトリツプ1に沿つ
て下カへ向う噴出流と上方に向う流体流れ3とが4点付
近で衝突し、パツドからの流体を静圧パツド2へ押し戻
す現象が現われ、ここに流体3による封じ込め効果が発
生する。この流体流れ3による封じ込め効果は、第1図
に静圧力(1tmAq)の分布を示したように結果とし
て静圧パツド2のもつ本来の静圧力の増大と静圧作用面
積の拡大をもたらし、その相乗効果により支持力を高め
る働きをなす。また、静圧作用面積を意図的に拡大する
ために、縁板6部分を長くすると効果は上がる。なお、
第1図左力の図は右力に対応した静圧力分布状況を示し
たもので、点線1不は流体流れ3が存在しないときの分
布、実線・口が流体流れ3が存在するときの分布を示し
、口の場合に静圧力増大と同時に静圧作用面積の拡大が
計られていることがわかる。
This supporting force remains almost unchanged if the pressure or flow rate of the fluid supplied to the static pressure pad 2 is constant. However, as shown in FIG. 1, if there is a fluid flow 3 along the Nutrip 1 surface having at least the same flow velocity as the discharged fluid from the Hydrostatic pressure pad, the flow from the lower spout 4 of the Hydrostatic pressure pad 2 along the Nutrip 1. Then, the jet flow heading downward and the fluid flow 3 moving upward collide near the 4 points, and a phenomenon occurs in which the fluid from the pad is pushed back to the static pressure pad 2, where a containment effect by the fluid 3 occurs. The confinement effect of this fluid flow 3 results in an increase in the original static pressure of the static pressure pad 2 and an expansion of the static pressure acting area, as shown in the distribution of static pressure (1 tmAq) in Figure 1. It works to increase the supporting capacity through a synergistic effect. Further, in order to intentionally expand the area on which the static pressure acts, the effect will be improved if the edge plate 6 portion is lengthened. In addition,
The left force diagram in Figure 1 shows the static pressure distribution situation corresponding to the right force, where the dotted line 1 indicates the distribution when fluid flow 3 does not exist, and the solid line/opening indicates the distribution when fluid flow 3 exists. It can be seen that in the case of the mouth, the static pressure area increases at the same time as the static pressure increases.

第2図は流体封じ込め効果を概念的に説明するための図
表であり、縦軸に流体による支持力(静圧パツド位置の
ストリツプの支持力)、横軸に流体流れ3の流速をとつ
ており、静圧パツドへの流体供給圧力は一定としている
Figure 2 is a diagram to conceptually explain the fluid confinement effect.The vertical axis shows the supporting force of the fluid (the supporting force of the strip at the static pressure pad position), and the horizontal axis shows the flow velocity of fluid flow 3. , the fluid supply pressure to the static pressure pad is constant.

図において鎖線aは流体流れ3が存在しない場合の支持
力レベル、実線bは流体流れ3の流速によつて変化する
支持力を示している。これから明らかなように支持力は
流速の増大(特に流速10m/秒以上)に伴つて上昇し
、流体流れ3の存在しない支持力レベルaのほぼ2〜2
.5倍にまで達するが、流速がある程度の値を超すと封
じ込め効果が飽和し支持力は向上しないことがわかる。
したがつて、本発明力法では上述するストリツプ面の流
体流れとして一定以上の流速のある区域内に静圧パツド
を配置し、流体流れによる封じ込め効果による支持力の
向上を計るものである。
In the figure, the dashed line a shows the level of supporting force in the absence of the fluid flow 3, and the solid line b shows the supporting force that changes depending on the flow rate of the fluid flow 3. As is clear from this, the supporting force increases as the flow velocity increases (particularly at a flow velocity of 10 m/sec or more), and is approximately 2 to 2
.. However, it can be seen that when the flow velocity exceeds a certain value, the containment effect becomes saturated and the supporting capacity does not improve.
Therefore, in the force method of the present invention, a static pressure pad is placed in an area where the fluid flow on the strip surface has a flow velocity of a certain level or more, and the supporting force is improved by the confinement effect of the fluid flow.

本発明によれば、従来と同一の流量の場合には静圧パツ
ドの支持力を従来以上に増大せしめ振動防止効果を高め
ることができ、逆に従来と同一の支持力を得ようとすれ
ば流量を大巾に削減でき、省エネルギーの面できわめて
有利となる。しかして流体の封じ込め効果を十分発揮さ
せるための具体的な各種条件について以下に説明する。
According to the present invention, when the flow rate is the same as before, the supporting force of the static pressure pad can be increased more than before, and the vibration prevention effect can be enhanced. The flow rate can be significantly reduced, which is extremely advantageous in terms of energy conservation. Various specific conditions for fully exhibiting the fluid containment effect will be described below.

封じ込め効果に影響を与える要素としては、ストリツプ
面に沿つた流体流れの流速(この場合第1図のA点近傍
の速度)、静圧パツドに供給する流体田力および流量が
重要であるが、それ以外にストリツプと静圧パツドとの
距離、パツドの形状等が考えられる。流体流れの流速は
余り遅すぎても流体を静圧パツド内に封じ込めることが
できず、また過度に早い速度でも静圧パツドの反対側へ
抜ける流体が増えることから好ましくない。一力、静圧
パツドに供給する流体圧力および流量についても、過度
に低圧、低流量では絶対的な静圧力が不足しかつ封じ込
め作用が弱くなり、また高圧、高流量では省エネルギー
および設備能力の点で不利となる。流体流れの流速と静
圧パツドの流体圧、流量とは密接に関連しており、それ
ぞれ単独に決められるものでない。その実施仕様例を第
3図に示す。第3図によると静圧パツドへの必要静圧を
、設備能力の面から好適な範囲、例えばガルバーライン
のポツトロールとトツプロールの間において、例えばh
=15mmで20〜200mmAq(好ましくは、40
〜607nmAq)と設定したとすると、排出流体流れ
の流速は10〜20m/Sの範囲とすることが好ましく
、この条件であれば排出流体により、本来のパツドより
の流体支持力は2〜2.5倍に増大する。この差は実に
流体供給ブロワ一の選択において、通常の低圧(吐出圧
1200m1Aq)ブロワ一でよいか、設備費、ランニ
ングコストの高い高圧ブロワ一(例えばルーツプロワ一
)を設置しなければならないかの差となる。その理由は
、第3図の実施例によつて、h−15とした場合必要ブ
ロワ一吐出圧は950m7!LAqとなる。この数値に
は実機設計の際当然加味される余裕率等は含まれておら
ず必要静圧の変動等には低圧ブロワ一では耐えられない
。ここにこの発明の静圧パツドよりの流量を増やすこと
なく、流体支持力を増大させることが可能であるという
効果は大きく評価される。このような条件範囲において
、パツドのデイメンジヨンや、設置位置、振動防止程度
の必要度によつて、好適な範囲を種々選択できる。尚、
第3図において実施仕様は次の通りである。最適ノズル
仕様 t=2m1!L、 θ=30〜45必要静圧(M
mAq) Pn+(2.7〜4)×hノズル流速(
m/S) U+1.63(Pn−h)1/2ノズ
ル形状(a=M7n) b/a=0.3と仮定する
必要流量(Niln) Q=3.12×10−4×o
×3必要ブロワ一吐出圧(MmAq)PO−012×U
2+600+hここでストリツプ〜ノズル間距離hはス
トリツプの振動状態により決定される。次に、本発明の
実施態様について説明する。
The important factors that influence the containment effect are the velocity of the fluid flow along the strip surface (in this case, the velocity near point A in Figure 1), the fluid force and flow rate supplied to the static pressure pad, but Other considerations include the distance between the strip and the static pressure pad, the shape of the pad, etc. If the fluid flow velocity is too low, the fluid cannot be contained within the static pressure pad, and if the fluid flow velocity is too high, more fluid will escape to the opposite side of the static pressure pad, which is undesirable. Regarding the fluid pressure and flow rate supplied to the static pressure pad, if the pressure and flow rate are too low, the absolute static pressure will be insufficient and the containment effect will be weakened, and if the pressure and flow rate are too high, energy saving and equipment capacity will be affected. becomes disadvantageous. The velocity of the fluid flow, the fluid pressure of the static pressure pad, and the flow rate are closely related and cannot be determined independently. An example of its implementation specifications is shown in FIG. According to FIG. 3, the required static pressure to the static pressure pad is set within a suitable range from the viewpoint of equipment capacity, for example between the pot roll and top roll of the galvanic line, for example h
= 15 mm and 20 to 200 mmAq (preferably 40
~607 nmAq), the flow velocity of the discharged fluid flow is preferably in the range of 10 to 20 m/s, and under this condition, the fluid supporting force from the original pad is 2 to 2. Increased by 5 times. This difference is actually the difference in choosing a fluid supply blower: whether you can use a normal low pressure (discharge pressure 1200m1Aq) blower, or whether you need to install a high pressure blower (such as the Roots blower), which has high equipment costs and running costs. becomes. The reason is that according to the embodiment shown in Fig. 3, when h-15 is used, the required blower discharge pressure is 950 m7! It becomes LAq. This figure does not include margin factors, which are naturally taken into account when designing the actual machine, and a low-pressure blower cannot withstand fluctuations in the required static pressure. Here, the effect of the present invention in that it is possible to increase the fluid supporting force without increasing the flow rate from the static pressure pad is highly appreciated. Within such a range of conditions, various suitable ranges can be selected depending on the dimension of the pad, the installation position, and the degree of vibration prevention required. still,
In FIG. 3, the implementation specifications are as follows. Optimal nozzle specifications t=2m1! L, θ=30~45 Necessary static pressure (M
mAq) Pn+(2.7~4)×h nozzle flow rate (
m/S) U+1.63 (Pn-h) 1/2 nozzle shape (a=M7n) Required flow rate assuming b/a=0.3 (Niln) Q=3.12×10-4×o
×3 Required blower discharge pressure (MmAq) PO-012×U
2+600+h Here, the distance h between the strip and the nozzle is determined by the vibration state of the strip. Next, embodiments of the present invention will be described.

第4図はヌトリツプの連続溶融メツキ装置に本発明力法
を適用した例であり、ストリツプ11は溶融メツキ浴中
に浸漬されてから垂直力向に引き上げられ、該ストリツ
プ面に付着したメツキ金属が溶融状態にある位置で、ス
トリツプ11をはさんで対向設置したワイピングノズル
14によつてガス吹付けを施され余剰の金属を払拭され
る。該ワイピングノズル14は動圧ノズルであつてスト
リツプ11の面に対しほぼ垂直にガスを噴射するため、
この噴射ガス流はストリツプ面に衝突して上下二力向に
分流して流れる。ヌトリツプ11の上刃に向うガス流1
3が十分な流速を維持している範囲内でヌトリツプ11
をはさんで対称的に一対の静圧パツド12を設置すれば
、前記ストリップ面に沿つて上昇したガヌ流13が静圧
パツド12内への流体の封じ込め作用をより増大し、静
圧パツド12内の支持力をより向上せしめ、その結果ヌ
トリツプの振動を抑止することになる。ストリツプの振
動が抑止されれば、ワイピングノズル14のストリツプ
11に対する近接化が可能となりかつワイピングノズル
とヌトリツプ間の距離もほとんど変動しないため、目付
量の均一化が達成され、良質のメツキ製品が得られる。
なお、動圧ノズルであるワイピングノズル14から噴射
されることによつて生じるヌトリツプ面に沿つたガス流
13の流速は、ヌトリツプ面の吹付け位置に近い程早く
、距離が離れるにつれて低下していく。そこで、ワイピ
ングノズル14と静圧パツド12との距離は余り離隔す
るとガヌ流13の流速が遅くなり前述した流体の封じ込
め効果が期待できない。このような点およびワイピング
ノズルの動圧として通常採用されている圧力を考慮すれ
ば、ワイピングノズルと静圧パツドとの距離は大体15
00mm以内、好ましくは100〜500mm程度とす
ることが、本発明の目的を達成する上で望ましい。また
、第5図に示す例はヌトリツプ21の垂直走行部を包囲
する如く設置した冷却装置等の炉23の出側に静圧パツ
ド22を配置したものである。
Figure 4 shows an example in which the force method of the present invention is applied to a continuous melt plating device for nutrips, in which the strip 11 is immersed in a melt plating bath and then pulled up in the vertical force direction, and the plating metal attached to the strip surface is removed. At the position where the metal is in a molten state, gas is sprayed by wiping nozzles 14 installed opposite to each other with the strip 11 interposed therebetween to wipe away excess metal. Since the wiping nozzle 14 is a dynamic pressure nozzle and injects gas almost perpendicularly to the surface of the strip 11,
This jetted gas flow collides with the strip surface and flows in two directions, up and down. Gas flow 1 toward the upper blade of Nutrip 11
Nutrip 11 within the range where 3 maintains a sufficient flow rate.
If a pair of static pressure pads 12 are installed symmetrically across the strip surface, the Ganu flow 13 rising along the strip surface will further increase the effect of confining the fluid within the static pressure pads 12. This further improves the supporting force within the nut 12 and, as a result, suppresses the vibration of the nut trip. If the vibration of the strip is suppressed, it becomes possible to bring the wiping nozzle 14 closer to the strip 11, and the distance between the wiping nozzle and the strip hardly changes, so that uniformity of the basis weight can be achieved and a high-quality plated product can be obtained. It will be done.
Note that the flow velocity of the gas flow 13 along the nut trip surface generated by being injected from the wiping nozzle 14, which is a dynamic pressure nozzle, is faster as it approaches the spraying position on the nut trip surface, and decreases as the distance increases. . Therefore, if the distance between the wiping nozzle 14 and the static pressure pad 12 is too large, the flow velocity of the Ganu flow 13 will be slowed down, and the above-mentioned fluid containment effect cannot be expected. Considering these points and the pressure normally adopted as the dynamic pressure of the wiping nozzle, the distance between the wiping nozzle and the static pressure pad is approximately 15
In order to achieve the object of the present invention, it is desirable that the distance be within 0.00 mm, preferably about 100 to 500 mm. Further, in the example shown in FIG. 5, a static pressure pad 22 is arranged on the outlet side of a furnace 23 such as a cooling device installed so as to surround the vertically running portion of the nutrip 21.

このような炉23においても炉内で適宜のガス流体をヌ
トリツプ21面に吹付けた場合、炉23の出側には矢印
24で示す如くストリツプ21面に沿つた上向きのガス
流れが生じ、これが静圧パツド22から下向きに流出す
る流体を静圧パツド前面25に封じ込める働きを果たし
、静圧パツド前面25の静圧力を高めることになる。そ
の結果、静圧パツド前面25の位置でストリツプ21は
高い支持力で保持され、その振動を抑止されることから
、ヌトリツプ21の走行経路は安定したものとなり、炉
内におけるガス流体吹付装置等を可及的にストリツプに
近接して配置することが可能となつて、効率の良い冷却
が行なえる。また従来ではストリツプの振動をある程度
予測してすべての設備配置を行なつていたが、本発明で
はほとんどストリツプの振動は無視できるので、無駄の
ない最小の規模の設備でも十分目的を達成することがで
きる。さらに、第6図は本発明の他の実施例を示すもの
で、第4図と同様なワイピングノズル33の出側に、下
側の流体噴出口のない静圧パツド32を配置して構成し
たものである。
Even in such a furnace 23, when an appropriate gas fluid is blown onto the surface of the strip 21 in the furnace, an upward gas flow is generated along the surface of the strip 21 at the exit side of the furnace 23 as shown by the arrow 24, and this It functions to confine the fluid flowing downward from the hydrostatic pad 22 to the hydrostatic pad front surface 25, thereby increasing the static pressure on the hydrostatic pad front surface 25. As a result, the strip 21 is held with a high supporting force at the front surface 25 of the static pressure pad, and its vibration is suppressed, so the traveling path of the strip 21 becomes stable, and the gas fluid spraying device etc. in the furnace is Since it can be placed as close to the strip as possible, efficient cooling can be achieved. In addition, in the past, all equipment was arranged by predicting the vibration of the strip to some extent, but with the present invention, the vibration of the strip can be almost ignored, so even the smallest scale equipment with no waste is sufficient to achieve the purpose. can. Furthermore, FIG. 6 shows another embodiment of the present invention, in which a static pressure pad 32 without a lower fluid jet port is arranged on the exit side of a wiping nozzle 33 similar to that in FIG. 4. It is something.

このような静圧パツド32のみではさほどの静圧力は得
られないが、第6図の場合ではストリツプ31に沿つて
ワイピングノズル33からの流体流れ(矢印34)が存
在するためこのガス流れは静圧パツド前面5において、
封じ込め効果を発揮し静圧支持力が期待できる。この例
ではできるだけ静圧パツド32をワイピングノズル33
の出側に接近させて配置することが好ましく、静圧パツ
ド32への流体供給量は大巾に節減することができる。
Such a static pressure pad 32 alone cannot provide a significant static pressure, but in the case of FIG. 6, there is a fluid flow (arrow 34) from the wiping nozzle 33 along the strip 31, so this gas flow is static At the pressure pad front 5,
It can be expected to exhibit a containment effect and provide static pressure support. In this example, the static pressure pad 32 is removed from the wiping nozzle 33 as much as possible.
It is preferable to arrange it close to the outlet side of the static pressure pad 32, and the amount of fluid supplied to the static pressure pad 32 can be greatly reduced.

上記の例では動圧ノズルを設けた溶融メツキラインおよ
びガス炉の場合に本発明を適用した態様を示したが、こ
れら以外にも静圧パツドを設置し得る個所で少くともヌ
トリツプ面に封じ込め効果を期待できる程度の流体流れ
が存在する限りにおいては、本発明を適用できることは
言うまでもない。
The above example shows an embodiment in which the present invention is applied to a melting plating line and a gas furnace equipped with a hydrodynamic pressure nozzle. It goes without saying that the present invention can be applied as long as there is a predictable level of fluid flow.

また、ストリツプ面に対するガス流体の吹付けの結果生
じる流体流れに限ることなく、他の要因(ブロワ一、ド
ラフト等)によつて生じる流れを利用してもよい。
Furthermore, the present invention is not limited to the fluid flow produced as a result of spraying the gas fluid onto the strip surface, but may also utilize a flow produced by other factors (blowers, drafts, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明力法の原理および静圧力分布を説明する
ための略図、第2図は本発明による効果を示す図表、第
3図イ,岨ま本発明の実施仕様例を示す静圧パツド側面
図と正面図、第4図は本発明をストリツプの溶融メツキ
ラインに適用した場合の概略図、第5図は本発明をガス
炉による処理ラインに適用した場合の概略図、第6図は
第4図の他の例を示す概略図である。 1,11,21,31・・・・・・ストリツプ、2,1
2,22,32・・・・・・静圧パツド、3,13,2
4,34・・・・・・流体流れ、14,33・・・・・
・ワイピングノズル、23・・・・・・ガス炉。
Fig. 1 is a schematic diagram for explaining the principle of the force method of the present invention and static pressure distribution, Fig. 2 is a diagram showing the effects of the present invention, and Fig. 3 A shows static pressure examples of practical specifications of the present invention. A side view and a front view of the pad, Fig. 4 is a schematic diagram when the present invention is applied to a strip melting plating line, Fig. 5 is a schematic diagram when the present invention is applied to a processing line using a gas furnace, and Fig. 6 is a schematic diagram when the present invention is applied to a processing line using a gas furnace. FIG. 5 is a schematic diagram showing another example of FIG. 4; 1, 11, 21, 31... Strip, 2, 1
2, 22, 32... Static pressure pad, 3, 13, 2
4,34...Fluid flow, 14,33...
・Wiping nozzle, 23... Gas furnace.

Claims (1)

【特許請求の範囲】 1 ストリップの通板ラインにおいて、ストリップをは
さんで静圧パッドを対向配置するとともに、ストリップ
の対向面に配置した静圧パッドの排出流体に、少くとも
前記静圧パッドからの排出流体の流速と同等の流速を有
する別の流体を前記排出流体を遮る如く向流させること
を特徴とするストリップの振動防止方法。 2 静圧パッドを設置する位置近傍のストリップ面上の
流体流れの流速が少くとも10m/秒である特許請求の
範囲第1項記載の方法。
[Scope of Claims] 1. In a strip threading line, static pressure pads are arranged opposite to each other across the strip, and at least the fluid discharged from the static pressure pads arranged on the opposite surface of the strip is supplied from the static pressure pads. 1. A method for preventing vibration of a strip, characterized in that another fluid having a flow velocity equivalent to that of the discharged fluid is caused to flow counter-currently so as to block the discharged fluid. 2. The method of claim 1, wherein the velocity of the fluid stream on the strip surface near the location of the hydrostatic pad is at least 10 m/sec.
JP16162379A 1979-12-14 1979-12-14 How to prevent strip vibration Expired JPS5911662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16162379A JPS5911662B2 (en) 1979-12-14 1979-12-14 How to prevent strip vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16162379A JPS5911662B2 (en) 1979-12-14 1979-12-14 How to prevent strip vibration

Publications (2)

Publication Number Publication Date
JPS5684452A JPS5684452A (en) 1981-07-09
JPS5911662B2 true JPS5911662B2 (en) 1984-03-16

Family

ID=15738694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16162379A Expired JPS5911662B2 (en) 1979-12-14 1979-12-14 How to prevent strip vibration

Country Status (1)

Country Link
JP (1) JPS5911662B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089654A (en) * 1989-08-08 1992-02-18 Taisho Pharmaceutical Co., Ltd. Chalcone derivatives
FR2726288B1 (en) * 1994-10-27 1997-01-17 Clecim Sa AIR BLADE DEVICE FOR ADJUSTING THE THICKNESS OF A DEPOSIT
KR20030053390A (en) * 2001-12-22 2003-06-28 재단법인 포항산업과학연구원 System for vibration suppression of continuous line
BE1016623A4 (en) 2005-06-02 2007-03-06 Ct Rech Metallurgiques Asbl DEVICE FOR THE PNEUMATIC STABILIZATION OF A METAL STRIP IN CONTINUOUS SCROLL.
BE1023837B1 (en) 2016-01-29 2017-08-09 Centre De Recherches Metallurgiques Asbl DEVICE FOR THE HYDRODYNAMIC STABILIZATION OF A CONTINUOUSLY CONTINUOUS METAL STRIP
CN109277412A (en) * 2018-09-29 2019-01-29 青岛黄海学院 A kind of non-contact support formula reduces the device for inhibiting Mill chattering of plate bounce

Also Published As

Publication number Publication date
JPS5684452A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
US5965210A (en) Hot dip coating apparatus and method
EP0921208B1 (en) Method for cooling strip material
KR101158327B1 (en) Cooling device for cooling a metal strip
US11866829B2 (en) Device and method for manufacturing a coated metal strip with improved appearance by adjusting a coating thickness using gas jet wiping
JP5470932B2 (en) Hot-dip metal-plated steel strip manufacturing equipment and hot-metal-plated steel strip manufacturing method
JPS5911662B2 (en) How to prevent strip vibration
JP3617473B2 (en) Method for producing hot dip galvanized steel sheet
JPH06292854A (en) Device for peeling off liquid coating film
JP2007197782A (en) Manufacturing method of hot dip metal coated steel strip
JPS6048587B2 (en) Melt plating equipment
JPH10204599A (en) Method for controlling hot-dip coating amount and gas wiping nozzle
JPH01208441A (en) Gas wiping device
JPH11152556A (en) Device for removing excess plating liquid of hot dip metal coating
JP2005171336A (en) Hot dip metal plating method and apparatus
JP4765641B2 (en) Manufacturing method of molten metal plated steel strip
JP2596240B2 (en) Continuous hot metal plating equipment
KR100761307B1 (en) Liquid wiping apparatus
JP2851950B2 (en) Belt type continuous casting method
JPH10265930A (en) Adjusting method for quantity of adhesion of molten metal and device for the same in continuos hot-dip coating
JPH02163358A (en) Production of zero spangle steel sheet
JPH03287752A (en) Continuous hot dipping device for band steel
JPH07331404A (en) Method for preventing adhesion of splash in plating bath and its gas wiping device
JPS63128160A (en) Continuous metal hot dip coating method
KR20020018855A (en) An edge wiping nozzle for prevent splash defect in CGL
JP2850539B2 (en) High pressure molten metal feeder